March 2004 doc.: IEEE 802.11-04/0372r0 Rate Feedback Schemes for MIMO-OFDM 802.11n (a sequel to 802.11-04/0013r0) Ravi Mahadevappa, [email protected] Stephan ten Brink, [email protected] Realtek Semiconductors, Irvine, CA Submission Slide 1 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Overview • • • • Brief description of the method Computing ZF SNR of spatial subchannels Simulator settings Rate vs SNR(10% PER) for various MxN configurations – 1x1 – 2x3, 3x4 Submission Slide 2 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Brief description SISO case: • Compute “effective SNR” for each subcarrier • Switch off subcarriers with effective SNR below a certain threshold – New over 802.11-04/0013r0: Feedback of 4 different rates (i.e. 2 bits) per subchannel: off, nominal rate, one below nominal rate, one above nominal rate • Normalize transmit power to fix average time-domain SNR MIMO case: • Subcarriers are further divided into NT spatial subchannels, effective SNR is computed based on ZF detection (NT transmit antennas assumed) • Subchannel switched off when effective SNR falls below threshold – New over 802.11-04/0013r0: Feedback of 4 different rates (i.e. 2 bits) per subchannel: off, nominal rate, one below nominal rate, one above nominal rate • Transmit power renormalized to fix time-domain SNR Submission Slide 3 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Subchannel ZF-SNR on a subcarrier • Received signal: y = H s + n s H n transmitted NTx1 constellation vector of QAM symbols si, i=1..NT, with entries having average power Ps NRxNT matrix of channel coefficients, assumed iid complex Gaussian NRx1 vector of additive noise, with entries having variance s2 • Zero forcing detection: W = (H* H)-1 H* • sest = W y NTxNR matrix, “pseudo inverse”; H* denotes the complex conjugate transpose (Hermitian) of H; NTx1 vector estimate of transmitted constellation vector • Spatial subchannel SNRs, SNRj, j=1..NT computed as SNRj = Ps/([(H* H)-1]jj s2) where [(H* H)-1]jj denotes the jth diagonal element of (H* H)-1 • New over 802.11-04/0013r0: H is reformulated and ZF-SNRs recomputed whenever subchannels are switched off Submission Slide 4 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Simulator settings Coded MIMO-OFDM system • Convolutional outer encoder with memory 6 • Pseudo-random interleaver of length equal to one OFDM symbol • Modulation QPSK, 16QAM, 64QAM • MIMO configurations 1x1, 1x2, 2x3, 3x4 Submission Slide 5 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 1x1, Rate/Modulation per Subchannel 100 90 80 Rate in Mbps 70 1x1 Exponential Decay Channel 60 ns Trms Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 Random Interleaver for each OFDM symbol 1000 bit packets, 2000 packets avg. 256QAM 64QAM 60 50 40 16QAM 30 20 QPSK 7/8 BPSK 10 1/4 0 -5 0 5 10 15 20 25 30 35 • Nominal rate is chosen according to average SNR (over all subchannels and many packets) • For each subchannel, ZF-SNR is computed • Depending on how subchannel SNR compares to average SNR, subchannel is switched off, or uses nominal rate, or one below/above nominal rate Required SNR (10% PER) in dB Submission Slide 6 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 1x1, Rate/Mod. Choice for Rate Table • Subchannel rate table: choose best mod./code rate combination for given SNR (circles) 100 90 80 Rate in Mbps 70 1x1 Exponential Decay Channel 60 ns Trms Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 Random Interleaver for each OFDM symbol 1000 bit packets, 2000 packets avg. 256QAM 64QAM 60 50 40 16QAM 30 20 QPSK 7/8 BPSK 10 1/4 0 -5 0 5 10 15 20 25 Required SNR (10% PER) in dB Submission Slide 7 30 35 Modulation Code Rate BPSK 1/4 BPSK 1/3 QPSK 1/4 QPSK 1/3 QPSK 1/2 16QAM 1/3 16QAM 1/2 16QAM 2/3 16QAM 3/4 64QAM 2/3 64QAM 3/4 256QAM 2/3 256QAM 3/4 256QAM 7/8 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 2 Bits fed back per Subchannel Subchannels divided into 4 groups Modulation Code Rate 1/4 BPSK 1/3 BPSK 1/4 QPSK 1/3 QPSK 1/2 QPSK 1/3 16QAM 1/2 16QAM 2/3 16QAM 3/4 16QAM 2/3 64QAM 3/4 64QAM 2/3 256QAM 3/4 256QAM 7/8 256QAM