A Primer in Bifurcation Theory for Computational Cell Biologists

A Primer in Bifurcation Theory
for Computational Cell Biologists
Lecture 4: Global Bifurcations
http://www.biology.vt.edu/faculty/tyson/lectures.php
John J. Tyson
Virginia Polytechnic Institute
& Virginia Bioinformatics Institute
Click on icon
to start audio
Signal-Response Curve =
One-parameter Bifurcation Diagram
•Saddle-Node (bistability, hysteresis)
•Hopf Bifurcation (oscillations)
•Subcritical Hopf
•Cyclic Fold
•Saddle-Loop
•Saddle-Node Invariant Circle
Homoclinic Orbits
Heteroclinic Orbits
saddle-loop
saddle-saddle-connection
saddle-node-loop
Heteroclinic Orbits
p < pHC
p = pHC
p > pHC
Homoclinic Orbits
SaddleLoop
Bifurcation
p < pSL
p = pSL
p > pSL
SaddleNode
Invariant
Circle
p < pSNIC
p = pSNIC
p > pSNIC
Hopf Bifurcation
Small amplitude, frequency = Im(l), finite period
Homoclinic Bifurcation
Finite amplitude, small frequency, infinite period
Andronov-Leontovich Theorem
In a two-dimensional system, a homoclinic orbit gives birth to a
finite amplitude, large-period limit cycle; either stable:
or unstable:
Shil’nikov Theorem
In a three-dimensional system, a homoclinic orbit gives birth to a stable or
unstable limit cycle, or to much more complicated behavior …
Saddle
l3 < l2 < 0 < l1
s = l1+ l2
s< 0: one stable limit cycle
s> 0: one unstable limit cycle
Saddle-Focus
Re(l2,3) < 0 < l1
s = l1 + Re(l2,3)
s < 0: one stable limit cycle
s > 0: infinite # unstable limit cycles
plus a stable chaotic attractor
One-parameter Bifurcation Diagram
SL
SL
HB
Variable, x
sss
uss
sss
HB
uss
SN
sss
SN
Parameter, p
One-parameter Bifurcation Diagram
SL
uss
Variable, x
sss
uss
sss
SNIC
Parameter, p
sss
References
• Strogatz, Nonlinear Dynamics and Chaos
(Addison Wesley)
• Kuznetsov, Elements of Applied
Bifurcation Theory (Springer)
• XPP-AUT www.math.pitt.edu/~bard/xpp
• Oscill8 http://oscill8.sourceforge.net