96 SOME NEW SEMI-NORMED SEQUENCE SPACES OF NON

Proceedings of IAM, V.4, N.2, 2015, pp.96-108
SOME NEW SEMI-NORMED SEQUENCE SPACES OF NON-ABSOLUTE
TYPE AND MATRIX TRANSFORMATIONS
S. Erfanmanesh1, D. Foroutannia1
1
Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
e-mail: [email protected]
Abstract. The purpose of the present study is to introduce the sequence spaces. We
investigate some topological properties of these spaces and also establish some inclusion
relations between them. Furthermore, we compute ๐›ผ- and ๐›ฝ-duals of these spaces and
characterize the classes of infinite matrices.
Keywords: Semi-normed sequence spaces, matrix domains, ๐›ผ- and ๐›ฝ-duals, matrix
transformations.
AMS Subject Classification: 46A45, 46B20, 40C05.
1.
Introduction
Let ๐œ” denotes the space of all real-valued sequences. Any vector subspace of
๐œ” is called a sequence space. We write ๐‘™โˆž , ๐‘ and ๐‘0 for the spaces of all bounded,
convergent and null sequences, respectively. Also by ๐‘๐‘ , ๐‘๐‘  and ๐‘™1 , we denote the
spaces of all bounded, convergent and absolutely convergent series, respectively.
Let ๐‘‹, ๐‘Œ be two sequence spaces and A = (๐‘Ž๐‘›๐‘˜ ) be an infinite matrix of real
numbers ๐‘Ž๐‘›๐‘˜ , where ๐‘›, ๐‘˜ โˆˆ โ„• = {1, 2, โ‹ฏ }. We say that ๐ด defines a matrix mapping
from ๐‘‹ into ๐‘Œ, and we denote it by ๐ด: ๐‘‹ โ†’ ๐‘Œ, if for every sequence ๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘‹
the sequence ๐ด๐‘ฅ = {( ๐ด๐‘ฅ)๐‘› } exists and is in ๐‘Œ, where (๐ด๐‘ฅ)๐‘› = โˆ‘โˆž
๐‘›=1 ๐‘Ž๐‘›๐‘˜ ๐‘ฅ๐‘˜ for
๐‘› = 1, 2, โ‹ฏ. By (๐‘‹, ๐‘Œ), we denote the class of all infinite matrices ๐ด such that
๐ด: ๐‘‹ โ†’ ๐‘Œ.
For a sequence space ๐‘‹, the matrix domain ๐‘‹๐ด of an infinite matrix ๐ด is
defined by
๐‘‹๐ด = {๐‘ฅ = (๐‘ฅ๐‘› ) โˆˆ ๐œ” โˆถ ๐ด๐‘ฅ โˆˆ ๐‘‹},
(1)
which is a sequence space. The new sequence space ๐‘‹๐ด generated by the limitation
matrix ๐ด from a sequence space ๐‘‹ can be the expansion or the contraction and or
the overlap of the original space ๐‘‹. A matrix A = (๐‘Ž๐‘›๐‘˜ ) is called a triangle if
๐‘Ž๐‘›๐‘˜ = 0 for ๐‘˜ > ๐‘› and ๐‘Ž๐‘›๐‘› โ‰  0 for all ๐‘› โˆˆ โ„•. If ๐ด is triangle, then one can easily
observe that the sequence spaces ๐‘‹๐ด and ๐‘‹ are linearly isomorphic, i.e., ๐‘‹๐ด โ‰… ๐‘‹.
In the past, several authors studied matrix transformations on sequence spaces
that are the matrix domains of triangle matrices in classical spaces ๐‘™๐‘ , ๐‘™โˆž , ๐‘ and ๐‘0 .
For instance, some matrix domains of the difference operator were studied in [4, 8,
9, 13], of the Riesz matrices in [1, 3], of the Euler matrices in [2, 6, 12], of the
Cesáro matrices in [5, 14, 15], and of the Nörlund matrices in [16, 17]. In these
studies the matrix domains are obtained by triangle matrices, hence these spaces
96
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
are normed sequence spaces. For more details on the domain of triangle matrices in
some sequence spaces, the reader may refer to Chapter 4 of [7]. The matrix
domains given in this paper specify by a certain non-triangle matrix, so we should
not expect that related spaces are normed sequence spaces.
