MATLAB PROJECT
Name : Mohamed kamal Aed
Sec : 6
B.N. 23
Name : Mohamed Tarek
Sec : 6
B.N.7
Prof. / Abdellatief Elshafei
Solution
(Q1-a)
x1= -1:0.001:0;
y1= zeros(1,length(x1));
x2= 0:0.001:3;
y2= 0.7.*exp(-x2).*cos(x2);
x3= 3:0.001:6;
y3= zeros(1,length(x3));
x= [x1 x2 x3];
y= [y1 y2 y3];
plot(x,y);
xlabel('time sec'); ylabel('x(t)');
(Q1-b)
x1= [-1 0 1];
y1= ones(1,3);
x2= [1 2];
y2=x2;
x3= [2 3 4];
y3= -2*x3+6;
x4= [4,5];
y42*x4-10;
x= [x1 x2 x3 x4];
y= [y1 y2 y3 y4];
plot(x,y);
axis([-1 5 -3 3]);
xlabel('time sec');
ylabel('x(t)');
(Q1-c)
n= -5:17;
x1= ones(1,length(n));
y1= ((0.7).^n).*x1;
stem(n,y1);
(Q1-d)
n= -5:17;
x= ((.85).^n).*(sin(pi.*n/3)+cos(pi.*n/3));
stem(n,x);
Solution
(Q2-a)
π₯(π‘) = πππ 2ππ‘ + π ππ7ππ‘
π₯(π‘) = π₯1 (π‘) + π₯2 (π‘)
The period of π₯1 (π‘) is T1 =
The period of π₯2 (π‘) is T2 =
2π
2π
2π
7π
=1
=
2
7
t= -5:0.001:5;
x= cos(2*pi*t)+sin(7*pi*t);
plot(t,x);
axis([-5 5 -1 1]);
xlabel('t'); ylabel('x(t)');
β΄ the period of π₯(π‘) is
π1
π2
β΄ π₯(π‘) is periodic function .
=π=
7
2
(Q2-b)
π₯(π‘) = πππ 2ππ‘ + π ππ3π‘
π₯(π‘) = π₯1 (π‘) + π₯2 (π‘)
2π
β΄ the period of π₯(π‘) is
The period of π₯1 (π‘) is T1 = 2π = 1
The period of π₯2 (π‘) is T2 =
2π
3
π1
π2
=π=
β΄ π₯(π‘) isnβt periodic function .
t= -10:0.001:10;
x= cos(2*pi*t)+sin(3*t);
plot(t,x);
axis([-10 10 -3 3]);
xlabel('t'); ylabel('x(t)');
3
2
x(t)
1
0
-1
-2
-3
-10
-8
-6
-4
-2
0
t
2
4
6
8
10
3
2π
(Q2-c)
T (period time) =
2π
3
not cop rime β΄ not periodic fn
n= -5:5;
x= cos(3.*n);
stem(n,x);
axis([-6 6 -2 5]);
xlabel('n'); ylabel('x');
5
4
3
x
2
1
0
-1
-2
-6
-4
-2
0
n
2
4
6
(Q2-d)
2π
T (period time) = 2π
β3
cop rime β΄ periodic fn
=3
n= -5:5;
x= cos(2*pi.*n/3);
stem(n,x);
axis([-6 6 -2 5]);
xlabel('n'); ylabel('x');
5
4
3
x
2
1
0
-1
-2
-6
-4
-2
0
n
2
4
6
Solution
(Q3-a)
By Appling Laplace on the circuit ,
π(π ) =
1β π βπ
π
π£(π ) = π(π ) β ( π
β°β° π πΏ)
π£(π ) =
π£(π ) =
1β π βπ
π
β
π
πΏπ
π
+πΏπ
π
πΏ(1β π βπ )
π
+πΏπ
π
π£(π ) = π
πΏ
+π
β
=
π
πΏ
π
+πΏπ
β
π
πΏ π βπ
π
+πΏπ
π
π βπ
π
+π
πΏ
β β1 π£(π ) = π£(π‘) =
π
π
π¦(π‘) = π
π β πΏ π‘ π’(π‘) β π
π β πΏ (π‘β1) π’(π‘ β 1) β³π
=1 & πΏ=1
π¦(π‘) = π βπ‘ π’(π‘) β π β(π‘β1) π’(π‘ β 1)
(Q3-b)
π(π‘) =
ππ(π‘)
ππ‘
1
π
=
ππ¦(π‘)
ππ‘
π¦(π‘) +
1 ππ¦(π‘)
