Proton to Pion ratio in Jet and Bulk region in Heavy Ion collisions Measured by the ALICE detector, sNN = 2.76TeV Misha Veldhoen (Utrecht University) For the ALICE collaboration Hard Probes 2012 Cagliari, Italy Hadronization at high and low pT L / KS0 • In p—p collisions the dominant particle production mechanism is fragmentation. 2.5 Pb-Pb at 2 sNN = 2.76 TeV, |y|<0.75 0-5 % centrality 20-40 % centrality 40-60 % centrality 60-80 % centrality 80-90 % centrality (pp at s = 7 TeV) (pp at s = 0.9 TeV) data points include stat. errors estimated syst. error ~10 % Preliminary 1.5 1 0.5 0 0 1 2 3 4 5 7 6 8 p (GeV/c) T • In A–A collisions, for pT < 6 GeV/c, a significantly enhanced Baryon to Meson ratio is observed. 1 Reproducing the Baryon Enhancement 103 102 10 1 10-1 10-2 0 1.5 1 0.5 0 0 2 ALICE preliminary PbPb, 2.76 TeV 1 p+ + K p X W VISH2+1 VISHNU T Hydro normalized to data for p < 3 GeV/c 3 T STAR: Au-Au 200 GeV ´ L/ L 4 8 p (GeV/c) ALICE preliminary: 6 ALICE, |y|<0.75 Pb-Pb 0-5% Pb-Pb 60-80% pp s = 7 TeV STAR Au-Au 0-5% Au-Au 60-80% Hydro VISH2+1 Recombination x 0.85 with 10% feed-down correction 4 Pb-Pb sNN = 2.76 TeV stat. errors only syst. error ~10 % 2 T p (GeV/c) 2 Hydrodynamics Recombination and Hydro Thermal Recombination arXiv:1202.3233 arXiv:1202.3233 dN/dpTdy (GeV/c) 0 L / KS Hot matter • Hydrodynamic models reproduce the charged particle spectra and ratios for pT < 2 GeV/c. Meson Baryon pT = 2pT,parton pT = 3pT,parton • One possible hadronization mechanism at pT < 6 GeV is coalescence/recombination. Hadronization in Jets Ratio • What about hadronization in Jets? Several predictions have - ± been made. K±/π± p(p)/π • Shower-Thermal Recombination, (enhanced B/M should be observed in Jets) [Hwa, Yang] Hard parton Meson pT=2pT,parton Baryon pT=3pT,parton Hot matter • Medium effects, MLLA+LPHD formalism [Sapeta, Wiedemann] also predicts enhanced B/M ratio in Jets. arXiv:0707.3494 pT (GeV/c) We will present a measurement of the p/π ratio in the 3 Jet peak and Bulk region of a di-hadron correlation. Di-Hadron Correlations • 1.4M central (0-10%) Pb—Pb. • Associated particles: 1.5 < pT < 4.5 GeV/c, Trigger particles: 5.0 < pT < 10.0 GeV/c. • |η| < 0.8. • PID using TOF and TPC. • Corrections – Mixed event correction (pair acceptance). – Efficiency (tracking and PID) as function of pT and particle species. – No feed-down correction, Λ spectrum in jets not known. 