Conditional Expectations Bivariate Probability Distributions Discrete Case - Television Sales Data Data Source: Benson (1966): “Analysis of Irregular Two-Dimensional Distributions of Consumer Buying Choices”, Journal of Marketing Research, Vol. 3, #3, pp.279-288 Discrete Bivariate Distributions Joint Probabilit y Distributi on : p ( x1 , x2 ) P ( X 1 x1 , X 2 x2 ) p( x , x ) 1 1 x1 2 x2 Marginal Probabilit y Distributi ons : p1 ( x1 ) P ( X 1 x1 ) p ( x1 , x2 ) x2 p2 ( x2 ) P ( X 2 x2 ) p ( x1 , x2 ) x1 p (x ) 1 1 1 x1 p (x ) 1 2 2 x2 Conditiona l Distributi ons (assuming p1 ( x1 ), p2 ( x2 ) 0) : p ( x1 , x2 ) p ( x1 | x2 ) P ( X 1 x1 | X 2 x2 ) p 2 ( x2 ) p( x p ( x1 , x2 ) p1 ( x1 ) p( x p ( x2 | x1 ) P ( X 2 x2 | X 1 x1 ) 1 | x2 ) 1 x2 x1 x2 2 | x1 ) 1 x1 Example - Television Sales Counts (Top Table) - Joint&Marginal Probabilites (Bottom Table) Frequencies Size\Price 15.5 17.5 19.5 21.5 23.5 Total $75 11 20 31 16 3 81 $125 21 123 465 136 36 781 $175 22 166 780 239 104 1311 $225 6 29 168 79 94 376 $275 1 7 34 31 28 101 Probabilities Size\Price 15.5 17.5 19.5 21.5 23.5 Probability $75 0.004091 0.007438 0.011528 0.005950 0.001116 0.030123 $125 0.007810 0.045742 0.172927 0.050576 0.013388 0.290443 $175 0.008181 0.061733 0.290071 0.088881 0.038676 0.487542 $225 0.002231 0.010785 0.062477 0.029379 0.034957 0.139829 $275 0.000372 0.002603 0.012644 0.011528 0.010413 0.037560 $325 1 4 8 14 12 39 Total 62 349 1486 515 277 2689 $325 Probability 0.000372 0.023057 0.001488 0.129788 0.002975 0.552622 0.005206 0.191521 0.004463 0.103012 0.014504 1.000000 Example - Television Sales Conditional Probabilities of Price Given Size P(Price|Size) Size\Price 15.5 17.5 19.5 21.5 23.5 $75 0.1774 0.0573 0.0209 0.0311 0.0108 $125 0.3387 0.3524 0.3129 0.2641 0.1300 $175 0.3548 0.4756 0.5249 0.4641 0.3755 $225 0.0968 0.0831 0.1131 0.1534 0.3394 $275 0.0161 0.0201 0.0229 0.0602 0.1011 $325 0.0161 0.0115 0.0054 0.0272 0.0433 Sum 1.0000 1.0000 1.0000 1.0000 1.0000 Conditional Probabilities of Size Given Price P(Size|Price) Size\Price 15.5 17.5 19.5 21.5 23.5 Sum $75 0.1358 0.2469 0.3827 0.1975 0.0370 1.0000 $125 0.0269 0.1575 0.5954 0.1741 0.0461 1.0000 $175 0.0168 0.1266 0.5950 0.1823 0.0793 1.0000 $225 0.0160 0.0771 0.4468 0.2101 0.2500 1.0000 $275 0.0099 0.0693 0.3366 0.3069 0.2772 1.0000 $325 0.0256 0.1026 0.2051 0.3590 0.3077 1.0000 Functions of Discrete Bivariate R.V.s Function of X 1 , X 2 : g ( X 1 , X 2 ) E g ( X 1 , X 2 ) g ( x1 , x2 ) p ( x1 , x2 ) x1 x2 E g ( X 1 ) g ( x1 ) p ( x1 , x2 ) g ( x1 ) p ( x1 , x2 ) g ( x1 ) p1 ( x1 ) x1 x2 x1 x2 E g ( X 1 ) | X 2 x2 g ( x1 ) p ( x1 | x2 ) x1 x1 Special Cases : E ( X 1 | X 2 x2 ) x1 p ( x1 | x2 ) x1 V ( X 1 | X 2 x2 ) x1 E ( X 1 | X 2 x2 ) p ( x1 | x2 ) 2 x1 x12 p ( x1 | x2 ) E ( X 1 | X 2 x2 ) E ( X 12 | X 