π
ππ‘
+
+ π¦(π‘) =
π‘
1
β«β π¦(π) ππ
πΏ
1
πΏ
π¦(π‘) β³π
=1 & πΏ=1
ππ(π‘)
ππ‘
π΅π¦ πΈπ’πππ β² π ππππππ₯ππππ‘πππ ππ π‘βπ πππππ£ππ‘ππ£π
π¦[π+1]β π¦[π]
π
+ π¦[π] =
π[π+1]βπ[π]
π
π[π] = π’[π] β π’[π β 1]
ππ[π]
ππ
=
π¦[π] =
π’[π]β 2π’[π]+ π’[πβ2]
π
1
π+1
[ π¦[π β 1] + π’[π] β 2π’[π β 1] + π’[π β 2] ]
(Q3-c)
For exact solution
t1=0:0.001:1;
y1=exp(-t1);
t2=1:0.001:5;
y2=exp(-t2)-exp(-(t2-1));
t=[t1 t2]; y=[y1 y2];
plot(t,y);
xlabel('t');
ylabel('y(t)');
1
0.8
0.6
0.4
y(t)
0.2
0
-0.2
-0.4
-0.6
-0.8
0
0.5
1
1.5
2
2.5
t
3
3.5
4
4.5
5
For approximation solution
function y = recur(a,b,n,x,x0,y0)
N = length(a);
M = length(b)-1;
x = [x0 x];
y = [y0 zeros(1,length(n))];
a1 = a(length(a):-1:1);
b1 = b(length(b):-1:1);
for i=N+1:N+length(n);
y(i) = -a1*y(i-N:i-1)'+ b1*x(i-N:i-N+M)';
end
y = y(N+1:N+length(n));
stem(n,y);
Solution
(Q4-1)
x=ones(1,26);
y(1)=0;
for i=2:length(x)
y(i)=(((0.7)^i)*y(i-1))+x(i);
end
stem(y)
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
5
10
15
20
25
30
(Q4-2)
x=3*ones(1,26);
y(1)=0;
for i=2:length(x)
y(i)=(((0.7)^i)*y(i-1))+x(i);
end
stem(y)
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
0
5
10
15
20
25
30
(Q4-3)
x1=ones(1,26);
x2=3*ones(1,26);
y3(1)=0;
for i=2:length(x1)
x3(i)=x1(i)+2*x2(i);
y3(i)=(((0.7)^i)*y3(i-1))+x3(i);
end
stem(y3);
10
9
8
7
6
5
4
3
2
1
0
0
5
10
15
20
25
30
(Q4-4)
x=[ ones(3,26)];
y(1,2)=0;
for i=2:length(x)
y(i)=(((0.7) ^i)*y(i-1))+x(i);
end
stem(y)
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0
5
10
15
20
25
30
(Q4-5)
All the systems have the same properties:
-linear
-time variant
-causal
-dynamic
Solution
(Q5-a)
x1=[1 1 1 0 0];
v1=[1 1 1 1 0 0];
y1=conv(x1,v1);
stem(y1);
xlabel('n');
ylabel('y');
3
2.5
y
2
1.5
1
0.5
0
1
2
3
4
5
6
n
7
8
9
10
(Q5-b)
x2=[2 1 0 0 0];
v2=[1 1 1 1 0 0];
y2=conv(x2,v2);
stem(y2);
xlabel('n');ylabel('y');
3
2.5
y
2
1.5
1
0.5
0
1
2
3
4
5
6
n
7
8
9
10
(Q5-c)
x3=[2 1 0 0 0];
v3=[0 1 2 0 0 0];
y3=conv(x3,v3);
stem(y3);
xlabel('n');ylabel('y');
Solution
(Q6-b)
t=-7:0.001:7;
N=input('number of harmonics = ');
c0=0;
w0=pi/3;
xN=c0*ones(1,length(t));
for n=1:2:N
xN=xN+8/(3*w0*n)*cos(w0*n*t+3*pi/2);
end
plot(t,xN);
For 5 harmonics
For 20 harmonics
For 50 harmonics
© Copyright 2026 Paperzz