Solution of boundary-value problems of the theory of thermopiezoelasticity for a half-plane M. Chumburidze Akaki Tsreteli State University. Associated professor Preface. We has considered the basic nonstationary system of differential equations of mechanical thermopiezoelectricity for isotropic homogeneous media taking account Toupin’s and Midlin’s assumptions. Introduction. Basic nonstationary system of differential equations of mechanical thermopiezoelectricity for isotropic homogeneous media taking account Toupin’s and Midlin’s assumptions has the form[1] d 2v c 44 v x, t (c12 c 44 ) graddivv x, t d 44 q x, t (d12 d 44 ) graddivq x, t gradv 6 x, t 2 dt d 44 v x, t (d12 d 44 ) graddivv x, t b44 b77 q x, t (b12 b44 b77 ) graddivq x, t (1) gradv 5 x, t gradv 6 x, t aq x, t 1 v5 x, t divq x, t 0 e0 1 v6 v6 x, t divv divq t t t where, v v1 , v2 vk T q q1 , q2 v2k T 2 x1 2 x1 -diplacement vector(single-column matrix), , k 1,2 -polarization vector, v5-elecric potential of the domain, v6-temperature variation;x=(x1,x2)-point of two-dimensional Euclidean space E2, t-time, ∆- two-dimensional Laplacian operator; c44,c12,d44,d12,b44,b12,b77,ϛ,a,….elastic, elecri and heat constants[2]. ___ Object and methods of research.Further it will be assumed that v k x, t , k 1,6 is represented by the Laplace-Mellin integral (general dynamical case) i 1 vk x, t et u k x, d (2) 2i i where i , 0, i 1 in view of (2) the system (1) is reduced to the form (with respect of U ( x, ) u, p, u5 , u6 u k 6 x1 ): c 44 u (c12 c 44 ) graddivu d 44 p (d 12 d 44 ) graddivp gradu 6 2 u 0 d 44 u (d 12 d 44 ) graddivu b44 b77 p (b12 b44 b77 ) graddivp gradu 5 gradu 6 ap 0 u 5 (2) 1 divp 0 e0 u 6 divu divp 0 For the components of force-stress and electric-stress we have[2]: u j u k p d 21divp jk d 44 j p k jk x, c 21divu u 6 jk c 44 x x k x j k x j u j u k p p b21divp jk b44 j p k b77 p k j jk x, d 21divu u 6 jk d 44 x x x k x j k x j j x k Lemma 1. Regular solution of the system (2) U ( x, ) u, p, u5 , u6 u k 6 x1 admits in the domain of u 6 x, t regularity representation U ( x, ) u 1 u 2 , p 1 p 2 , u5 , u6 uk 6 x1 where 1 1 3 3 2 u 2 2 u 2 p 2 ki 0, k i u 0, k i 3 p 2 0, u i 1 i 1 i 1 6 5 u 1 u 2 rot 1 0, div 2 0 p p and the constants k i2 , i 1,5 are determined by the identities d12 2d 44 (b12 2b44 ) 1e a c12 2c 44 0 1 k i2 2 3 (b12 2b44 )c12 2c 44 d12 2d 44 i 1 3 k i 1 k 2 2 i 1 i 3 1 a c 2c 2 1 a 3 12 e 44 e0 0 2 (b12 2b44 )c12 2c 44 d12 2d 44 (b12 2b44 ) 3 1 a e 0 2 k i 2 (b12 2b44 )c12 2c 44 d12 2d 44 i 1 2 3 k i23 i 1 2 k i23 i 1 ac 44 2 b44 b77 2 c 44 b44 b77 d 44 a 2 2 c 44 b44 b77 d 44 Lemma2. Parameters k i2 , i 1,5 are complex analytic functions of , and for large values , k o i 1,5 Lemma3. if scalar functions u ji , p ji i 1,3, j 1,5,6; u 54 , p14 and vector functions u 2l , p 2l , l 1,2 satisfy the equations: u ji u 0, 54 0 , p 14 ji and are related by the equaties: k p 2 i 2l k u 2 l 3 0, divu 2l 0 2l p k i2 (c12 2c 44 ) 2 u1i k i2 (d 12 2d 44 ) p1i u 6i 0 (k i2 (b12 2b44 ) a ) p1i k i2 (d 12 2d 44 )u1i u 6i 0 u 1 p 0 5i e 1i 0 ap u 14 54 0 2 2 2l 2 2l k l 3 c 44 u k l 3 d 44 p 0 k 2 b b a p 2l k 2 d u 2l 0 l 3 44 77 l 3 44 then vector U gradu1 u 2 , gradp1 p 2 , u5 , u6 where 3 2 i 1 i 1 u 1 u1i , u 2 u 2i , 4 2 p 1 p1i p 2 p 2i i 1 4 u 5 u 5i i 1 i 1 3 u 6 u 6i i 1 is a regular solution of the piezoelectricity equations (2) Fairness of there lemmas