4 Selecting Peak and Bulk Regions • Five-dimensional histogram: Jet = Peak – Bulk , dE / dx- dE / dx st p ,K, p Pb-Pb, sNN = 2.76TeV 0-10% central 2.0 < pT < 2.5 GeV/c, |h| < 0.8 ) Peak Bulk I Bulk II Count May 21 , 2012 Δη Dh • Peak- and Bulk regions can be selected by integrating over Δϕ and Δη. p ,K, p Count ( N Dj, Dh, pT,assoc, tTOF - tTOF 1.5 28000 1 27000 26000 0.5 25000 0 24000 Bulk 0 π Δϕ -0.5 23000 -1 22000 21000 -1.5 -1 0 1 2 3 4 D f (rad) Δϕ (rad) 5 Combined PID: TPC and TOF 800 600 p 400 200 K 0 102 800 600 10 0 -400 -400 -10 p K π 200 -200 -20 102 400 π 1 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) -30 Pb-Pb, sNN = 2.76TeV, 0-10% central 4.0 < pT < 4.5 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 Count 1400 10 1200 1000 800 102 600 400 10 3 TOF 3 1000 -200 -30 10 1200 TOF TOF 1000 3 1400 st May 21 , 2012 TOF 10 Count Count Count 1200 Pb-Pb, sNN = 2.76TeV, 0-10% central 3.5 < pT < 4.0 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 TOF p Count 1400 st May 21 , 2012 4.0 < pT < 4.5 GeV/c tTOF–t <t-TOF <t >π>(ps) p (ps) Count TOF tTOFt– <t- <tTOF>>πp (ps) (ps) Pb-Pb, sNN = 2.76TeV, 0-10% central 3.0 < pT < 3.5 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 tTOF– <t > Count (ps) t TOF - <t π > (ps) st May 21 , 2012 3.5 < pT < 4.0 GeV/c p 200 K 0 10 π -200 -20 -10 0 10 20 dE/dx - <dE/dx>p (a.u.) 1 dE/dx – <dE/dx>π (a.u.) -400 -30 -20 -10 1 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) • Specific energy loss, Time Projection Chamber (TPC) • Time Of Flight (TOF) • Good separation between pions, kaons and protons at intermediate pT. 6 Count Count 3.0 < pT < 3.5 GeV/c Combined PID: Peak Shapes 10 3 1500 104 p 1000 10 K 500 π 0 -500 -30 -20 -10 0 dE/dx 10 20 30 dE/dx - <dE/dx>p (a.u.) – <dE/dx>π (a.u.) 10 1 3 102 K 0 π -500 -1000 -20 -15 -10 -5 0 5 10 15 20 25 30 dE/dx - <dE/dx>K (a.u.) dE/dx – <dE/dx>K (a.u.) 5 500 p 0 104 -500 10 K -1500 3 102 π -2000 10 10 -2500 1 -3000 -30 -20 -10 0 dE/dx 10 20 30 dE/dx - <dE/dx>p (a.u.) – <dE/dx>p (a.u.) • Expected PID signals depend on pT and η NonGaussian peak shapes. • Generated templates to fit non-Gaussian peaks. 7 1 Count 10 -1000 500 1000 102 5 Count 1000 TOF p 10 Count Count 2000 st May 21 , 2012 Pb-Pb, sNN = 2.76TeV, 0-10% central 1.5 < pT < 2.0 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 TOF TOF p 1500 Count TOF 10 2000 4 Pb-Pb, sNN = 2.76TeV, 0-10% central 1.5 < pT < 2.0 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 tTOF– <t >p (ps) t TOF - <t > (ps) 2500 st May 21 , 2012 Mass Assumption: Protons TOF 10 5 Count Count Count 3000 TOF tTOFt– <t- <tTOF>>πp (ps) (ps) Pb-Pb, sNN = 2.76TeV, 0-10% central 1.5 < pT < 2.0 GeV/c, |h| < 0.8 - p/2 < Df < 3p/2, -1.5 < Dh < 1.5 tTOF–t <t-TOF <t >K>K(ps) (ps) st May 21 , 2012 Mass Assumption: Kaons Count Mass Assumption: Pions Combined PID: Fit Example I Count Count tTOF– t<t > <t π >(ps) p (ps) TOFTOF TOF 1400 1. 1200 TOF tTOF– t<tTOF - <t>π >(ps) p (ps) 1400 TOF 1400 10 p 600 1000 2 400 10 800 2 600 K 0 10 π 200 10 π 0 -200 -20 -10 1 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) K 200 10 π -200 -400 -400 -30 102 p 600 0 -200 -400 800 400 400 200 3. 