In this study, the normed sequence space ๐‘‹ is extended to semi-normed space
๐‘‹(๐ธ), where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. We consider some topological properties of the spaces
๐‘™โˆž (๐ธ), ๐‘(๐ธ) and ๐‘0 (๐ธ), and derive some inclusion relations concerning with them.
Furthermore, we determine the ๐›ผ- and ๐›ฝ-duals for these spaces. Finally, we obtain
the necessary and sufficient conditions on an infinite matrix belonging to the
classes (๐‘‹(๐ธ); ๐‘™โˆž ), (๐‘‹(๐ธ), ๐‘) and (๐‘‹(๐ธ), ๐‘0 ), where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }.
The results are generalizations of some results of Malkowsky and Rakocevic
[11]. In a similar way, the second Author has introduced the sequence spaces
๐‘™๐‘ (๐ธ), where 1 โ‰ค ๐‘ < โˆž, [10].
2.
The sequence spaces ๐‘ฟ(๐‘ฌ) for ๐‘ฟ โˆˆ {๐’โˆž , ๐’„, ๐’„๐ŸŽ }
Let ๐ธ = (๐ธ๐‘› ) be a partition of finite subsets of the positive integers such that
๐‘š๐‘Ž๐‘ฅ๐ธ๐‘› < ๐‘š๐‘–๐‘›๐ธ๐‘›+1 ,
(2)
๐‘› = 1, 2, โ‹ฏ . We define the sequence spaces ๐‘‹(๐ธ) for ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 } by
โˆž
๐‘‹(๐ธ) = { ๐‘ฅ = (๐‘ฅ๐‘˜ )โˆž
๐‘˜=1 โˆˆ ๐œ” โˆถ ( โˆ‘ ๐‘ฅ๐‘– )
๐‘–โˆˆ๐ธ๐‘˜
โˆˆ ๐‘‹ }.
๐‘˜=1
๐‘‹(๐ธ) is a semi-normed space with the semi-norm โ€–. โ€–๐ธ , which is defined by the
following way:
โ€–๐‘ฅโ€–๐ธ = ๐‘ ๐‘ข๐‘|โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– |.
(3)
๐‘˜
It should be noted that the function โ€–. โ€–๐ธ cannot be the norm, since if ๐‘ฅ =
(1, โˆ’1, 0, 0, โ‹ฏ ) and ๐ธ๐‘› = {2๐‘› โˆ’ 1, 2๐‘›} for all ๐‘›, then โ€–๐‘ฅโ€–๐ธ = 0 while ๐‘ฅ โ‰  0. It
is also significant that in the special case ๐ธ๐‘› = {๐‘›} for = 1, 2, โ‹ฏ , we have ๐‘‹(๐ธ) =
๐‘‹ and โ€–๐‘ฅโ€–๐ธ = โ€–๐‘ฅโ€–โˆž , where ๐‘ฅ โˆˆ ๐‘‹ and โ€–๐‘ฅโ€–โˆž = ๐‘ ๐‘ข๐‘๐‘› |๐‘ฅ๐‘› | is the usual norm of the
spaces ๐‘™โˆž , ๐‘ and ๐‘0 .
Suppose ๐ธ = (๐ธ๐‘› ) is a sequence of finite subsets of the positive integers that
satisfies the condition (2). If the infinite matrix A = (๐‘Ž๐‘›๐‘˜ ) is defined by
1
๐‘–๐‘“ ๐‘˜ โˆˆ ๐ธ๐‘›
๐‘Ž๐‘›๐‘˜ = {
(4)
0
otherwise,
with the notation of (1), we can redefine the spaces ๐‘™โˆž (๐ธ), ๐‘(๐ธ) and ๐‘0 (๐ธ) as
follows:
๐‘™โˆž (๐ธ) = (๐‘™โˆž )๐ด
๐‘Ž๐‘›๐‘‘
๐‘(๐ธ) = (๐‘)๐ด
๐‘Ž๐‘›๐‘‘
๐‘0 (๐ธ) = (๐‘0 )๐ด .
