1/58 Parametric and Nonparametric Quantile Regression Methods for First-Price Auctions: A Signal Approach N. Gimenes† † University of São Paulo E. Guerre] ] Queen Mary, University of London Work in Progress Overview 2/58 Plan of the talk Notations Quantile regression and additive/interactive quantile models Quantile and auction Identi…cation of linear (sieve) quantile speci…cation Augmented (Sieve) Quantile Regression: dimension reduction and boundary free estimation A small simulation experiment Extension to interdependent values Overview 3/58 Sealed bids …rst-price auction I Auctioned good, with characteristics known to the bidders and econometrician I Bidder forms a bid which is not observed by his opponents I Bids are sealed and collected I Bids are opened I Winner = largest bid I Paid price = bid of the winner = largest bid Overview 4/58 Notations ` = auction, ` = 1, . . . , L x` = auction good covariate I` = number of bidders i = bidders, i = 1, . . . , I` Overview 5/58 Notations (cont’d): private value case Private value Vi ` : iid given (x` , I` ) I I I Common knowledge cdf F (v jx` , I` ), continuous pdf f (v jx` , I` ) > 0 over its compact support Conditional quantile V (αjx` , I` ), quantile level α 2 [0, 1] Private value rank Ai ` = F (Vi ` jx` , I` ): prob. that an opponent has a pv smaller than Vi ` Important property of Ai ` : [0, 1]-uniform and independent of (x` , I` ) Overview 6/58 Notations (cont’d): observed bids Observed bids Bi ` : iid bids given (x` , I` ) I I I Cdf G (b jx` , I` ), pdf g (b jx` , I` ) Conditional quantile B (αjx` , I` ), α 2 [0, 1] Bid rank Ui ` = G (Bi ` jx` , I` ) Overview 7/58 Why quantiles? Fondamental Simulation Theorem: The private value rank Ai ` is independent of (x` , I` ) with a [0, 1]-uniform distribution, and satis…es, Vi ` = V (Ai ` jx` , I` ) I Allow to simulate Vi ` in full generality I Since, in most case, (Vi ` , Bi ` ) = (V (Ai ` jx` , I` ) , B (Ai ` jx` , I` )) counterfactuals as the expected revenue E [Vi ` given mechanism I Bi ` jx` ] for a Since V (αjx` , I` ) = F 1 (αjx` , I` ), quantile can be estimated nonparametrically as fast as a c.d.f. and with faster rates than a p.d.f Overview 8/58 Private value rank and Milgrom-Weber model I In Milgrom & Weber (1982), e 0` , A e 1` , . . . , A e I ` , x` , Wi ` = Wi A ` I e 1` , . . . , A e I ` bidders signals A e i ` but not A e j ` , and where the ith bidder knows A e 1` , . . . , A e I ` independent of x` A In the private value case e i ` , x` , Vi ` = Vi A e i ` independent r.v A ) The private value rank Ai ` can be viewed as a standardized signal I Issue: the general model is not identi…ed (La¤ont & Vuong, 1996) ) Extension of the paper: a new additive speci…cation for the general model Overview 9/58 An additive speci…cation Wi ` = Wi A1 ` , . . . , AI` ` ; x` I` = ∑ πij Vj Aj ` ; x ` , πii = 1 j =0 I Vi (Ai ` , x` ) = Vi (Ai ` , x` , zi ` ), zi ` individual characteristic (“capacity”) I Vi (Ai ` , x` ): intrinsic private value of the good for the ith bidder I Interactions ) the …nal