1200 1000 800 Count st May 21 , 2012 2. 1200 1000 -30 Count st May 21 , 2012 Count Count tTOF– <t tTOFTOF - <t>TOF >p (ps) π (ps) Count st May 21 , 2012 Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 Final Fit Result Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 Data - Templates (K,p) Count Count Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 Data -20 -10 1 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) -30 -20 -10 1 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) 1. Data, mass assumption: pions. 2. Kaon and Proton templates subtracted, remaining peak fitted with a function (Gauss+Tail). 3. Final fit, pions (function), kaons and protons (template) 8 Combined PID: Fit Example II Count Count Data 800 4. Fit Result st May 21 , 2012 Count Count st May 21 , 2012 Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 Final Fit Result -0.30 < dE/dx - <dE/dx>p < 0.25 (a.u.) Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 Final Fit Result 0 < t TOF - <t TOF>p < 20 ps 900 5. Data 800 700 Fit Result 600 600 500 400 400 300 200 200 100 0 -400 -200 0 200 400 600 800 100012001400 t - <tTOF>p (ps) tTOFTOF– <tTOF >π (ps) 0 -30 -20 -10 0 10 20 dE/dx - <dE/dx>p (a.u.) dE/dx – <dE/dx>π (a.u.) 4. Slice through the pion peak (TOF). 5. Slice through the proton peak (TPC). 9 Proton and Pion Yields in Peak and Bulk Pb-Pb, sNN = 2.76TeV, 0-10% central -1 (GeV/c) -1 1/Ntrig dN/dpNtirg dp (GeV/c) T,assoc T,assoc -1 (GeV/c)-1 1/Ntrig dN/dpNT,assoc (GeV/c) tirg dpT,assoc Pb-Pb, sNN = 2.76TeV, 0-10% central p + p Bulk Yield (Normalized) 1 1 1 - p + p Peak Yield p + p Bulk Yield (Normalized) dN + dN π 1 p Correlated Uncertainty 10 Correlated Uncertainty Uncorrelated Uncertainty -1 10 Uncorrelated Uncertainty -1 5.0 < pT,trig < 10.0 GeV/c 2 2.5 3 5.0 < pT,trig < 10.0 GeV/c 3.5 p 4 (GeV/c) 2 2.5 3 pT,assoc (GeV/c) 1 Count T,assoc p+ + p- Yield Difference (Peak - Bulk) Pb-Pb, sNN = 2.76TeV, 0-10% central p + p Yield Difference (Peak - Bulk) p tirg π -1 2 2.5 3 -1 10-2 5.0 < pT,trig < 10.0 GeV/c 3.5 p 4 (GeV/c) pT,assoc (GeV/c) T,assoc 4 (GeV/c) pT,assoc (GeV/c) 10 10 3.5 p T,assoc T,assoc Count Pb-Pb, sNN = 2.76TeV, 0-10% central Ntirg dp -1 dN 1 -1 1/Ntrig dN/dp (GeV/c) T,assoc(GeV/c) T,assoc dN -1 1 -1 1/Ntrig dN/dp (GeV/c) T,assoc(GeV/c) N dp • Bulk yield normalized to peak region: -0.52 < Δϕ < 0.52, -0.6 < Δη < 0.6 • Correlated and uncorrelated uncertainties shown separately. p+ + p- Peak Yield 5.0 < pT,trig < 10.0 GeV/c 2 2.5 3 3.5 p 4 (GeV/c) pT,assoc (GeV/c) T,assoc 10 p/π Ratio (p+p)/(p++p-) Pb-Pb, sNN = 2.76TeV, 0-10% central Bulk Ratio (-0.52 < D f < 0.52, ± 0.6 < D h < ± 1.5) 1.4 1.2 5.0 < pT,trig < 10.0 GeV/c 1 0.8 • p/π Ratio in Bulk region (-0.52 < Δφ < 0.52 rad, ±0.60 < Δη < ± 1.50) • Results not feed-down corrected. 