Math 151. Rumbos Spring 2012 1 Solutions to Assignment #14 1

Math 151. Rumbos
Spring 2012
1
Solutions to Assignment #14
1. Suppose that in an electric display sign there are three light bulbs in the first
row and four light bulbs in the second row. Let 𝑋 denote the number of bulbs
in the first row that will be burned out at a specified time 𝑑, and let π‘Œ denote
the number of bulbs in the second row that will be burned out at the same time
𝑑. Suppose that the joint pmf of 𝑋 and π‘Œ is as specified in Table 1:
π‘‹βˆ–π‘Œ
0
1
2
3
0
0.08
0.06
0.05
0.02
1
0.07
0.10
0.06
0.03
2
0.06
0.12
0.09
0.03
3
0.01
0.05
0.04
0.03
4
0.01
0.02
0.03
0.04
Table 1: Joint Probability Distribution for 𝑋 and π‘Œ , 𝑝(𝑋,π‘Œ )
Determine each of the following probabilities:
(a) Pr(𝑋 = 2)
(b) Pr(π‘Œ β©Ύ 2)
(c) Pr(𝑋 β©½ 2 and π‘Œ β©½ 2)
(d) Pr(𝑋 = π‘Œ )
(e) Pr(𝑋 > π‘Œ )
Solution:
(a) Add probabilities along the third row:
Pr(𝑋 = 2) = 0.05 + 0.06 + 0.09 + 0.04 + 0.03 = 0.27.
(b) Compute
Pr(π‘Œ β©Ύ 2) =
4
βˆ‘
Pr(π‘Œ = 𝑗).
𝑗=2
This is the sum of the probabilities on the last three columns;
thus,
Pr(π‘Œ β©Ύ 2) = 0.53.
(c) Add entries on the first three rows and columns:
Pr(𝑋 β©½ 2 and π‘Œ β©½ 2) = 0.69.
Math 151. Rumbos
Spring 2012
2
(d) Add entries along the β€œmain diagonal:”
Pr(𝑋 = π‘Œ ) = 0.08 + 0.10 + 0.09 + 0.03 = 0.30.
(e) Add entries below the β€œmain diagonal:”
Pr(𝑋 > π‘Œ ) = 0.06 + 0.05 + 0.02 + 0.06 + 0.03 + 0.03 = 0.23.
β–‘
2. Suppose that 𝑋 and π‘Œ have a continuous joint distribution for which the pdf
is defined as follows:
{
𝑐𝑦 2 for 0 β©½ π‘₯ β©½ 2 and 0 β©½ 𝑦 β©½ 1,
𝑓 (π‘₯, 𝑦) =
0
otherwise.
Determine
(a) the value of the constant 𝑐;
(b) Pr(𝑋 + π‘Œ > 2);
(c) Pr(π‘Œ < 1/2);
(d) Pr(𝑋 β©½ 1);
(e) Pr(𝑋 = 3π‘Œ ).
Solution:
∫∫
𝑓 (π‘₯, 𝑦) dπ‘₯ d𝑦 = 1; that is, so that
(a) We find 𝑐 so that