value must aggregate the intrinsic private values (“prestige”, trading after auction, etc...). Di¤ers from Somaini (2014), Wi = Wi A1 ` , . . . , AI` ` ; x` , zi ` Overview 10/58 Dimension reduction issues Many covariate available in auction datasets: I Athey, Levin & Seira (2011) or Li & Zheng (2009, 2012): 5 to 15 covariates for 1,000 observations I Haile & Tamer (2003), Aradillas-López, Ghandi & Quint (2013): 5-6 covariates for few thousands observations Overview 11/58 Not many dimension reduction methods for …rst-price auction I Paarsch & Hong (2006): implement p.d.f. estimation as in G., Perrigne & Vuong (2000) using an index assuming Vi ` = g (x`0 β) + ε i ` . A quantile approach as in Chaudhuri, Doksum & Samarov (1997) would be less restrictive I Haile, Hong & Shum (2003), Rezende (2008): Vi ` = x`0 β + vi ` implies Bi ` = x`0 β + bi ` where the p.d.f of vi ` can be estimated from the ones of bi ` as in G., Perrigne & Vuong (2000) Overview 12/58 Additive quantile speci…cation Various lower dimensional models have been proposed to restrict the general quantile speci…cation Vi ` = V (Ai ` jx` , I` ) I Quantile regression (Koenker & Bassett, 1978); Vi ` = xi0` β 1 (Ai ` jI` ) + β 0 (Ai ` jI` ) = Xi0` β (Ai ` jI` ) Nests Haile, Hong & Shum (2003), Rezende (2008) (β 1 (Ai ` jI` ) = β 1 ) and allows for interactions between signal and covariates I Additive speci…cation (Horowitz & Lee, 2005): for x` = [x1 ` , . . . , xd ` ], Vi ` = V1 (Ai ` jx1 ` , I` ) + + Vd (Ai ` jx1d , I` ) Overview 13/58 I Additive interactive speci…cation (Andrews & Whang (1990) for regression) D Vi ` = ∑ ∑ k =1 j 1 < <j k Vj1 ,...,jD Ai ` jxj1 ` , . . . , xjk ` , I` ) A wide class of models ranging from parametric to nonparametric Overview 14/58 The general linear quantile speci…cation of the paper All previous speci…cations can be nested in the linear sieve speci…cation with D interactions (0 D dim x) ∞ Vi ` = ∑ Pk (x` ) γk (Ai ` jI` ) , Pk (x` ) = Pk xj1 (k )` , . . . , xjD (k )` , k =0 and where γk (αjI ) = hV (αjx, I ) , Pk (x )ix for orthonormal sieve ) An in…nite dimensional version of Koenker & Bassett (1978) quantile regression Overview 15/58 Other econometric issues Econometric issues with G., Perrigne & Vuong (2000) two step kernel density estimation method I Boundary bias for the upper and lower tails distribution (Hickman & Hubbard, 2014) I Lack of clearcut bandwidth choice (Henderson, List, Millmet, Parmeter & Price, 2012) The proposed new quantile methodology is helpful regarding these issues Literature review 16/58 Quantile and auction in the econometric literature I Haile, Hong & Shum (2003): Quantile, dimension reduction using a regression model. See also Rezende (2008) I Marmer & Shneyerov (2012): avoids estimation of private values I G. & Sabbah (2012), Fan, Li & Pesendorfer (2013,WP): LP quantile estimation I Menzel & Morganti (2013): order statistic (sample quantile) approach for second-price auction I Gimenes (2013, WP): QR for ascending auction Rest of the talk 17/58 Rest of the talk I Quantile identi…cation