EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number 1. (a) Scheme FINAL MARK SCHEME Marks f ( x) 2x3 6x2 7 x 4 f (4) 128 96 28 4 0 B1 [1] (b) f (4) 0 ( x 4) is a factor. f ( x) ( x 4)(2x2 2x 1) So, x 2 M1 A1 4 4(2)(1) M1 2(2) 1 0 2 x k 2 2 2 2i x 4, 4 2 x 2 x 2 1 1 k 0 x 2 A1 [4] 2. (a) 1 3 1 3 A , B 1 4 5 5 0 1 2 1 31 0 3 23 4 + 5 + 0 4 10 5 M1 4 2 9 9 A1 [2] (b) 3 2 5 2k C , D , where k is a constant, 8 6 4 k 3 2 5 2k 8 2k 2 CD 8 6 4 k 12 6 k M1 E does not have an inverse det E 0. 8(6 k ) 12(2k 2) M1 8(6 k ) 12(2k 2) 0 48 8k 24k 24 24 16k k 32 M1 A1 oe [4] 6 marks 1 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number 3. Scheme f ( x) x 2 3 3x 7 , x 0 4Цx f ( x) x 2 3 12 x 3x 7 4 f ( x) 2 x 3 32 x 3 0 8 f (4) 2.625 or 42 3 FINAL MARK SCHEME Marks M1A1 21 5 2 8 8 B1 3 4 7 4 4 f (4) 4.953125 317 61 4 64 64 M1 " 2.625" "4.953125" 2 4 4.529968454... M1 1436 4 168 317 317 4.53 (2 dp) A1 cao [6] 6 marks 2 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number Scheme n 4. (a) r 3 FINAL MARK SCHEME Marks 6r 3 r 1 1 2 1 n (n 1) 2 6. n (n 1) 3n 4 2 M1A1B1 1 2 n (n 1)2 3n2 4 1 n2 (n 1)2 12 4 dM1 1 2 2 n n 2n 13 (AG) 4 A1 * [5] (b) Sn 1 4 r 3 6r 3 S30 S15 30 2 2(30) 13 30 r 16 30 2 1 4 15 2 15 2 2(15) 13 203850 M1 A1 cao [2] 7 marks 3 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number 5. (a) Scheme C : y 2 8x a 8 4 FINAL MARK SCHEME Marks 2 PQ 12 By symmetry yP 12 2 6 B1 [1] (b) y 2 8x x 36 8 62 8x M1 9 2 (So P has coordinates 92 , 6 A1 oe ) [2] (c) Focus S (2, 0) Gradient PS B1 6 60 12 5 9 2 5 2 2 M1 Either y 0 12 5 ( x 2) or y 6 12 5 ( x 92 ) ; M1 or y 125 x c and 0 l: 12 5 2 c c 245 ; 12 x 5 y 24 0 A1 [4] 7 marks 4 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number Scheme x f ( x) tan 3x 6, 2 6. (a) FINAL MARK SCHEME Marks x f (1) 2.45369751... f (2) 1.557407725... M1 Sign change (and f ( x) is continuous) therefore a root is between x 1 and x 2. A1 [2] (b) 1 "2.45369751..." 2 "1.557407725..." or M1 "2.45369751..." "1.557407725" "2.45369751..." 1 1 "2.45369751..." 1 "1.557407725..." "2.45369751..." 1 6.464802745 4.011105235 1.611726037... A1 A1 [3] 5 marks 5 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number 7. (a) Scheme arg z tan 1 3 2 (b) Marks M1 0.7137243789.. 0.71 (2 dp) z 2i 3 2i 3 2 FINAL MARK SCHEME A1 [2] M1 4 2i 3 2i 3 3i 2 3 1 4i 3 2 i 3 4 4i 3 3 2i M1A1 (Note: a 3, b 5.) 3 5i 3 [3] (c) z7 2i 3 7 z 1 2 i 3 1 9 i 3 1 i 3 1 i 3 1 i 3 9 9i 3 i dM1 3 3 13 12 8i M1 3 4 3 2i (d) M1 3 (Note: c 3, d 2.) w 3i , and arg(4 5i 3w) A1 [4] 2 4 5 i 3 w 4 3 14i So real part of (4 5i 3w) = 0 or 4 3 0 So, 43 M1 A1 [2] 11 marks 6 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number 8. (a) Scheme xy c 2 at ct , y FINAL MARK SCHEME Marks c t . dy c2 c2 c 2 x 1 c 2 x 2 2 x dx x xy c 2 x dy y0 dx M1 dy dy dt c 1 . 2. dx dt dx t c dy dy dy c 1 c 2 x 2 or x y 0 or . dx dx dx t 2 c or equivalent expressions A1 So, mT y c 1 2 x ct t t ( t 2 ) dy 1 2 dx t M1 x t2 y 2 c t A1 * (Allow t 2 y x 2ct ) [4] (b) y 0 x 2 c t A( 2 c t , 0). B1 2ct 2c B 0, . 2 t t B1 x0 y Area OAB 36 2c 1 2 c t 36 2 t 2c 2 36 c 2 18 c 3 M1 2 A1 [4] 8 marks 7 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number Scheme det M 3( 5) (4)(2) 15 8 23 9. (a) FINAL MARK SCHEME Marks B1 [1] (b) 4 2 a 7 25 3 Therefore, 2 5 a 1 14 M1 Either, 3(2a 7) 4(a 1) 25 or 2(2a 7) 5(a 1) 14 3 2a 7 4 a 1 or 2 2a 7 5 a 1 A1 25 14 giving a 5 A1 [3] 1 6 4 ; 12 (units)2 2 (c) Area(ORS ) (d) Area(OR S ) 23 (12) M1A1 [2] M1 A1 [2] (e) (f) Rotation; 90 anti-clockwise (or 270 clockwise) about 0, 0 . B1;B1 M BA M1 A 1 [2] 0 1 0 1 1 ; (0)(0) (1)(1) 1 0 1 0 A1 4 0 1 3 B 2 5 1 0 M1 4 3 B 5 2 A1 [4] 14 marks 8 EDEXCEL FURTHER PURE MATHEMATICS FP1 (6667) – JUNE 2012 Question Number Scheme 10. f (n) 22n 1 32n 1 is divisible by 5. FINAL MARK SCHEME Marks f (1) 21 31 5, B1 Assume that for n k , f (k ) 22k 1 32k 1 is divisible by 5 for k . f (k 1) f (k ) 22( k 1) 1 32( k 1) 1 22 k 1 32 k 1 M1A1 22k 1 32k 1 22k 1 32k 1 22k 1 2 32k 1 2 22k 1 32k 1 4 22 k 1 9 32 k 1 22k 1 32k 1 M1 3 22 k 1 8 32 k 1 3 22 k 1 3 32 k 1 5 32 k 1 3f (k ) 5 32 k 1 f (k 1) 4f ( k ) 5 32 k 1 or A1 4(22 k 1 32 k 1 ) 5 32 k 1 If the result is true for n k , then it is now true for n k 1. As the result has shown to be true for n 1, then the result is true for all n. A1 cso [6] 6 marks 9
© Copyright 2026 Paperzz