mac2313_exam2_numerical_key

Question 1:
For f(x,y) = y + π‘₯ 2
a.) Identify the Domain:
y + π‘₯ 2 is defined for all real numbers.
b.)Sketch the level curves for k = -1, 0, and 1:
c.) Find the rate of change of f at the point (1,-2,-1) in the direction of
⃑ = <2,3>:
v
7
√13
d.) Sketch the vector in the direction of maximal rate of change at (1,-2)
on the level curve at k = -1.
Question 2:
Evaluate the following Limits, if they exist. If a limit doesn’t exist, show
why:
a.)
lim
π‘₯ 3𝑦
(π‘₯,𝑦)β†’(0,0) π‘₯ 6 +𝑦 2
DNE, Use y = x to get a limit of 0, and use y = π‘₯ 3 to get a limit of
b.)
lim
π‘₯ 4 +𝑦 2
(π‘₯,𝑦)β†’(0,0) √π‘₯ 4 +𝑦2 +9βˆ’3
Use conjugate. The limit is 6.
c.)
lim
π‘₯ 3𝑦
(π‘₯,𝑦)β†’(0,0) π‘₯ 5 𝑦 3 +π‘₯ 3 𝑦
Cancel out common factors. The limit is 1.
1
2
Question 3:
a.) Find the tangent plane to f(x,y) = π‘₯ ln | sin(π‘₯𝑦) | βˆ’ 𝑦 2 𝑒 π‘₯
πœ‹
at the point (1, ):
2
βˆ’π‘’πœ‹ 2
πœ‹
π‘’πœ‹ 2
(π‘₯ βˆ’ 1) βˆ’ π‘’πœ‹ (𝑦 βˆ’ ) βˆ’
𝑧=
4
2
4
b.) Find the linear approximation to f at (2, πœ‹):
𝐿(2, πœ‹) = βˆ’π‘’πœ‹ 2
Question 4:
Given f(x,y) = π‘₯ 4 𝑦 βˆ’ ln |π‘₯𝑦 3 |, find the following:
𝑓x : 4π‘₯ 3 𝑦 βˆ’
𝑓y : π‘₯4 βˆ’
1
π‘₯
3
𝑦
𝑓xx : 12π‘₯2 𝑦 +
𝑓yy :
3
𝑦2
𝑓xy : 4π‘₯3
𝑓yx : 4π‘₯3
𝑓yxy : 0
1
π‘₯2
Question 5:
Determine whether the following functions satisfy this equation:
𝑓xx + 𝑓yy = 0
(State YES or NO):
a.) f(x,y) = π‘₯ sin(𝑦) + 𝑦 cos(π‘₯)
NO
b.) f(x,y) = sin(3π‘₯)𝑒 βˆ’3𝑦
YES
c.) f(x,y) = π‘₯𝑒 βˆ’π‘₯𝑦
NO
Question 6:
Find the equation of the tangent plane to z = ln(1 + π‘₯𝑦) + π‘₯𝑦 2
At the point (1,2):
𝑧=
14
13
(π‘₯ βˆ’ 1) +
(𝑦 βˆ’ 2) + 4 + ln 3
3
3
Question 7:
Given z = sin(𝑒 π‘₯𝑦 ) where
π‘₯ = π‘Ÿ 2 + cos(𝑑𝑠) 𝐴𝑁𝐷 𝑦 = 𝑠 3 π‘Ÿ + cos(π‘Ÿ 2 )
Draw a tree diagram, and then use the chain rule to find:
πœ•π‘§
a.) πœ•π‘ 
[𝑦𝑒 π‘₯𝑦 cos 𝑒 π‘₯𝑦 ][βˆ’π‘‘ sin 𝑑𝑠] + [π‘₯𝑒 π‘₯𝑦 cos 𝑒 π‘₯𝑦 ][3𝑠 2 π‘Ÿ]
πœ•π‘§
b.) πœ•π‘Ÿ
[𝑦𝑒 π‘₯𝑦 cos 𝑒 π‘₯𝑦 ][2π‘Ÿ] + [π‘₯𝑒 π‘₯𝑦 cos 𝑒 π‘₯𝑦 ][𝑠 3 βˆ’ 2π‘Ÿ sin π‘Ÿ 2 ]
πœ•π‘§
c.) πœ•π‘‘
𝑦𝑒 π‘₯𝑦 cos 𝑒 π‘₯𝑦 [βˆ’π‘  sin 𝑑𝑠]
Question 8:
Determine and categorize the critical points of
f(x,y) = 4 + π‘₯ 3 + 𝑦 3 βˆ’ 3π‘₯𝑦:
(0,0) is a saddle point
(1,1) is a Relative Minimum
Question 9:
Evaluate these Integrals:
a.) ∬
1+π‘₯ 2
1+𝑦 2
𝑑𝐴 over 𝑅 = {(π‘₯, 𝑦)|0 ≀ π‘₯ ≀ 1, 0 ≀ 𝑦 ≀ 1}:
πœ‹
3
b.)
-6
∬ 4π‘₯ 3 βˆ’ 9π‘₯ 2 𝑦 2 𝑑𝐴 over 𝑅 = {(π‘₯, 𝑦)|0 ≀ π‘₯ ≀ 1, 1 ≀ 𝑦 ≀ 2}:
Question 10:
Evaluate the following Integral:
39
3
∬ π‘₯ 3 𝑒 𝑦 𝑑𝑦 𝑑π‘₯
0 π‘₯2
1 729
(𝑒
βˆ’ 1)
12