ℝ2
∫
1
∫
𝑐
0
2
𝑦 2 dπ‘₯ d𝑦 = 1,
0
or
2
𝑐 = 1,
3
from which we get that 𝑐 = 3/2.
(b) Compute
∫∫
Pr(𝑋 + π‘Œ > 2) =
𝑓 (π‘₯, 𝑦) dπ‘₯ d𝑦,
𝐴
Math 151. Rumbos
Spring 2012
𝑦
1
𝐴
@
@
@
@
@
@
1
2
π‘₯
Figure 1: Sketch of region 𝐴
where
𝐴 = {(π‘₯, 𝑦) ∈ ℝ2 ∣ 0 β©½ π‘₯ β©½ 2, 0 β©½ 𝑦 β©½ 1, π‘₯ + 𝑦 > 2}.
The region 𝐴 is sketched in Figure 1:
We then have that
∫ 1∫
Pr(𝑋 + π‘Œ > 2) =
0
∫
2βˆ’π‘¦
3 2 2
𝑦 π‘₯
d𝑦
2
2βˆ’π‘¦
1
3 3
𝑦 d𝑦
2
0
=
0
=
3 2
𝑦 dπ‘₯ d𝑦
2
1
=
∫
2
3
.
8
(c) Compute
∫∫
Pr(π‘Œ < 1/2) =
𝑓 (π‘₯, 𝑦) dπ‘₯ d𝑦,
𝐴
where
𝐴 = {(π‘₯, 𝑦) ∈ ℝ2 ∣ 0 β©½ π‘₯ β©½ 2, 0 β©½ 𝑦 β©½ 1/2}.
The region 𝐴 is sketched in Figure 2:
3
Math 151. Rumbos
Spring 2012
𝑦
1
𝐴
1
2
π‘₯
Figure 2: Sketch of region 𝐴
We then have that
1/2
∫
∫
Pr(π‘Œ > 1/2) =
0
0
1/2
∫
2
3 2
𝑦 dπ‘₯ d𝑦
2
3 2 2
𝑦 π‘₯ d𝑦
2
0
=
0
1/2
∫
3𝑦 2 d𝑦
=
0
=
1/2
𝑦 3
0
=
1
.
8
(d) Compute
∫∫
𝑓 (π‘₯, 𝑦) dπ‘₯ d𝑦,
Pr(𝑋 β©½ 1) =
𝐴
where
𝐴 = {(π‘₯, 𝑦) ∈ ℝ2 ∣ 0 β©½ π‘₯ β©½ 1, 0 β©½ 𝑦 β©½ 1}.
The region 𝐴 is sketched in Figure 3:
4
Math 151. Rumbos
Spring 2012
5
𝑦
𝐴
1
2
π‘₯
Figure 3: Sketch of region 𝐴
We then have that
∫
1
∫
1
Pr(π‘Œ > 1/2) =
0
∫
0
1
3 2 1
𝑦 π‘₯ d𝑦
2
0
1
3 2
𝑦 d𝑦
2
=
0
∫
=
0
1 3 1
𝑦 2 0
=
=
3 2
𝑦 dπ‘₯ d𝑦
2
1
.
2
(e) Pr(𝑋 = 3π‘Œ ) = 0.
β–‘
3. Suppose a point 𝑋 is chosen at random from a region 𝑆 in the π‘₯𝑦–plane containing all points (π‘₯, 𝑦) such that π‘₯ β©Ύ 0, 𝑦 β©Ύ 0, and 4𝑦 + π‘₯ β©½ 4.
(a) Determine the joint pdf of 𝑋 and π‘Œ .
(b) Suppose that π‘†π‘œ is a subset of the region 𝑆 having area 𝛼, and determine
Pr[(𝑋, π‘Œ ) ∈ π‘†π‘œ ].
Solution:
Math 151. Rumbos
Spring 2012
6
𝑦
XX
XXX
XXX
XXX
𝑆
XXX
XXX
XXX
1
XX
4 π‘₯
Figure 4: Sketch of region 𝐴
(a) The region 𝑆 is sketched in Figure 4:
We want (𝑋, π‘Œ ) to have uniform distribution on 𝑆. We therefore
define the joint distribution pdf of 𝑋 and π‘Œ to be:
⎧
1