is established by analogy of couple-stress thermoelasticity[2] Statement of problem. Let D-half-plane: D x E 2 , x2 0 Consider the first boundary-value problem: it is required to find in D the regular solution U ( x, ) u, p, u5 , u6 u k 6 x1 of system (2), satisfying the boundary condition: on x2 0 are given displacement, polarization, electric potential and temperatur u x1 ,0 1 x1 , px1 ,0 2 x1 , u 5 x1 ,0 5 x1 , u 6 x1 ,0 6 x1 e, i.e. where 1 1 , 2 ( 2) 3 , 4 , 5 , 6 -given functions representable by Foutier’s integrals: T T 1 1 k x1 f r e ix1 d , k 1,6 f k x1 r e ix1 d 2 2 Solution of problem, according to Lemma 3, is sought in the form: U grad u11 u12 u13 u 21 u 22 , grad p11 p12 p13 p14 p 21 p 22 , u 51 u 52 u 53 u 54 , u 61 u 62 u 63 where, u lj 1 2 1 p1 j 2 u 54 1 2 1 p14 2 u 2,n p 2,n lj exp( x 2 2 k 2j ) exp( ix1 )d 1j exp( x 2 2 k 2j ) exp( ix1 )d , 54 exp( ix 2 ) exp( ix1 )d j 1,3; l 1,5,6 14 exp( ix 2 ) exp( ix1 )d 1 2 1 2 2 n exp( x 2 2 k n23 ) exp( ix1 )d 2 n exp( x 2 2 k n23 ) exp( ix1 )d , n 1,2 where lj , 1 j , j 1,3; l 1,5,6, 54 , 14 -unknown scalars, while 2 n , 2 n are unknown vectors. Result and discussion.Thus , we have 22 unknown scalars. According to Lemma 3 and the boundary conditions, to determine these scalars we obtain complete algebraic system with 22 scalar equations: k i2 (c12 2c 44 ) 2 1i k i2 (d 12 2d 44 ) 1i 6i 0 (k i2 (b12 2b44 ) a ) 1i k i2 (d 12 2d 44 ) 1i 6i 0 1 0 i 1,3 5i e 1i 0 a 14 54 0 2 2 2l 2 2l 0; k l23 b44 b77 a 2l k l23 d 44 2l 0 k l 3 c 44 k l 3 d 44 i 2l r 2l 0 l 1,2 1 l 3 1 3 2 ) i 1( 2 j f 1 1j j 1 j 1 2 3 ) 1 j r j 2( 2 j f 2 j 1 j 1 4 2 i 1 j 1( 2 j ) f 3 j 1 j 1 3 2 r i ( 2 j ) f 1j j 14 2 4 j 1 j 1 4 (3) 5 j f 5 j 1 3 6 j f 6 j 1 where, r j 2 k 2j ; r j 3 2 k 2j 3 By analogy can be considered other boundary-value problems. For example, for the second problem on x2 0 are given force-stresses electric stresses, charge of line and heat flow. Boundary conditions have form: u p u p 1 21 x, c 44 2 1 d 44 2 1 x1 x 2 x1 x 2 u p 2 22 x, c 21divu u 6 2c 44 2 d 21divp 2d 44 2 x 2 x 2 u p p p u p 3 21 x, d 44 2 1 b44 2 1 b77 1 2 x1 x 2 x1 x 2 x 2 x1 u p 4 22 x, d 21divu u 6 2d 44 2 b21divp 2b44 2 x 2 x 2 5 e0 6 u 5 p2 x 2 u 6 x 2 1 1 r e ix1 d , k 1,6 k x1 where , k x1 2 2 e r ix1 d The system (3 )will be replaced by the last six equation: 3 2 2 3 2 2 c 44 2i r j 1 j i 22 j 12 j r j 3 d 44 2i r j 1 j 2 2 14 22 j 12 j r j 3 1 j 1 j 1 j 1 j 1 j 1 j 1 3 2 3 3 2 c 21 ( 1 j i 12 j ) r j 6 j 2c 44 ( r j 1 j r j 3 22 j ) j 1 j 1 j 1 3 2 3 j 1 j 1 j 1 2 j 1 j 1 2 3 j 1 j 1 2 d 21 ( 2 1 j 12 j r j 1 j r j 3 22 j ) 2d 44 ( r j 1 j 2 14 r j 3 22 j ) 2 2 2 j 1 3 2 2 d 44 2i r j 1 j i 22 j 12 j r j 3 j 1 j 1 j 1 3 2 2 2 2 b44 2i r j 1 j 2 2 14 22 j 12 j r j 3 b77 12 j r j 3 22 j 3 j 1 j 1 j 1 j 1 j 1 3 2 3 3 j 1 j 1 j 1 j 1 2 d 21 ( 1 j i 12 j r j 6 j ) 2d 44 ( r j 1 j r j 3 22 j ) 3 2 3 j 1 j 1 j 1 2 j 1 2 3 j 1 j 1 2 b21 ( 2 1 j 12 j r j 1 j r j 3 22 j ) 2b44 ( r j 1 j 2 14 r j 3 22 j ) 4 3 3 j 1 j 1 2 e0 ( r j 5 j i54 ) r j 1 j i14 5 3 r j 6 j 6 j 1 where, r j 2 k 2j ; r j 3 2 k 2j 3 2 j 1 References 1. W.Nowaski. Theory of Elasticity. Issue, 1975.p85 2. W. Kpraze, T.Gegelia, M. Bashaleisvili, T.Bucladze. Three-Dimensional Problems of the mathematical Theory of Elasticity and Thermoelastisity. North-Holland publishing company. Amsterdam, New York, Oxford, 1979,p.300
© Copyright 2026 Paperzz