Now, we may begin with the following theorem which is essential in the
study.
Theorem 1. The sequence spaces ๐‘‹(๐ธ) for ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 } are complete seminormed vector spaces with respect to the semi-norm defined by (3).
97
PROCEEDINGS OF IAM, V.4, N.2, 2015
๐๐ซ๐จ๐จf. This is a routine verification and so we omit the detail.
It can easily be checked that the absolute property does not hold on the space ๐‘‹(๐ธ),
that is โ€–๐‘ฅโ€–๐ธ โ‰  โ€–|๐‘ฅ|โ€–๐ธ for at least one sequence in this space which says that ๐‘‹(๐ธ)
is the sequence space of non-absolute type, where |๐‘ฅ| = (|๐‘ฅ๐‘˜ |).
Throughout this article, we denote the cardinal number of the set ๐ธ๐‘˜ by |๐ธ๐‘˜ |.
Theorem 2. Let ๐‘€ = { ๐‘ฅ = (๐‘ฅ๐‘› )โˆž
๐‘›=1 โˆถ โˆ‘๐‘—โˆˆ๐ธ๐‘› ๐‘ฅ๐‘— = 0, โˆ€๐‘› }. The quotient spaces
๐‘™โˆž (๐ธ)โ„๐‘€, ๐‘(๐ธ)โ„๐‘€ and ๐‘0 (๐ธ)โ„๐‘€ are linearly isomorphic to the spaces ๐‘™โˆž , ๐‘ and
๐‘0 , respectively.
๐๐ซ๐จ๐จ๐Ÿ. Let ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Consider the map ๐‘‡ โˆถ ๐‘‹(๐ธ) โ†’ ๐‘‹ defined by
โˆž
๐‘‡๐‘ฅ = ( โˆ‘ ๐‘ฅ๐‘— )
๐‘—โˆˆ๐ธ๐‘›
๐‘›=1
for all ๐‘ฅ โˆˆ ๐‘‹(๐ธ). The linearity of ๐‘‡ is trivial. Let ๐‘ฆ โˆˆ ๐‘‹ and ๐›ผ๐‘› = |๐ธ๐‘› | for all ๐‘›.
We define the sequence ๐‘ฅ = (๐‘ฅ๐‘˜ ) by ๐‘ฅ๐‘˜ = ๐‘ฆ๐‘› โ„๐›ผ๐‘› for all ๐‘˜ โˆˆ ๐ธ๐‘›. It is clear that
๐‘ฅ โˆˆ ๐‘‹(๐ธ) and ๐‘‡๐‘ฅ = ๐‘ฆ. Thus the map ๐‘‡ is surjective. By applying the first
isomorphism theorem we have ๐‘‹(๐ธ) = ๐‘€ / ๐‘‹, because ๐‘˜๐‘’๐‘Ÿ๐‘‡ = ๐‘€.
Note that the mapping defined in Theorem 2, ๐‘‡ is not injective. While the
โ€–๐‘‡๐‘ฅโ€–โˆž = โ€–๐‘ฅโ€–๐ธ ,
for all ๐‘ฅ โˆˆ ๐‘‹(๐ธ).
๐ƒ๐ž๐Ÿ๐ข๐ง๐ข๐ญ๐ข๐จ๐ง ๐Ÿ. Let ๐ธ = (๐ธ๐‘› ) be a partition of finite subsets of the positive integers
that satisfies the condition (2), and ๐‘  = (๐‘ ๐‘› ) be a strictly increasing sequence of
the positive integers. The generated partition ๐ป = (๐ป๐‘› ) is defined by ๐ธ and ๐‘ , as
follows
๐‘ ๐‘›
๐ป๐‘› =
โ‹ƒ
๐ธ๐‘— ,
๐‘—=๐‘ ๐‘›โˆ’1 +1
for ๐‘› = 1,2, โ‹ฏ.
