PHY 712 Electrodynamics 9-9:50 AM Olin 103 Plan for Lecture 16: Read Chapter 7 1. Plane polarized electromagnetic waves 2. Reflectance and transmittance of electromagnetic waves – extension to anisotropy and complexity 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 1 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 2 For linear isotropic media and no sources: D E; B H Coulomb's law: E 0 E Ampere-Maxwell's law: B 0 t B Faraday's law: E 0 t No magnetic monopoles: B 0 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 3 Analysis of Maxwell’s equations without sources -- continued: Coulomb' s law : E 0 Ampere - Maxwell' s law : B E 0 t B 0 t No magnetic monopoles : B 0 E E 2 B B t t Faraday's law : E 2B B 2 0 t 2 B B 2 E E t t 2 E 2 E 2 0 t 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 4 Analysis of Maxwell’s equations without sources -- continued: Both E and B fields are solutions to a wave equation: 1 B 2 v 1 2 E 2 v 2 B 0 2 t 2 E 0 2 t 2 0 0 c where v c 2 n 2 2 2 Plane wave solutions to wave equation : Br, t B 0 e 02/17/2017 ik r it Er, t E 0 e PHY 712 Spring 2017 -- Lecture 16 ik r it 5 Analysis of Maxwell’s equations without sources -- continued: Plane wave solutions to wave equation : Br, t B 0 e ik r it n k v c 2 2 2 Er, t E 0 e ik r it where n 0 0 Note: , , n, k can all be complex; for the moment we will assume that they are all real (no dissipation). Note that E 0 and B 0 are not independent; B from Faraday's law : E 0 t k E 0 nkˆ E 0 B0 c also note : kˆ E 0 0 and kˆ B 0 0 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 6 Analysis of Maxwell’s equations without sources -- continued: Summary of plane electromagnetic waves : nkˆ E 0 ik r it Br, t e c n k v c 2 Er, t E 0 e ik r it where n and kˆ E 0 0 0 0 2 2 Poynting vector and energy density: S u 1 2 ˆ k E0 kˆ 2 c 2 n E0 avg avg 2 1 2 E0 2 E0 B0 k 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 7 Reflection and refraction of plane electromagnetic waves at a plane interface between dielectrics (assumed to be lossless) ’ ’ k’ q 02/17/2017 ki kR i R PHY 712 Spring 2017 -- Lecture 16 8 Reflection and refraction -- continued In medium ' ': E' r, t E'0 e ’ ’ q k’ ki i R kR i c n 'kˆ 'r ct n' ˆ B' r, t k 'E' r, t ' 'kˆ 'Er, t c In medium : Ei r, t E 0i e i c nkˆ i r ct nˆ B i r, t k i Ei r, t kˆ i Ei r, t c i c nkˆ R r ct E R r, t E 0 R e 02/17/2017 nˆ B R r, t k R E R r, t kˆ R E R r, t c PHY 712 Spring 2017 -- Lecture 16 9 Reflection and refraction -- continued ’ ’ ẑ q k’ ki i R kR x̂ Snell' s law - - matching phase factors at boundary plane : r xxˆ yyˆ 0zˆ kˆ 'r x sin q kˆ i r x sin i kˆ R r i R n' kˆ 'r nkˆ r n' x sin q nx sin i i Snell' s law : n' sin q n sin i 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 10 Reflection and refraction -- continued ’ ’ ẑ q k’ ki i R kR x̂ Continuity equations at boundary with no sources : D 0 B 0 D B H 0 E 0 t t Matching field amplitudes at boundary plane : D zˆ , B zˆ continuous H zˆ , E zˆ continuous PHY 712 Spring 2017 -- Lecture 16 02/17/2017 11 Reflection and refraction -- continued Matching field amplitudes at boundary plane : D zˆ continuous : ẑ ’ ’ q k’ ki i R kR x̂ E 0i E 0 R zˆ ' E'0 zˆ B zˆ continuous : n kˆ i E 0i kˆ R E 0 R zˆ n' kˆ 'E' zˆ 0i E zˆ continuous : E0i E0 R zˆ E'0 zˆ H zˆ continuous : n ˆ n' ˆ ˆ k i E 0i k R E 0 R zˆ k 'E'0i zˆ ' 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 12 Reflection and refraction -- continued ’ ’ ẑ s-polarization – E field “polarized” perpendicular to plane of incidence q E zˆ continuous : E0i E0 R zˆ E'0 zˆ k’ ki i R kR x̂ H zˆ continuous : E0 R E0 i n ˆ n' ˆ ˆ k i E 0i k R E 0 R zˆ k 'E'0i zˆ ' n cos i n' cos q E '0 2n cos i ' E 0 i n cos i n' cos q n cos i n' cos q ' ' Note that : n' cos q n'2 n 2 sin 2 i 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 13 