I A key property: Stability of linear quantile speci…cation I Augmented (Sieve) Quantile regression I Interdependent value extension Quantile identi…cation for …rst-price auction under IPV Quantile identi…cation: a preliminary lemma Lemma Suppose that the values Wi are such, Wi = Wi (A0 , A1 , . . . , AI , x, I ) , i = 1, . . . , I , where (A0 , A1 , . . . , AI ) is independent of (x, I ), each Ai are [0, 1] uniform, and that each bidder plays a strictly increasing strategy, Bi = si (Ai jx, I ) , si ( jx, I ) " for all (x, I ) . I ) No equilibrium assumption. Increasing strategy assumption strong enough to identify Ai and si ( j , ) in a constructive way I Bayesian Nash Equilibrium generates increasing strategies (Reny & Zhamir, 2004) 18/58 Quantile identi…cation for …rst-price auction under IPV Lemma cont’d: Signal identi…cation (i) The signal Ai , i with, 1, can be recovered from the observed bids Ai = Gi (Bi jx, I ) , where Gi ( jx, I ) is the conditional c.d.f of Bi ; I ) the joint distribution of (A1 , . . . , AI ) is identi…ed I The signal Ai can be estimated (known identity or Gi (Bi jx, I ) = G (Bi jx, I )) 19/58 Quantile identi…cation for …rst-price auction under IPV Lemma cont’d: strategy identi…cation Ai = Gi (Bi jx, I ) ) Bi = Bi (Ai jx, I ) (ii) the strategy si ( jx, I ) is identi…ed by the conditional bid quantile function, si (Ajx, I ) = Bi (Ajx, I ) , for any A 2 [0, 1] ; I Contrasts with strategies depending upon the private value for symmetric IPV. 20/58 Quantile identi…cation for …rst-price auction under IPV 21/58 Lemma cont’d: Probability of Winning (iii) under symmetric IPV, that is if Ai independent, Vi = V (Ai , x, I ) and Bi = B (Ai jx, I ) for all i = 2, . . . , I , the probability that a bid B (Ajx, I ) wins is AI 1 . I Under asymmetry or interdependent value, the probability that a bid B1 (Ajz, I ) is also identi…ed since it is P B1 (Ajx, I ) > max Bi (Ai jx, I ) jA1 , x, I i =2,...,I which depends upon the identi…ed Bi ( jx, I ) and the identi…ed joint distribution of (A1 , . . . , AI )0 . But no close form expression in general Quantile identi…cation for …rst-price auction under IPV 22/58 Quantile under symmetric IPV and Bayesian Nash Equilibrium ) Under symmetric IPV and BNE, B ( jx, I ) is the optimal strategy This identi…es V (αjx, I ) in a simple linear way under risk neutrality The risk neutral expected utily of a bid B (ajx, I ) given …rst bidder signal A1 = A is ( V1 B (ajx, I )) aI 1 = (V (Ajx, I ) B (ajx, I )) aI 1 Quantile identi…cation for …rst-price auction under IPV 23/58 Since the optimal bid is B (Ajx, I ), (V (Ajx, I ) B (ajx, I )) aI 1 (V (Ajx, I ) B (Ajx, I )) AI 1 for all a 2 [0, 1] . Hence, for all A 2 (0, 1), ∂ h (V (Ajx, I ) ∂a , B (ajx, I )) aI B (1 ) (Ajx, I ) AI 1 + (I 1 i =0 a =A 1) (V (Ajx, I ) B (Ajx, I )) AI 2 =0 Quantile identi…cation for …rst-price auction under IPV 24/58 Rearranging gives the di¤erential equation, V (Ajx, I ) = B (Ajx, I ) + A B (1 ) (Ajx, I ) , I 1 B (0jx, I ) = V (0jx, I ) which is the quantile version of the