Submission For example 00 – 01 – 10 – 11 – Switched off Nominal mode (Nominal - 1) mode (Nominal +1) mode Nominal – 1 mode Nominal mode Nominal + 1 mode Typical distribution of modes over subchannels for the 3x4 case subcarriers 1 TX 1 TX 2 TX 3 Slide 8 Ravi Mahadevappa, Stephan ten Brink, Realtek 48 March 2004 doc.: IEEE 802.11-04/0372r0 1x1 Results • Nominal rates used: BPSK, rate 1/3, up to 256QAM, rate 3/4 • Example setting here: 70 60 Rate in Mbps 50 2-bit feedback thresholds [-6 -6 +3] dB 1x1 Exponential Decay Channel 60 ns Trms 64QAM Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 Random Interleaver for each OFDM symbol SNR threshold -6 dB 1000 bit packets, 2000 packets avg. 10 subcarriers off on average – If subchannel SNR -6dB below average SNRav: switch off – If between -6dB and +3dB of SNRav: use nominal rate – If 3dB above SNRav: one higher rate than nominal rate 64QAM all subcarriers on 40 16QAM 16QAM -6 dB 30 7/8 20 QPSK -6 dB QPSK 10 1/4 0 -5 Submission 0 5 10 15 Required SNR (10% PER) in dB 20 Slide 9 25 30 • No significant improvement found with other threshold settings • Gains negligible over on/off feedback case Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 2x3 Results • Nominal rates used: BPSK, rate 1/3, up to 256QAM, rate 3/4 • Example setting here: Rate in Mbps 140 120 2x3 Exponential Decay Channel 60 ns Trms 100 Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 Random Interleaver for each OFDM symbol 1000 bit packets, 2000 packets avg. 64QAM SNR threshold 0 dB 20 subchannels off on average 64QAM all 96 subchannels on 80 60 16QAM 0 dB 2-bit feedback thresholds [0 0 +6] dB 16QAM 40 7/8 20 QPSK 0 dB 1/4 0 -5 Submission 0 QPSK 5 10 15 Required SNR (10% PER) in dB Slide 10 20 25 – If subchannel SNR 0dB below average SNRav: switch off – If between 0dB and +6dB of SNRav: use nominal rate – If 6dB above SNRav: one higher rate than nominal rate • No significant improvement found with other threshold settings • Gains negligible over on/off feedback case Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 3x4 Results • Nominal rates used: BPSK, rate 1/3, up to 256QAM, rate 3/4 • Example setting here: 200 180 160 2-bit feedback thresholds [0 0 +6] dB 3x4 Exponential Decay Channel 60 ns Trms Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 Random Interleaver for each OFDM symbol 1000 bit packets, 2000 packets avg. 140 64QAM SNR threshold 0 dB 24 subchannels off on average 64QAM all 144 subchannels on Rate in Mbps 120 100 16QAM 0 dB 16QAM 80 60 7/8 QPSK 0 dB 40 QPSK 20 0 -5 Submission 1/4 0 5 10 15 Required SNR (10% PER) in dB Slide 11 20 25 – If subchannel SNR 0dB below average SNRav: switch off – If between 0dB and +6dB of SNRav: use nominal rate – If 6dB above SNRav: one higher rate than nominal rate • No significant improvement found with other threshold settings • Gains negligible over on/off feedback case Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Observations • • • Feedback with switching on/off ZF-detection based subchannels gains about 2.5dB over the non-feedback case (802.11-04/0013r0) In our simulations, the gains through increasing the feedback-granularity from one bit (on/off) to 2 bits (subchannel off, nominal rate, below nominal rate, above nominal rate) were negligible On/off feedback could be considered as optional mode Submission Slide 12 Ravi Mahadevappa, Stephan ten Brink, Realtek March 2004 doc.: IEEE 802.11-04/0372r0 Some References [1] [2] [3] [4] [5] M. Tzannes, T. Cooklev, D. Lee, C. Lanzl, “Extended Data Rate 802.11a”, IEEE802.11-02/232r0 G. Kleindl, “Signaling for Adaptive Modulation”, 802.11-03/283r0 Leke, A. and Cioffi, J.M., "Transmit optimization for time-invariant wireless channel utilizing a discrete multitone approach," Proc. of IEEE ICC’97, V.2, pp. 954 – 958. Bangerter et.al., “High-Throughput Wireless LAN Air Interface,” Intel Tech. Journal, Vol. 7, Issue 3, Aug 2003. Ravi Mahadevappa, Stephan ten Brink, “On/off-Feedback Schemes for MIMO-OFDM 802.11n”, IEEE802.11-04/0013r0 Submission Slide 13 Ravi Mahadevappa, Stephan ten Brink, Realtek
© Copyright 2026 Paperzz