Reflection and refraction -- continued p-polarization – E field “polarized” ẑ parallel to plane of incidence ’ ’ q k’ ki i R kR x̂ D zˆ continuous : E 0i E 0 R zˆ ' E'0 zˆ H zˆ continuous : n ˆ n' ˆ ˆ ˆ k i E 0i k R E 0 R z k 'E'0i zˆ ' n' cos i n cos q E0 R ' E0 i n' cos i n cos q ' E '0 2n cos i E0i n' cos i n cos q ' Note that : n' cos q n'2 n 2 sin 2 i 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 14 Reflection and refraction -- continued ’ ’ ẑ q k’ x̂ ki i R kR Reflectance, transmittance : S R zˆ E0 R R S i zˆ E0 i Note that 02/17/2017 2 2 E '0 n' cos q S'zˆ T S i zˆ E0i n ' cos i R T 1 PHY 712 Spring 2017 -- Lecture 16 15 For s-polarization n cos i n' cos q E0 R ' E0i n cos i n' cos q ' E '0 2n cos i E0i n cos i n' cos q ' Note that : n' cos q n'2 n 2 sin 2 i For p-polarization n' cos i n cos q E0 R ' E0 i n' cos i n cos q ' E '0 2n cos i E0i n' cos i n cos q ' Note that : n' cos q n'2 n 2 sin 2 i 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 16 Special case: normal incidence (i=0, q=0) n'n E0 R ' E '0 2n E0 i E 0 i n' n n' n ' ' Reflectance, transmittance : 2 E0 R R E0 i n'n ' n' n ' 2 2 2 E '0 n ' 2n n' T E0i n ' n' n n ' ' 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 17 Multilayer dielectrics n1 ki kR (Problem #7.2) n3 n2 ka kb kt d 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 18 Extension of analysis to anisotropic media -- 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 19 Consider the problem of determining the reflectance from an anisotropic medium with isotropic permeability 0 and anisotropic permittivity 0 k where: k xx κ 0 0 0 k yy 0 0 0 k zz By assumption, the wave vector in the medium is confined to the x-y plane and will be denoted by kt c (nx xˆ n y yˆ ), where nx and n y are to be determined. The electric field inside the medium is given by: E ( Ex xˆ E y yˆ Ez zˆ )e 02/17/2017 i ( nx x n y y ) it c PHY 712 Spring 2017 -- Lecture 16 . 20 Inside the anisotropic medium, Maxwell’s equations are: H 0 κ E 0 E i0 H 0 H iò0κ E 0 After some algebra, the equation for E is: k xx n y2 Ex nx n y 0 2 k yy nx 0 nx n y E y 0. 2 2 0 0 k ( n n ) E zz x y z From E, H can be determined from H E (n xˆ n yˆ ) ( E n c 1 z y x y x Ex n y )zˆ e i ( nx x n y y ) it c 0 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 21 . The fields for the incident and reflected waves are the same as for the isotropic case. ki kR c c (sin ixˆ cos iyˆ ), (sin ixˆ cos iyˆ ). Note that, consistent with Snell’s law: nx sin i Continuity conditions at the y=0 plane must be applied for the following fields: H ( x, 0, z , t ), Ex ( x, 0, z , t ), E z ( x, 0, z , t ), and Dy ( x, 0, z , t ). There will be two different solutions, depending of the polarization of the incident field. 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 22 Solution for s-polarization Ex E y 0 E Ez zˆ e n y2 k zz nx2 i ( nx x n y y ) it c H E (n xˆ n yˆ ) e c 1 z y i ( nx x n y y ) it c x 0 Ez must be determined from the continuity conditions: E0 E0 Ez ( E0 E0 ) cos i E z n y ( E0 E0 ) sin i E z nx E0 cos i n y . E0 cos i n y 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 23 Solution for p-polarization Ez 0 k xx n (k yy nx2 ). k yy 2 y k xx nx E Ex xˆ k yy n y i ( nx x ny y ) it yˆ e c . Ex k xx i c ( nx x ny y ) it H zˆ e . 0 c n y Ex must be determined from the continuity conditions: 0 ( E0 E ) cos i Ex 0 ( E0 E ) k xx ny Ex 0 ( E0 E ) sin i k xx nx ny Ex . E0 k xx cos i n y . E0 k xx cos i n y 02/17/2017 PHY 712 Spring 2017 -- Lecture 16 24 Extension of analysis to complex dielectric functions For simplicity assume that 0 Suppose the dielectric function is complex : 2 nR inI i 0 R i I 1/ 2 1/ 2 nR nI 2 2 i c nkˆ r ct i c n R kˆ r ct c n I kˆ r Er, t E 0 e E0e e 2 02/17/2017 2 2 PHY 712 Spring 2017 -- Lecture 16 2 25
© Copyright 2026 Paperzz