0.6 0.4 0.2 0 1 1.5 2 2.5 3 3.5 p 4 T,assoc 4.5 (GeV/c) 11 p/π Ratio (p+p)/(p++p-) Pb-Pb, sNN = 2.76TeV, 0-10% central Bulk Ratio (-0.52 < D f < 0.52, ± 0.6 < D h < ± 1.5) 1.4 Inclusive (Feed Down Corr.), |y| < 0.5, 0-5% 1.2 5.0 < pT,trig < 10.0 GeV/c 1 0.8 0.6 0.4 • Comparison with feeddown corrected p/π ratio, from inclusive spectra (0-5%), (QM2010 prel.) • Inclusive spectra used |y| < 0.5 instead of |η| < 0.8. 0.2 0 1 1.5 2 2.5 3 3.5 p 4 T,assoc 4.5 (GeV/c) 12 p/π Ratio (p+p)/(p++p-) Pb-Pb, sNN = 2.76TeV, 0-10% central Bulk Ratio (-0.52 < D f < 0.52, ± 0.6 < D h < ± 1.5) 1.4 Peak-Bulk Ratio (-0.52 < D f < 0.52, -0.4 < D h < 0.4) 1.2 5.0 < pT,trig < 10.0 GeV/c 1 0.8 0.6 0.4 0.2 0 1 1.5 2 2.5 3 3.5 p 4 T,assoc • Comparison with the p/π Ratio in the Jet (Peak – Bulk) (-0.52 < Δφ < 0.52 rad, -0.40 < Δη < 0.40) • Jet ratio not feeddown corrected. • Significant difference between Bulk and Jet ratio. 4.5 (GeV/c) 13 p/π Ratio (p+p)/(p++p-) Pb-Pb, sNN = 2.76TeV, 0-10% central Bulk Ratio (-0.52 < D f < 0.52, ± 0.6 < D h < ± 1.5) 1.4 Peak-Bulk Ratio (-0.52 < D f < 0.52, -0.4 < D h < 0.4) 1.2 Pythia (Peak-Bulk Ratio) 5.0 < pT,trig < 10.0 GeV/c 1 0.8 0.6 0.4 0.2 0 1 1.5 2 2.5 3 3.5 p 4 T,assoc 4.5 (GeV/c) • Comparison with Pythia p/π ratio in Jet. (Pythia v6.4.21, default tune) • Pythia p/π ratio agrees with measured Pb–Pb p/π ratio in Jet. • Particle production in Jet dominated by fragmentation. • No evidence for medium modification. 14 Summary and Conclusions • p/π Ratios in the Jet and Bulk of a di-hadron correlation were presented. • Particles identified using both TPC and TOF. • The p/π ratio in Bulk is compatible with the p/π ratio from feed down corrected inclusive spectra in the range 1.5 < pT < 3.0 GeV/c. • The p/π ratio in the Jet is compatible with a Pythia curve in the range 2.0 < pT < 4.0 GeV/c. (Pythia v6.4.21, default tune) • Our measurement suggests that particle production mechanism in jets is dominated by fragmentation. No evidence for medium modification. 15 BACKUP 16 Fit Quality Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 (Data - Final Fit Result)/Data st st 0.08 1200 0.06 1000 0.04 800 0.02 600 0 400 -0.02 200 -0.04 0 -0.06 -200 -0.08 -400 -30 -20 -10 0 10 20 dE/dx - <dE/dx>p (a.u.) (Data-Fit)/Data -0.1 4 1400 3 1200 1000 2 800 1 600 0 400 -1 200 0 -2 -200 -3 -400 -30 -20 -10 0 10 20 dE/dx - <dE/dx>p (a.u.) -4 (Data-Fit)/σstat 17 (Data - Final Fit Result)/ sstat 1400 May 21 , 2012 tTOF - <tTOF>p (ps) 0.1 (Data - Final Fit Result)/Data tTOF - <tTOF>p (ps) May 21 , 2012 Pb-Pb, sNN = 2.76TeV, 0-10% central 2.5 < pT < 3.0 GeV/c, |h| < 0.8 (Data - Final Fit Result)/ s stat
© Copyright 2026 Paperzz