Chapter #10: Finite State Machine Implementation No. 10-1 Chapter Outline Implementation Strategies discrete logic design with counters, ROMs programmable logic PALs FGPAs: Altera, Actel, Xilinx No. 10-2 Implementation Strategies Discrete Gate Logic Emphasis so far MSI Logic (e.g., Counters) Structured Logic (e.g., PLA/PAL, ROM) Field Programmable Gate Arrays (FPGAs) Function can be configured "on the fly" or in the field Flipflops/Registers plus discrete gates on the same chip No. 10-3 Implementation Strategies FSM Design with Structured Logic Com bina tiona l Logic Registers Output Function Inputs Outputs Block Diagram for Synchronous Mealy Machine Nex t State Function State ROM-based Realization ROM A0 Registers D0 Inputs Outputs An-1 Dk-1 An Dk An+m-1 Dk +m-1 Inputs & Current State form the address ROM data bits form the Outputs & Next State State No. 10-4 Implementation Strategies ROM-based Design Example: BCD to Excess 3 Serial Converter Conversion Process Bits are presented in bit serial fashion starting with the least significant bit Single input X, single output Z BCD Excess 3 Code 0000 0011 0001 0100 0010 0101 0011 0110 0100 0111 0101 1000 0110 1001 0111 1010 1000 1011 1001 1100 No. 10-5 Implementation Strategies BCD to Excess-3 Converter Prese nt State S0 S1 S2 S3 S4 S5 S6 Output X=0 X=1 0 1 0 1 1 0 1 0 0 1 1 0 -1 Nex t State X=0 X=1 S2 S1 S4 S3 S4 S4 S5 S5 S6 S5 S0 S0 -S0 State Transition Table Res et 0/1 S1 0/1 S0 S2 1/0 0/0, 1/1 0/1 0/0, 1/1 S5 Derived State Diagram S4 S3 0/0, 1/1 1/0 1/0 S6 0/1 No. 10-6 Implementation Strategies BCD to Excess 3 Converter ROM-based Implementation ROM Address X Q2 Q1 Q0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 ROM Outputs Z D2 D1 D0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0 X X X X 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 X X X X X X X X 1 CLK 1 0 X co nverter ROM Z X D2 Q2 D1 Q1 D0 Q0 1 0 9 13 12 5 4 CLK D C B A 175 1 CLR \Rese t QD QD QC QC QB QB 15 14 10 11 7 6 2 QA 3 QA Circuit Level Realization 74175 = 4 x positive edge triggered D FFs Truth Table/ROM I/Os In ROM-based designs, no need to consider state assignment No. 10-7 Z Implementation Strategies BCD to Excess-3 Converter LSB MSB Timing Behavior for input strings 0 0 0 0 (0) and 1 1 1 0 (7) 0000 LSB 1100 1110 0101 LSB No. 10-8 Implementation Strategies BCD to Excess 3 Converter PLA-based Design State Assignment with NOVA 0 1 0 1 0 1 0 1 0 1 0 1 0 S0 S0 S1 S1 S2 S2 S3 S3 S4 S4 S5 S5 S6 S1 S2 S3 S4 S4 S4 S5 S5 S5 S6 S0 S0 S0 1 0 1 0 0 1 0 1 1 0 0 1 1 NOVA input file S0 = 000 S1 = 001 S2 = 011 S3 = 110 S4 = 100 S5 = 111 S6 = 101 NOVA derived state assignment 9 product term implementation No. 10-9 Implementation Strategies BCD to Excess 3 Converter D2 = Q2 • Q0 + Q2 • Q0 D1 = X • Q2 • Q1 • Q0 + X • Q2 • Q0 + X • Q2 • Q0 + Q1 • Q0 D0 = Q0 Z = X • Q1 + X • Q1 1 CLK 9 1 0 X converte r PLA X Q2 Q1 Q0 Z D2 D1 D0 1 0 13 12 5 4 CLK 175 D C B A 1 CLR \Res et 15 QD 14 QD 10 QC 11 QC 7 QB 6 QB 2 QA 3 QA Z No. 10-10 Implementation Strategies BCD to Excess 3 Serial Converter 10H8 PAL: 10 inputs, 8 outputs, 2 product terms per OR gate D1 = D11 + D12 D11 = X • Q2 • Q1 • Q0 + X • Q2 • Q0 D12 = X • Q2 • Q0 + Q1 • Q0 No. 10-11 Implementation Strategies BCD to Excess 3 Serial Converter 0. Q2 • Q0 1. Q2 • Q0 8. X • Q2 • Q1 • Q0 9. X • Q2 • Q0 16. X • Q2 • Q0 17. Q1 • Q0 24. D11 25. D12 32. Q0 33. not used 40. X • Q1 41. X • Q1 0 1 2 3 45 89 12 13 16 17 20 21 24 25 28 29 30 3 1 X 0 1 D2 8 9 D11 16 17 D12 24 25 D1 32 33 D0 40 41 Z Q2 Q1 Q0 D11 D12 No. 10-12 Implementation Strategies FSM Design with Counters Synchronous Counters: CLR, LD, CNT 0 Four kinds of transitions for each state: (1) to State 0 (CLR) CLR (2) to next state in sequence (CNT) (3) to arbitrary next state (LD) (4) loop in current state CNT n+1 n no signals as serted LD m Careful state assignment is needed to reflect basic sequencing of the counter No. 10-13 Implementation Strategies FSM Design with Counters Excess 3 Converter Revisited Res et 0/1 1 0/1 0 4 1/0 0/0, 1/1 0/1 3 0/0, 1/1 Note the sequential nature of the state assignments 5 2 0/0, 1/1 1/0 1/0 6 0/1 No. 10-14 Implementation Strategies FSM Design with Counters Excess 3 Converter Inputs/Current Next State State X Q2 Q1 Q0 Q2+ Q1+ 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1 X X 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 X X 1 1 1 1 X X Outputs Q0+ 1 0 1 0 1 1 0 X 0 1 1 0 1 0 X X Z CLR LD 1 1 1 1 1 1 0 1 1 0 0 X 1 1 1 0 1 0 1 0 X X X X 0 1 0 0 1 0 1 1 1 1 0 X 0 1 1 1 1 1 X X X X X X EN 1 1 1 X 1 X X X X X 1 X 1 1 X X C X X X X X 0 X X 1 1 X X X X X X B X X X X X 1 X X 0 0 X X X X X X A X X X X X 0 X X 0 1 X X X X X X Should be 1 See Fig. 10.21 CLR signal has precedence over LD, which in turn has precedence over EN No. 10-15 Implementation Strategies FSM Implementation with Counters Excess 3 Converter Schematic CLK 1 0 1 0 excess 3 PLA X Rese t X Q2 Q1 Q0 Z \CLR \L D EN C B A 7 P 10 163 T RCO15 2 CLK 6 D QD 11 5 C QC 12 4 B QB 13 3 A 14 QA 9 LOAD 1 D Q Z C Q CLR Synchronous Output Register Bad choice for FSM design in this case! Could be much better if fewer out-of-sequence jumps! No. 10-16 Implementation Strategies FSM Design with More Sophisticated PLDs Programmable Logic Devices = PLD PALs, PLAs = 10 - 100 Gate Equivalents Field Programmable Gate Arrays = FPGAs Altera MAX Family Actel Programmable Gate Array Xilinx Logical Cell Array 100 - 1000(s) of Gate Equivalents! No. 10-17 Implementation Strategies Design with More Sophisticated PLDs Xilinx Logic Cell Arrays (LCA) CMOS Static RAM Technology: programmable on the fly! All personality elements connected into serial shift register Shift in string of 1's and 0's on power up IOB IOB CLB IOB CLB IOB Wiring Channels CLB CLB IOB General Chip Architecture: Logic Blocks (CLBs) IO Blocks (IOBs) Wiring Channels IOB IOB IOB No. 10-18 Xilinx CLB architecture 5 general data inputs A, B, C, D, E Data in (DIN) 2 outputs, X & Y No. 10-19 Design Case Study Traffic Light Controller Decomposition into primitive subsystems Controller FSM next state/output functions state register Short time/long time interval counter Car Sensor Output Decoders and Traffic Lights No. 10-20 From Chapter 8 … Traffic Light Controller Tabulation of Inputs and Outputs: Input Signal reset C TS TL Description place FSM in initial state detect vehicle on farmroad short time interval expired long time interval expired Output Signal HG, HY, HR FG, FY, FR ST Description assert green/yellow/red highway lights assert green/yellow/red farmroad lights start timing a short or long interval Tabulation of Unique States: Some light configuration imply others State S0 S1 S2 S3 Description Highway green (farmroad red) Highway yellow (farmroad red) Farmroad green (highway red) Farmroad yellow (highway red) No. 10-21 From Chapter 8 … Traffic Light Controller S2 Exit Condition: no car waiting OR long time interval expired S0 H.HG H.FR 0 H.ST 1 TL • C S3 H.HR H.FY TS 0 1 H.ST S1 H.HY H.FR 0 TS H.ST H.ST 1 S2 H.HR H.FG 0 TL + C 1 Complete ASM Chart for Traffic Light Controller No. 10-22 From Chapter 8 … Traffic Light Controller Compare with state diagram: TL + C Rese t S0: HG S0 TL•C/ST S1: HY TS/ST TS S1 S2: FG S3 TS TS/ST S3: FY TL + C/ST S2 TL • C Advantages of ASM Charts: Concentrates on paths and conditions for exiting a state Exit conditions built up incrementally, later combined into single Boolean condition for exit Easier to understand