identi…cation method in G., Perrigne & Vuong (2000) Vi ` = Bi ` + 1 I` G ( Bi ` j x ` , I ` ) 1 g ( Bi ` j x ` , I ` ) Quantile identi…cation for …rst-price auction under IPV Suggests to estimate V (αjx, I ) using b (1 ) b (αjx, I ) = B b (αjx, I ) + αB (αjx, I ) V I 1 as in G. & Sabbah (2012) or Fan et al. (2013). However, I Not so many good estimators of B (1 ) (αjx, I ) in the literature I It may be fruitful to solve the linear di¤erential equation before estimating 25/58 Quantile identi…cation for …rst-price auction under IPV 26/58 A key lemma: (i) stability of linear speci…cation (i) The conditional quantile function of optimal bids is given by the linear operator, B (αjx, I ) = I 1 αI 1 Z α 0 tI 2 V (t jx, I ) dt. linear speci…cation for V ( jx, I ) ) linear speci…cation for B ( jx, I ) as noted in Haile et al. (2003) and Rezende (2008) for the particular case of regression. Quantile identi…cation for …rst-price auction under IPV 27/58 Example: if, for some γk (αjI ) = hV (αj , I ) , Pk ( )i ∞ V (αjx, I ) = then ∑ Pk (x ) γk (αjI ) , k =0 ∞ B (αjx, I ) = with β k ( α jI ) = ∑ Pk ( x ) β k ( α j I ) k =0 I 1 αI 1 Z α 0 tI 2 γk (t jI ) dt. Quantile identi…cation for …rst-price auction under IPV 28/58 A key lemma (ii): identi…cation (ii) The conditional private values quantile function can be recovered from the bid one, V (αjx, I ) = B (αjx, I ) + α I 1 B (1 ) (αjx, I ) . Quantile identi…cation for …rst-price auction under IPV 29/58 Example (Cont’d): since ∞ B (αjx, I ) = ∑ Pk ( x ) β k ( α j I ) k =0 Z α tI with γk (αjI ) = β k (αjI ) + I I 1 with β k (αjI ) = I 1 α 2 0 γk (t jI ) dt, then ∞ V (αjx, I ) = ∑ Pk (x ) γk (αjI ) k =0 α (1 ) 1 β k ( α jI ) . Augmented quantile regression 30/58 Estimation methology 1. Postulate a quantile regression speci…cation for the private values or set X = (P1 (x ) , . . . , PkL (x )), ) V (αjx, I ) = X 0 γ (αjI ) + biasV (no bias for QR) 2. By the stability property B (αjx, I ) = X 0 β (αjI ) + biasB (no bias for QR) 3. Given an estimation of βb (αjI ) and βb(1 ) (αjI ), set α βb(1 ) (αjI ) b (αjI ) = βb (αjI ) + γ , I 1 b (αjx, I ) = X 0 γ b ( α jI ) V ) Needs new techniques to …nd good estimation of β(1 ) (αjI ), an issue mostly ignored in the literature. Augmented quantile regression 31/58 Standard quantile regression Check function ρα (t ) = t (α I (t 0)) β (αjI ) = arg min E I (I` = I ) ρα Bi ` β L X`0 β 1 ) βb (αjI ) = arg min ∑ I (I` = I ) ρα Bi ` β L `=1 I Does not give an estimator of β(1 ) (αjI ) I Di¢ cult to de…ne for α = 0 or α = 1 X`0 β Augmented quantile regression Augmented quantile regression I Allow small variation of α in the check function ρα (t ) I Expand β (α + ht ) to estimate β(1 ) (αjI ) by local polynomial smoothing 32/58 Augmented quantile regression 33/58 For a = α + ht, h > 0 bandwidth, and β ( jI ) s + 2 di¤erentiable, X 0 β (a jI ) ( = X0 β ( α jI ) + (a + O (a = X (a α ) β (1 ) ( α j I ) + ( a α ) s +1 (s +1 ) + β ( α jI ) (s + 1) ! α )s +2 α ) 0 β ( α jI ) + O (a 2 6 α )s +2 , X (t ) = 4 1 .. . t s +1 (s +1 ) ! h i 0 0 0 0 where β (αjI ) = β (αjI ) , β(1 ) (αjI ) , . . . , β(s +1 ) (αjI ) . 