Here and in the sequel, we shall use the convention that any term with a zero
subscript is equal to zero. Note that any arbitrary partition ๐ป = (๐ป๐‘› ) that satisfies
the condition (2) generate by the partition ๐ธ = (๐ธ๐‘› ) and the sequence ๐‘  = (๐‘ ๐‘› ),
where ๐ธ๐‘› = {๐‘›} and ๐‘ ๐‘› = ๐‘š๐‘Ž๐‘ฅ ๐ป๐‘› for all ๐‘›. It is also important to know ๐‘ ๐‘› โˆ’
๐‘ ๐‘›โˆ’1 = |๐ป๐‘› |.
In the following, the inclusion relation between the spaces ๐‘‹(๐ธ) and ๐‘‹(๐ป) is
examined. Obviously if ๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 > 1 only for a finite number of ๐‘›, then
๐‘‹(๐ธ) = ๐‘‹(๐ป).
Especially if |๐ป๐‘› | > 1 only for a finite number of ๐‘›, then ๐‘‹ = ๐‘‹(๐ป), where ๐‘‹ โˆˆ
{๐‘™โˆž , ๐‘, ๐‘0 }.
๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ ๐Ÿ‘. Let ๐ธ, ๐‘  and ๐ป be as in Definition 1. Then, the following statements
hold:
(๐‘–) If
sup(๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 ) < โˆž,
๐‘›
98
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
we have ๐‘™โˆž (๐ธ) โŠ‚ ๐‘™โˆž (๐ป), and ๐‘0 (๐ธ) โŠ‚ ๐‘0 (๐ป).
(๐‘–๐‘–) If there is a positive integer ๐œ‰ such that ๐‘ ๐‘› = ๐œ‰๐‘› for all ๐‘›, then ๐‘(๐ธ) โŠ‚ ๐‘(๐ป).
(๐‘–๐‘–๐‘–) Moreover if ๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 > 1 for an infinite number of ๐‘›, then the inclusion
relations in parts (๐‘–) and (๐‘–๐‘–) are strict.
๐๐ซ๐จ๐จ๐Ÿ. (๐‘–) Suppose that ๐œ = ๐‘ ๐‘ข๐‘๐‘› (๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 ) and ๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘™โˆž (๐ธ), we have
๐‘ ๐‘›
sup | โˆ‘ ๐‘ฅ๐‘— | = sup |
๐‘›
๐‘—โˆˆ๐ป๐‘›
๐‘›
โˆ‘
โˆ‘ ๐‘ฅ๐‘— | โ‰ค ๐œsup | โˆ‘ ๐‘ฅ๐‘— | < โˆž.
๐‘˜=๐‘ ๐‘›โˆ’1 +1 ๐‘—โˆˆ๐ธ๐‘˜
๐‘˜
๐‘—โˆˆ๐ธ๐‘˜
This shows ๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘™โˆž (๐ป), so ๐‘™โˆž (๐ธ) โŠ‚ ๐‘™โˆž (๐ป). Since
๐‘ ๐‘›
โˆ‘ ๐‘ฅ๐‘— =
๐‘—โˆˆ๐ป๐‘›
โˆ‘
โˆ‘ ๐‘ฅ๐‘— ,
(5)
๐‘˜=๐‘ ๐‘›โˆ’1 +1 ๐‘—โˆˆ๐ธ๐‘˜
for all ๐‘›, we can conclude ๐‘0 (๐ธ) โŠ‚ ๐‘0 (๐ป).
(๐‘–๐‘–) The inclusion ๐‘(๐ธ) โŠ‚ ๐‘(๐ป) holds, since ๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 = ๐œ‰ for all ๐‘›.
(๐‘–๐‘–๐‘–) By assumption ๐‘ ๐‘› โˆ’ ๐‘ ๐‘›โˆ’1 > 1 for an infinite number of ๐‘›, one can choose a
subsequence (๐‘›๐‘— ) in โ„• with ๐‘ ๐‘›๐‘— โˆ’ ๐‘ ๐‘›๐‘—โˆ’1 > 1 for ๐‘— = 1, 2, โ‹ฏ. We define the
sequence ๐‘ฅ = (๐‘ฅ๐‘˜ ) such that
๐‘—
๐‘–๐‘“ ๐‘˜ = ๐‘ ๐‘›๐‘—โˆ’1 + 1
โˆ‘ ๐‘ฅ๐‘— = {๐‘—
๐‘–๐‘“ ๐‘˜ = ๐‘ ๐‘›๐‘—โˆ’1 + 2
(6)
๐‘—โˆˆ๐ธ๐‘˜
0
otherwise,
for ๐‘˜ = 1, 2, โ‹ฏ. It is obvious that โˆ‘๐‘–โˆˆ๐ป๐‘˜ ๐‘ฅ๐‘– = 0, so ๐‘ฅ โˆˆ ๐‘‹(๐ป) while the ๐‘ฅ โˆ‰ ๐‘‹(๐ธ),
for ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Hence the inclusions in parts (๐‘–) and (๐‘–๐‘–) are strict.