⎨ 2 if (π‘₯, 𝑦) ∈ 𝑆,
𝑓(𝑋,π‘Œ ) (π‘₯, 𝑦) =


⎩
0 otherwise.
(b) Compute
∫∫
Pr[(𝑋, π‘Œ ) ∈ π‘†π‘œ ] =
𝑓(𝑋,π‘Œ ) (π‘₯, 𝑦) dπ‘₯ d𝑦
π‘†π‘œ
∫∫
=
π‘†π‘œ
1
=
2
1
dπ‘₯ d𝑦
2
∫∫
dπ‘₯ d𝑦
π‘†π‘œ
=
1
β‹… area(π‘†π‘œ )
2
=
𝛼
.
2
β–‘
4. Suppose that 𝑋 and π‘Œ have a discrete distribution for which the joint pmf is
Math 151. Rumbos
Spring 2012
defined as follows:
{
𝑝(𝑋,π‘Œ ) (π‘₯, 𝑦) =
1
(π‘₯
30
0
+ 𝑦) for π‘₯ = 0, 1, 2 and 𝑦 = 0, 1, 2, 3,
otherwise.
(a) Determine the marginal pmfs of 𝑋 and π‘Œ .
(b) Are 𝑋 and π‘Œ independent?
Solution:
(a) The marginal pmf of 𝑋 is
𝑝𝑋 (π‘₯) =
3
βˆ‘
𝑝(𝑋,π‘Œ ) (π‘₯, 𝑦)
𝑦=0
3
1 βˆ‘
(π‘₯ + 𝑦)
=
30 𝑦=0
3
3
1 βˆ‘
1 βˆ‘
=
π‘₯+
𝑦
30 𝑦=0
30 𝑦=0
for π‘₯ = 0, 1, 2.
=
4
6
π‘₯+
30
30
=
1
2
π‘₯+ ,
15
5
7
Math 151. Rumbos
Spring 2012
Similarly, the marginal pmf of π‘Œ is
π‘π‘Œ (𝑦) =
2
βˆ‘
𝑝(𝑋,π‘Œ ) (π‘₯, 𝑦)
π‘₯=0
2
1 βˆ‘
(π‘₯ + 𝑦)
=
30 π‘₯=0
2
2
1 βˆ‘
1 βˆ‘
π‘₯+
𝑦
=
30 π‘₯=0
30 π‘₯=0
=
3
3
+ 𝑦
30 30
=
1
1
+ 𝑦,
10 10
for 𝑦 = 0, 1, 2, 3.
(b) Observe that
𝑝𝑋 (π‘₯)β‹…π‘π‘Œ (𝑦) =
1
(2π‘₯+3)(𝑦+1), for π‘₯ = 0, 1, 2 and 𝑦 = 0, 1, 2, 3,
150
which is not the same as 𝑝(𝑋,π‘Œ ) (π‘₯, 𝑦). It then follows that 𝑋 and
π‘Œ are not independent.
β–‘
5. Suppose the joint pdf of 𝑋 and π‘Œ is as follows:
{
15 2
π‘₯ for 0 β©½ 𝑦 β©½ 1 βˆ’ π‘₯2
𝑓(𝑋.π‘Œ ) (π‘₯, 𝑦) = 4
0
otherwise.
(a) Determine the marginal pdfs of 𝑋 and π‘Œ .
(b) Are 𝑋 and π‘Œ independent?
Solution:
8
Math 151. Rumbos
Spring 2012
(a) The marginal distribution of 𝑋 is
∫ ∞
𝑓(𝑋.π‘Œ ) (π‘₯, 𝑦) d𝑦
𝑓𝑋 (π‘₯) =
βˆ’βˆž
1βˆ’π‘₯2
∫
=
0
15 2
π‘₯ d𝑦,
4
for βˆ’1 < π‘₯ < 1. (see Figure 5).
𝑦
1
𝑦 = 1 βˆ’ π‘₯2
1
π‘₯
Figure 5: Sketch of region
Thus,
⎧
15 2
2


⎨ 4 π‘₯ (1 βˆ’ π‘₯ ) if βˆ’ 1 < π‘₯ < 1,
𝑓𝑋 (π‘₯) =


⎩
0
otherwise.
To find the marginal distribution of π‘Œ consider Figure 6:
𝑦
√
1
π‘₯=βˆ’ 1βˆ’π‘¦
π‘₯=
1
√
1βˆ’π‘¦
π‘₯
Figure 6: Sketch of region
9
Math 151. Rumbos
Spring 2012
∫
∞
𝑓(𝑋.π‘Œ ) (π‘₯, 𝑦) dπ‘₯
π‘“π‘Œ (𝑦) =
βˆ’βˆž
√
∫
=
1βˆ’π‘¦
√
βˆ’ 1βˆ’π‘¦
√
∫
1βˆ’π‘¦
= 2
0
=
15 2
π‘₯ dπ‘₯
4
15 2
π‘₯ dπ‘₯
4
5
(1 βˆ’ 𝑦)3/2 ,
2
for 0 < 𝑦 < 1.
It then follows that
π‘“π‘Œ (𝑦) =
⎧
5
3/2


⎨ 2 (1 βˆ’ 𝑦)
if 0 < 𝑦 < 1,


⎩
otherwise.
0
(b) Observe that
𝑓𝑋 (π‘₯) β‹… π‘“π‘Œ (𝑦) =
75 2
π‘₯ (1 βˆ’ π‘₯2 )(1 βˆ’ 𝑦)3/2 ,
8
which is not the same as the given joint pdf. Consequently, 𝑋
and π‘Œ are not independent.
β–‘
10