3 7 5 X ) Augmented quantile regression 34/58 Objective function of the augmented quantile regression b ( β; α, I ) is K ( ) kernel, h bandwidth ) objective function R 1 LIh I` L ∑ I (I` = I ) ∑ i =1 0 `=1 = 1 LI Z 1 L ρ a Bi ` I` ∑ I (I` = I ) ∑ `=1 i =1 Z 1 α h α h X` (a ρα+ht Bi ` α)0 β K a α h da X` (ht )0 β K (t ) dt. Augmented quantile regression 35/58 The augmented quantile regression estimator is b (αjI ) = arg min R b ( β; α, I ) , β β 2 6 b ( α jI ) = 6 β 6 4 b (αjx, I ) = X 0 βb(0 ) (αjI ) + V α I 1 βb(0 ) (αjI ) βb(1 ) (αjI ) .. . s + 1 ( ) b β ( α jI ) βb(1 ) (αjI ) 3 7 7 7 5 Augmented quantile regression Boundary behavior b (0jI ) Smoothing gives a convex AQR function for α = 0, 1 ) β b (1jI ) are well de…ned and β 36/58 Theoretical results 37/58 Assumptions (QR case) 1. X in a compact set, ∞ < X 0 γ (0jI ) < X 0 γ (1jI ) < ∞, supα X 0 γ(1 ) (αjI ) < ∞, inf α X 0 γ(1 ) (αjI ) > 0 ) boundary bias for kernel estimation 2. α 2 [0, 1] 7! γ (αjI ) (s + 1)th continuously di¤erentiable ) β (αjI ) (s + 2) cont. di¤. except at α = 0. Theoretical results 38/58 Theoretical results for quantile regression models Theorem Suppose the private value quantile regression speci…cation is correct. Then if h ! 0 with log3 L/ Lh2 = O (1) ! 1/2 log L b (αjx, I ) V (αjx, I ) = OP V sup + h s +1 . LIh (α,x )2[0,1 ] X It also holds that sup (α,x )2[0,1 ] X b (αjx, I ) B B (αjx, I ) = OP 1 LI 1/2 + h s +2 ! . Theoretical results 39/58 Uniform consistency rate for private values sup (α,x )2[0,1 ] X b (αjx, I ) V V (αjx, I ) = OP log L LIh 1/2 + h s +1 ! I Rate given by βb(1 ) (αjI ). No boundary bias at α = 0 or 1. I L Optimal rate = log = minimax optimal rate of G., LI Perrigne & Vuong (2000) with no covariate and for all s > 0. Achieved when 1 log L 2(s +1)+1 h . LI I CLT + MSE decomposition allowing for plug in bandwidth choice s +1 2 (s +1 )+1 Private value estimation 40/58 Private value estimation b i ` = arg min Bi ` A α2[0,1 ] bi ` = V b A b i ` j x` , I` . V b ( α j x` , I` ) , B Lemma It holds that, max max `=1,...,L i =1,...,I` ) OP bi ` V log L L Vi ` = OP log L LIh 1/2 +h s +1 ! . s +1 2 (s +1 )+1 for optimal bandwidth choice Holds for all private values due to the absence of boundary bias Sieve extension 41/58 Sieve interactive speci…cation With D interactions and localized sieve as wavelets of cardinal B splines and under suitable bandwdith (K = h D ) and smoothness assumptions, sup (α,x )2[0,1 ] X b (αjx, I ) V V (αjx, I ) = OP under conditions which imposes s > h = (L/ ln L) 1/(2s +D +3 ) IMSE, MSE expansions and CLT 3 2 (D log L LIhD +1 1/2 + h s +1 1) for the optimal ! A small simulation experiment 42/58 Simulation example L = 50 and I = 2 Second-order LP (s + 1 = 2), Epachnikov kernel, data-driven b h computed from a regression model with truncated exponential error 10,000 replications V (αjx ) = γ0 (α) + x1 + γ2 (α) x2 , α γ0 (α) = 0.1 log 1 , e γ2 (α) = 1 exp ( α) . The covariates x1 and x2 are two independent uniform variables. x2 