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ. Let ๐ป = (๐ป๐‘› ) be a partition of finite subsets of the positive integers
that satisfies the condition (2). Then, the following statements hold:
(๐‘–) If sup|๐ป๐‘› | < โˆž, we have ๐‘™โˆž โŠ‚ ๐‘™โˆž (๐ป), and ๐‘0 โŠ‚ ๐‘0 (๐ป).
๐‘›
(๐‘–๐‘–) If there is a positive integer ๐œ‰ such that |๐ป๐‘› | = ๐œ‰๐‘› for all ๐‘›, then ๐‘ โŠ‚ ๐‘(๐ป).
(๐‘–๐‘–๐‘–) Moreover if |๐ป๐‘› | > 1 for an infinite number of ๐‘›, then the inclusion relations
in parts (๐‘–) and (๐‘–๐‘–) are strict.
๐๐ซ๐จ๐จ๐Ÿ. If ๐ธ๐‘› = {๐‘›} and ๐‘ ๐‘› = ๐‘š๐‘Ž๐‘ฅ ๐ป๐‘› for all ๐‘›, then the partition ๐ป = (๐ป๐‘› ) is
generated by ๐ธ = (๐ธ๐‘› ) and ๐‘  = (๐‘ ๐‘› ). The desired result follows from Theorem 3.
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ. Let ๐‘€ and ๐‘ be two positive integers. If we put ๐ธ๐‘– = {๐‘€๐‘– โˆ’ ๐‘€ +
1, ๐‘€๐‘– โˆ’ ๐‘€ + 2, โ‹ฏ , ๐‘€๐‘–} and ๐ป๐‘– = {๐‘€๐‘๐‘– โˆ’ ๐‘€๐‘ + 1, ๐‘€๐‘๐‘– โˆ’ ๐‘€๐‘ + 2, โ‹ฏ , ๐‘€๐‘๐‘–} for
all ๐‘–, then ๐‘‹(๐ธ) โŠ‚ ๐‘‹(๐ป), where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Moreover if ๐‘ > 1, then these
inclusions are strict.
๐๐ซ๐จ๐จ๐Ÿ. If ๐‘ ๐‘– = ๐‘๐‘– for all ๐‘–, then the partition ๐ป = (๐ป๐‘› ) is generated by ๐ธ and ๐‘ .
The desired result follows from Theorem 3.
99
PROCEEDINGS OF IAM, V.4, N.2, 2015
3.
The ๐œถ- and ๐œท-duals of the sequence space ๐‘ฟ(๐‘ฌ)
In this section, we compute the ๐›ผ- and ๐›ฝ-duals for the sequence spaces
๐‘™โˆž (๐ธ), ๐‘(๐ธ) and ๐‘0 (๐ธ). For the sequence spaces ๐‘‹ and ๐‘Œ, the set ๐‘€(๐‘‹, ๐‘Œ) defined
by
๐‘€(๐‘‹, ๐‘Œ) = {๐‘Ž = (๐‘Ž๐‘˜ ) โˆˆ ๐œ” โˆถ (๐‘Ž๐‘˜ ๐‘ฅ๐‘˜ )โˆž
๐‘˜=1 โˆˆ ๐‘Œ โˆ€๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘‹}
is called the multiplier space of ๐‘‹ and ๐‘Œ. With the above notation, the ๐›ผ- and ๐›ฝduals of a sequence space ๐‘‹, which are respectively denoted by ๐‘‹ ๐›ผ and ๐‘‹๐›ฝ , are
defined by
๐‘‹ ๐›ผ = ๐‘€(๐‘‹, ๐‘™โˆž ),
๐‘‹๐›ฝ = ๐‘€(๐‘‹, ๐‘๐‘ ).