2 x2 ) E ( X 1 | X 2 x2 ) 2 x1 Note : Common to write : E X 1 | X 2 x2 E ( X 1 | x2 ) 2 Example - Television Sales Conditional Mean and Variance of Prices for Size = 15.5 Size=15.5 Price(x1) p(x1|15.5) x1*p(x1|15.5) (x1^2)*p(x1|15.5) 75 0.1774 13.3065 997.9839 125 0.3387 42.3387 5292.3387 175 0.3548 62.0968 10866.9355 225 0.0968 21.7742 4899.1935 275 0.0161 4.4355 1219.7581 325 0.0161 5.2419 1703.6290 Sum 1.0000 149.1935 24979.8387 E ( P | S 15.5) x1 p( x1 | 15.5) 149.1935 x1 V ( P | S 15.5) E ( P | 15.5) E ( P | 15.5) 2 24979.8387 (149.1935) 2 2721.1328 2 Example - Television Sales Conditional Mean and Variance of Price for all Sizes Size(x2) 15.5 17.5 19.5 21.5 23.5 E(P|x2) 149.1935 159.5272 166.0162 176.4563 200.9928 E(P^2|x2) 24979.8387 27329.8711 29104.1386 33702.6699 42989.6209 V(P|x2) 2721.1238 1880.9369 1542.7763 2565.8403 2591.5234 p2(x2) 0.0231 0.1298 0.5526 0.1915 0.1030 Note that the last column is the marginal distribution of sizes Rules for Conditional Expectations Rule for Conditiona l/Marginal Means E ( X 1 ) E X 2 E X 1 | X 2 x2 E E ( X 1 | X 2 ) Rule for Conditiona l/Marginal Variances V ( X 1 ) E X 2 V X 1 | X 2 x2 VX 2 E X 1 | X 2 x2 E V ( X 1 | X 2 ) V E ( X 1 | X 2 ) Example - Television Sales Marginal Distribution of Prices with Mean and Variance Price(x1) 75 125 175 225 275 325 Sum p1(x1) 0.0301 0.2904 0.4875 0.1398 0.0376 0.0145 1.0000 x1*p1(x1) 2.2592 36.3053 85.3198 31.4615 10.3291 4.7136 170.3886 (x1^2)*p1(x1) 169.4403 4538.1647 14930.9688 7078.8397 2840.5076 1531.9357 31089.8568 E ( X 1 ) x1 p1 ( x1 ) 170.3886 x1 2 V ( X 1 ) x p1 ( x1 ) x1 p1 ( x1 ) 31089.8568 (170.3886) 2 2057.5749 x1 x1 2 1 Example - Television Sales Means and Variances of Conditional Distributions and Probabilities Size(x2) 15.5 17.5 19.5 21.5 23.5 Sum E(P|x2) 149.1935 159.5272 166.0162 176.4563 200.9928 V(P|x2) 2721.1238 1880.9369 1542.7763 2565.8403 2591.5234 p2(x2) 0.0231 0.1298 0.5526 0.1915 0.1030 1.0000 E(P|x2)p2(x2) (E(P|x2)^2)p2(x2) V(P|x2)p2(x2) 3.4399 513.2169 62.7407 20.7047 3302.9669 244.1231 91.7441 15231.0094 852.5718 33.7951 5963.3571 491.4123 20.7047 4161.4998 266.9587 170.3886 29172.0502 1917.8066 E X 2 E ( P | x2 ) E E ( P | X 2 ) E ( P | x2 ) p2 ( x2 ) 170.3886 x2 E X 2 V ( P | x2 ) V ( P | x2 ) p2 ( x2 ) 1917.8066 x2 VX 2 E ( P | x2 ) E ( P | x2 ) p2 ( x2 ) E ( P | x2 ) p2 ( x2 ) x2 x2 29172.0502 (170.3886) 2 139.7683 2 2 Example - Television Sales E ( X 1 ) x1 p1 ( x1 ) 170.3886 x1 E E ( X 1 | X 2 ) x1 p ( x1 | x2 ) p2 ( x2 ) 170.3886 x2 x1 V ( X 1 ) x12 p1 ( x1 ) E ( X 1 ) 2057.5749 2 x1 E V ( X 1 | X 2 ) V ( X 1 | x2 ) p2 ( x2 ) 1917.8066 x2 2 2 V E ( X 1 | X 2 ) E X 1 | x2 p2 ( x2 ) E X 1 | x2 p2 ( x2 ) 139.7683 x2 x2 E ( X 1 ) E E ( X 1 | X 2 ) V ( X 1 ) E V ( X 1 | X 2 ) V E ( X 1 | X 2 )
© Copyright 2026 Paperzz