the design as an algorithm No. 10-23 Design Case Study Traffic Light Controller Block Diagram Res et Clk TS short time / long time counter TL F controlle r fsm Res et C (a sync) ST Nex t State Output Logic Car Sensor C (s ync ) Clk 2 2 2 2 Encode d Light Signals Light Dec oders 3 3 H State Register No. 10-24 Design Case Study Traffic Light Controller 0 Subsystem Logic Light Decoders Pres ent D C Q F0 2 A 3 B F1 1 RQ \Pre sent 1 FG FY + Cin 0 G Y0 Y1 Y2 Y3 139a FR 4 5 6 7 1 \Res et 0 0 HG HY HR + H0 CLK H1 Car Detector 1 A Y0 1 4 B Y1 3 Y2 1 G Y3 5 139b 1 1 2 1 09 + Cf. debouncing switch in Section 6.6.1 Interval Timer CLK Reset 7 P 10 T 163 1 2 CLK RCO 5 6 D QD 11 5 C QC 12 4 B QB 13 3 A QA 14 9 LOAD CLR 1 CLR TL TS ST No. 10-25 Design Case Study Traffic Light Controller Next State Logic State Assignment: HG = 00, HY = 10, FG = 01, FY = 11 from Section 9.3.1 P1 = C TL Q1 + TS Q1 Q0 + C Q1 Q0 + TS Q1 Q0 P0 = TS Q1 Q0 + Q1 Q0 + TS Q1 Q0 ST = C TL Q1 + C Q1 Q0 + TS Q1 Q0 + TS Q1 Q0 H1 = TS Q1 Q0 + Q1 Q0 + TS Q1 Q0 H0 = TS Q1 Q0 + TS Q1 Q0 F1 = Q0 F0 = TS Q1 Q0 + TS Q1 Q0 PAL/PLA Implementation: 5 inputs, 7 outputs, 8 product terms PAL 22V10 -- 11 inputs, 10 prog. IOs, 8 to 14 prod terms per OR ROM Implementation: 32 word by 8-bit ROM (256 bits) Reset may double ROM size No. 10-26 Design Case Study Traffic Light Controller Next State Logic Counter-based Implementation HG TL • C / ST HY TS / ST FG TL+C / ST TS TL \C TL C 1 GA 3 A3 4 A2 5 A1 6 A0 13 12 11 10 B3 B2 B1 B0 15 GB 2 x 4:1 MUX 153 YA 7 YB 9 S1 SO 2 14 ST + 7 10 P 163 T 15 2 CLK RCO 6 5 4 3 D C B A QD QC QB QA 11 12 13 14 Q1 Q0 9 LOAD \Res et 1 CLR FY TS / ST TTL Implementation with MUX and Counter ST = Count No. 10-27 Design Case Study Traffic Light Controller Next State Logic Counter-based Implementation Dispense with direct output functions for the traffic lights Why not simply decode from the current state? HG HY HR 1 1 G Q1 Q0 3B 2A Y3 Y2 Y1 Y0 0 0 FG FY 0 0 FR 1 7 6 5 4 139a ST is a Mealy Output Light Controllers are Moore Outputs No. 10-28 Design Case Study Traffic Light Controller Logic Control Arrays (LCA)-Based Implementation Discrete Gate Method: None of the functions exceed 5 variables P1, ST are 5 variable (1 Configurable Logic Block (CLB) each) P0, H1, H0, F0 are 3 variable (1/2 CLB each) F1 is 1 variable (1/2 CLB) 4 1/2 CLBs total! No. 10-29 Design Case Study Traffic Light Controller LCA-Based Implementation TL C TS TS TS Q0 Placement of functions selected to maximize the use of direct connections DI CE A B X C F0 K Y E D R TL DI CE A B X C K Y E D R F1 Q0 Q1 Q0 TS Q1 DI CE A B X C Q1 K Y E D R Q0 Q1 TS DI CE A B X C K Y E D R H1 H0 C Q1 TL TS C Q0 DI CE A B X C ST K Y E D R DI CE A B X C K Y E D R No. 10-30 Design Case Study Traffic Light Controller LCA-Based Implementation Counter/Multiplexer Method: 4:1 MUX, 2 Bit Upcounter MUX: six variables (4 data, 2 control) but this is the kind of 6 variable function that can be implemented in 1 CLB! 2nd CLB to implement TL • C and TL + C' But note that ST/Cnt is really a function of TL, C, TS, Q1, Q0 1 CLB to implement this function of 5 variables! 2 Bit Counter: 2 functions of 3 variables (2 bit state + count) Also implemented in one CLB Traffic light decoders: functions of 2 variables (Q1, Q0) 2 per CLB = 3 CLB for the six lights Total count = 5 CLBs No. 10-31 Chapter Summary Optimization and Implementation of FSM State Reduction Methods: Row Matching, Implication Chart State Assignment Methods: Heuristics and Computer Tools Implementation Issues Choice of Flipflops Structured Logic Methods ROM based PLA/PAL based Jump Counter Methods Sophisticated Programmable Logic Devices (PLDs): Altera, Actel, Xilinx No. 10-32
© Copyright 2026 Paperzz