inactive for small α A small simulation experiment 43/58 Quantiles x1 = x2 2 f0.2, 0.5.0.8g A small simulation experiment 44/58 Slope coe¢ cients γ0 (α) = 0.1 log 1 eα , γ1 (α) = 1 and γ2 (α) = 1 exp ( α) Extension to additive interdependent value Extension to additive interdependent value I I bidders with known identity from now on I zi : characteristic of ith bidder observed by all (“capacity” variable as distance to the project, labor force, cash ‡ow,...) z = (1, z1 , . . . , zI )0 full-rank 45/58 Extension to additive interdependent value 46/58 The general additive speci…cation I Wi (A; x, z ) = W0 (x, z ) + V0 (A0 ; x ) + ∑ πij Vj (Aj ; x, zj ) , j =1 πii = 1, πij 0 Vj ( ; x, zj ) ", Vj (0; x, zj ) = 0, and Vj (Aj ; x, zj ) = vj (Aj ; zj ) + Z zj ∂Vj (Aj ; x, t ) 0 ) Vj (Aj ; x, zj ) 6= V1j (Aj ; x ) + V2j (Aj ; x, zj ) ) force an interaction between Aj and zj ∂zj dt Extension to additive interdependent value 47/58 A simple interdependent value speci…cation I Wi = γ0 (A0 ) + ∑ πij zj γj (Aj ) j =1 I Aj : jth bidder private signal with a U[0,1 ] distribution I zj γj (Aj ): jth bidder “private” component of the ith bidder value Wi , i = 1, . . . , I Weighted by πij in Wi I γ0 (A0 ): common component of the values Wi , i = 1, . . . , I A0 : U[0,1 ] distribution Not identi…ed without a completness assumption Parameter of interest: slope coe¢ cients γ1 ( ) , . . . , γI ( ) Extension to additive interdependent value 48/58 Assumption 1. The signals A0 , A1 , . . . , AI are a¢ liated with a conditional c.d.f which is bounded away from 0 over [0, 1]I +1 . The signals are independent of z 2. The slope co¢ cients γj ( ) are strictly increasing with γj (0) = 0 and πii = 1, πij 0 3. Each bidder plays a best-response strictly increasing and di¤erentiable strategy si (Ai ; z ) (Reny and Zamir, 2004) ) si (Ai ; z ) = Bi (Ai ; z ) Extension to additive interdependent value 49/58 Expected pro…t and best response condition I Expected pro…t of a bid Bi (ajz ) given Ai = α E (Wi Bi (ajz )) I Bi (ajz ) = W i (ajα, z ) jAi = α, z max Bj j 6 =i Bi (ajz ) ωi (ajα, z ) where ωi (ajα, z ) = E I Bi (ajz ) max Bj j 6 =i jAi = α, z = P (Bi (ajz ) winsjAi = α, z ) W i (ajα, z ) = E Wi I Bi (ajz ) I Identi…cation issue: W i (ajα, z ) 6= Wi max Bj j 6 =i jAi = α, z Extension to additive interdependent value 50/58 W i (ajα, z ) = E γ0 (A0 ) I Bi (ajz ) jAi = α, z max Bj j 6 =i I + ∑ πij zj E γj (Aj ) I Bi (ajz ) j =1 max Bj j 6 =i jAi = α, z I ) W i (ajα, z ) = γi 0 (ajα, z ) + ∑ πij zj γij (ajα, z ) j =1 with γij (ajα, z ) = E γj (Aj ) I Bi (ajz ) γii (ajα, z ) = γi (α) P Bi (ajz ) = γi (α) ωi (ajα, z ) max Bj j 6 =i jAi = α, z max Bj jAi = α, z j 6 =i Extension to additive interdependent value 51/58 Best response condition α = arg max W i (ajα, z ) Bi (ajz ) ωi (ajα, z ) α FOC ) , ∂W i (αjα, z ) ∂a ∂ωi (1 ) = Bi ( α j z ) (αjα, z ) + Bi (αjz ) ωi (αjα, z ) ∂a (1 ) Wi (α; z ) = Bi (αjz ) + Ωi (α; z ) Bi where Ωi (α; z ) = Wi (α; z ) = (αjz ) with I.C. Bi (0jz ) = 0 1 ∂ωi ∂a (αjα, z ) 1 ∂ωi ∂a ωi (αjα, z ) ∂W i (αjα, z ) (αjα, z ) ∂a Extension to additive interdependent value 52/58 Comparison with IPV I Symmetric IPV case: PV Quantile (αjI ) = B (α) + I α I 1 B (1 ) ( α ) Interdependent value case: (1 ) Wi (α; z ) = Bi (αjz ) + Ωi (α; z ) Bi where Ωi (α; z ) = 1 ∂ωi ∂a is identi…ed as ωi (ajα, z ) = P Bi (ajz ) ) Wi (α; z ) = 1 ∂ωi ∂a (αjα, z ) ( α jz ) ωi (αjα, z ) max Bj jAi = α, z j 6 =i . ∂W i (αjα, z ) is identi…ed (αjα, z ) ∂a but again Wi (α; z ) 6= Wi Extension to additive interdependent value 53/58 Stability property for additive interdependent values (1) I W i (ajα, z ) = γi 0 (ajα, z ) + ∑ πij zj γij (ajα, z ) j =1 with γii (ajα, z ) = γi (α) ωi (ajα, z ) , Wi (α; z ) = 1 ∂ωi ∂a ∂W i (αjα, z ) (αjα, z ) ∂a I )Wi (α; z ) = γi 0 (α; z ) + ∑ πij zj γij (α; z ) with j =1 γii (α; z ) = γi (α) (invariance of γi (α) ) ∂γij 1 γij (α; z ) = ∂ω (αjα, z ) i (αjα, z ) ∂a ∂a Extension to additive interdependent value 54/58 Stability property (2) and identi…cation I Wi (α; z ) = γi 0 (α; z ) + ∑ πij zj γij (α; z ) with γii (α; z ) = γi (α) j =1 and solving the di¤erential equation in Bi (αjxz ) (1 ) Wi (α; z ) = Bi (αjz ) + Ωi (α; z ) Bi ( α jz ) , Bi ( 0 j z ) = 0 gives the “random coe¢ cient” quantile regression model I Bi (αjz ) = β i 0 (α; z ) + ∑ zj βij (α; z ) with j =1 (1 ) πij γij (α; z ) = β ij (α; z ) + Ωi (α; z ) β ij (α; z ) (with πi 0 = 1) (1 ) γi (α) = β ii (α; z ) + Ωi (α; z ) β ii (α; z ) Extension to additive interdependent value 55/58 I ) γi (α) is identi…ed for all i I ) πij γij (α; z ) is identi…ed for all j 1 But γij (α; z ) is also identi…ed for all j γij (α; z ) = 1, since 1 ∂ωi ∂a ∂γij (αjα, z ) where (αjα, z ) ∂a γij (ajα, z ) = E γj (Aj ) I Bi (ajz ) ωi (αjα, z ) = P Bi (ajz ) I 0 ) πij is identi…ed max Bk k 6 =i max Bk jAi = α, z k 6 =i jAi = α, z Extension to additive interdependent value 56/58 Estimation method I Localised Augmented Quantile: For each i, estimate (1 ) β ij (α; z ) and β ij (α; z ) from the “random coe¢ cient” quantile regressions I Bi (αjz ) = β i 0 (α; z ) + ∑ zj βij (α; z ) j =1 using a kernel weighted AQR with weights K z` z h Extension to additive interdependent value I 57/58 Estimate Ωi (α; z ) = 1 ∂ωi ∂a (αjα, z ) ωi (αjα, z ) where ωi (αjα, z ) = P Bi (ajz ) I max Bj jAi = α, z j 6 =i bi (αjz ) and A bi ` from B Structural parameters: compute b i (α; z ) βb(1 ) (α; z ) bii (α; z ) = βbii (α; z ) + Ω γ ii and average to improve convergence rate bi (α) = γ 1 L ∑ γbii (α; z` ) L `= 1 bij from γ bi (α) and γ bij (α; z` ) π Conclusion 58/58 Final remarks I Flexible quantile regression speci…cations including nonparametric components which can be estimated with fast rate I A class of additive interactive speci…cation ranging from quantile regression to the general nonparametric quantile model. Can be tested from the data I Address the curse of dimensionality I No boundary bias. Allows estimation of all private values I Bandwidth choice I Additive interdependent value speci…cation I Statistical extension: dimension reduction for conditional p.d.f
© Copyright 2026 Paperzz