๐‹๐ž๐ฆ๐ฆ๐š ๐Ÿ [๐Ÿ๐Ÿ]. Let ๐‘‹, ๐‘Œ, ๐‘ โŠ‚ ๐œ”. We have
(๐‘–) ๐‘‹ โŠ‚ ๐‘ implies ๐‘€(๐‘, ๐‘Œ ) โŠ‚ ๐‘€(๐‘‹, ๐‘Œ).
(ii) ๐‘Œ โŠ‚ ๐‘ implies ๐‘€(๐‘‹, ๐‘Œ) โŠ‚ ๐‘€(๐‘‹, ๐‘). In particular ๐‘‹ ๐›ผ โŠ‚ ๐‘‹๐›ฝ .
๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ ๐Ÿ’. Define the set ๐‘‘ as follows:
โˆž
๐‘‘ = { ๐‘Ž = (๐‘Ž๐‘˜ ) โˆˆ ๐œ” โˆถ โˆ‘ (sup|๐‘Ž๐‘– |) < โˆž },
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
then
(๐‘0 (๐ธ))๐›ฝ = (๐‘(๐ธ))๐›ฝ = (๐‘™โˆž (๐ธ))๐›ฝ = ๐‘‘.
๐๐ซ๐จ๐จ๐Ÿ. Obviously (๐‘™โˆž (๐ธ))๐›ฝ โŠ‚ (๐‘(๐ธ))๐›ฝ โŠ‚ (๐‘0 (๐ธ))๐›ฝ by Part (๐‘–) of Lemma 1. So it
is sufficient to verify the inclusions ๐‘‘ โŠ‚ (๐‘™โˆž (๐ธ))๐›ฝ and (๐‘0 (๐ธ))๐›ฝ โŠ‚ ๐‘‘.
Let ๐‘Ž โˆˆ ๐‘‘ be given. Since ๐ธ = (๐ธ๐‘› ) is a partition of the positive integers, we have
โˆž
โˆž
|โˆ‘ ๐‘Ž๐‘˜ ๐‘ฅ๐‘˜ | =
๐‘˜=1
|โˆ‘ โˆ‘ ๐‘Ž๐‘– ๐‘ฅ๐‘– |
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
โˆž
โ‰ค
โˆ‘ (sup |๐‘Ž๐‘– |) | โˆ‘ ๐‘ฅ๐‘– |
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
โˆž
โ‰ค sup | โˆ‘ ๐‘ฅ๐‘– | โˆ‘ (sup|๐‘Ž๐‘– |) < โˆž,
๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
(7)
๐‘–โˆˆ๐ธ๐‘˜
for all ๐‘ฅ โˆˆ ๐‘™โˆž (๐ธ). This shows ๐‘Ž๐‘ฅ โˆˆ ๐‘๐‘ , thus ๐‘Ž โˆˆ (๐‘™โˆž (๐ธ))๐›ฝ and hence ๐‘‘ โŠ‚
(๐‘™โˆž (๐ธ))๐›ฝ .
