TAYLOR’S THEOREM FOR FUNCTIONS OF TWO VARIABLES AND JACOBIANS PRESENTED BY PROF. ARUN LEKHA Associate Professor in Maths GCG-11, Chandigarh Statement: Taylor’s Theorem in two variables If f (x,y) is a function of two independent variables x and y having continuous partial derivatives of nth order in some neighbourhood of the point (a,b) and if (a + h, b + a) is any point of this neighbourhood, then there exists some in (0,1) such that f (a+h, b + k) = f (a,b) + df (a,b) + ½! d2f (a,b)+… 1/n-1! dn-1 f(a,b) + 1/n! dn f(a+h,b+ k) Where n d h k and d h k y y x x n Remainder after n terms denoted by Rn Where 1 n 1 n h k f (a h, b k ); Rn d f (a h, b k ) n! n! x y Statement of Maclaurin’s Theorem (Two Variable) 1 f ( x, y ) f (0,0) x y f (0,0) x y y 2! x y x 1 x y n 1! x y n 1 1 f (0,0). Rn where Rn n! 2 f (0,0)....... x y y x n f (x y ), 0 1 • Using Taylor’s Theorem, find the approximate value of log [(1.03)1/3 + (0. 98)1/4 – 1] Solution: Let f (x+h, y + k ) = log [(x+h)1/3 +(y+k)1/4 – 1] Putting h = 0 = k in (1), we get f(x,y ) = log (x1/3 + y¼ - 1) 1 2 / 3 1 3 / 4 x y 3 f x 1/ 3 , fy 1 / 34 1 / 4 1/ 4 x y 1 x y 1 f(x+h,y+k)=f(x,y)+(hfx+kfy) (1) log [(x+h)1/3+(y+k)1/4-1)=log (x1/3+y1/4-1) 1 2 / 3 1 3 / 4 x y 3 4 h, 1/ 3 , k 1/ 4 1/ 3 1/ 4 x y 1 x y 1 Put x = 1, h = 0.03, y = 1, k = -0.02 log [(1.03)1/3 + (0. 98)1/4 – 1] = log (1+1-1) 1 1 3 4 (0.03). (0.02). 1 1 1 1 1 1 = log 1 + 0.01 – 0.005 = 0.005 DEFINITION OF JACOBIAN If u, v, w are the function of x, y, z having first order partial derivatives w.r.t. x, y, z then the determinant u x (u , v, w) (u , v, w) v J ( x, y , z ) ( x, y, z ) v w x y y v y w y is called Jacobian of u, v, w w.r.t. x, y, z z z v z w z CHAIN RULE FOR JACOBIAN STATEMENT: If u, v, w are the functions of two independent variable x and y which are themselves functions of two independent variable r and s, then (u, v) (u, v) ( x, y) x (r , s) ( x, y ) (r , x) FUNCTIONAL DEPENDENCE OR NOT INDEPENDENT Theorem If n function u1, u2, u3….un, of n independent variable are functionally dependent i.e., there exists a relation of the form F (u1, u2…….un) = 0 iff (u1 , u 2 .........u n ) 0 identicall y ( x1 , x 2 ,....x n ) Example: Show that the functions U = x2 + y2 + z2 – 2xz, v = x + y – z, w=x–y–z are not independent of one another. Also, find the relation between them 2x 2x 2 y 2z 2x 2x 2z 2 y 0 (u, v, x) 1 1 1 1 1 0 ( x, y , z ) 1 1 1 1 1 0 2x 2x 2 y 2z 2x 2x 2z 2 y 0 (u, v, x) 1 1 1 1 1 0 ( x, y , z ) 1 1 1 1 1 0 Now, v2 + w2 = (x+y-z)2 + (x-y-z)2 = (x2+y2+z2 + 2xy-2yz-2zx) + (x2+y2+z2 – 2xy + 2yz-2zx) = 2 (x2+y2+z2 – 2zx) = 2u v2 + w2 = 2u is the required relation between u,v,w.
© Copyright 2025 Paperzz