Now, let ๐‘Ž โˆˆ (๐‘™โˆž (๐ธ))๐›ฝ be given. We consider the linear functional ๐‘“๐‘› โˆถ ๐‘0 (๐ธ) โ†’ โ„
defined by
๐‘›
๐‘“๐‘› (๐‘ฅ) = โˆ‘ โˆ‘ ๐‘Ž๐‘– ๐‘ฅ๐‘–
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
for ๐‘› = 1, 2, โ‹ฏ. Similar to (7), we obtain
100
(๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘0 (๐ธ)),
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
๐‘›
|๐‘“๐‘› (๐‘ฅ)| โ‰ค sup | โˆ‘ ๐‘ฅ๐‘– | โˆ‘ (sup|๐‘Ž๐‘– |),
๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
for every ๐‘ฅ โˆˆ ๐‘0 (๐ธ). So the linear functional ๐‘“๐‘› is bounded and โ€–๐‘“๐‘› โ€– โ‰ค
โˆ‘๐‘›๐‘˜=1 (sup |๐‘Ž๐‘– |). We now prove reverse of the above inequality. Without loss of
๐‘–โˆˆ๐ธ๐‘˜
generality we assume there is an index ๐‘– such that 1 โ‰ค ๐‘– โ‰ค ๐‘š๐‘Ž๐‘ฅ๐ธ๐‘› and ๐‘Ž๐‘– โ‰  0,
since the case ๐‘Ž๐‘– = 0 for all 1 โ‰ค ๐‘– โ‰ค ๐‘š๐‘Ž๐‘ฅ๐ธ๐‘› is trivial. We define the sequence ๐‘ฅ =
(๐‘ฅ๐‘– ) by ๐‘ฅ๐‘– = sgn ๐‘Ž๐‘– , where ๐‘– โˆˆ ๐ธ๐‘˜ is the first index of ๐ธ๐‘˜ such that |๐‘Ž๐‘– | = sup|๐‘Ž๐‘— |
๐‘—โˆˆ๐ธ๐‘˜
for 1 โ‰ค ๐‘˜ โ‰ค ๐‘›, and put the remaining elements zero. Obviously ๐‘ฅ โˆˆ ๐‘0 (๐ธ), so
๐‘›
|๐‘“๐‘› (๐‘ฅ)|
โ€–๐‘“๐‘› โ€– โ‰ฅ
= โˆ‘ (sup |๐‘Ž๐‘— |),
โ€–๐‘ฅโ€–๐ธ
๐‘—โˆˆ๐ธ๐‘˜
๐‘˜=1
and โ€–๐‘“๐‘› โ€– =
โˆ‘๐‘›๐‘˜=1 (sup |๐‘Ž๐‘— |)
๐‘—โˆˆ๐ธ๐‘˜
๐‘0 (๐ธ) โ†’ โ„ defined by
for ๐‘› = 1, 2, โ‹ฏ. Since ๐‘Ž โˆˆ (๐‘0 (๐ธ))๐›ฝ , the map ๐‘“๐‘Ž โˆถ
โˆž
(๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘0 (๐ธ))
๐‘“๐‘Ž (๐‘ฅ) = โˆ‘ โˆ‘ ๐‘Ž๐‘– ๐‘ฅ๐‘–
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
is well-defined and linear, and also the sequence (๐‘“๐‘› ) is pointwise convergent to ๐‘“๐‘Ž .
By using the Banach-Steinhaus theorem, it can be shown that โ€–๐‘“๐‘Ž โ€– โ‰ค
supโ€–๐‘“๐‘› โ€– < โˆž, so โˆ‘โˆž
๐‘˜=1 (sup |๐‘Ž๐‘– |) < โˆž and ๐‘Ž โˆˆ ๐‘‘. This completes the proof.
๐‘›
๐‘–โˆˆ๐ธ๐‘˜
It is clear that ๐‘‘ = ๐‘™1 when sup|๐ธ๐‘˜ | < โˆž, since
๐‘˜
โˆž
โˆž
โˆ‘ (sup|๐‘Ž๐‘– |) โ‰ค โˆ‘|๐‘Ž๐‘˜ |,
๐‘˜=1
and
โˆž
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
โˆž
โˆž
โˆ‘|๐‘Ž๐‘˜ | = โˆ‘ โˆ‘ |๐‘Ž๐‘– | = (sup|๐ธ๐‘˜ |) โˆ‘ (sup|๐‘Ž๐‘– |).
๐‘˜=1
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
๐‘˜
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
When sup|๐ธ๐‘˜ | = โˆž, we have ๐‘™1 โŠ‚ ๐‘‘ and the inclusion is strict. Since if ๐ธ1 = {1, 2}
๐‘˜
(n = 2, 3, โ‹ฏ ),
and ๐ธ๐‘› = {min ๐ธ๐‘›โˆ’1 + ๐‘›(๐‘› + 1), โ‹ฏ , max ๐ธ๐‘› + ๐‘›(๐‘› + 1) },
1
and if the sequence ๐‘ฅ = (๐‘ฅ๐‘˜ ) is chosen such that ๐‘ฅ๐‘˜ = ๐‘›(๐‘›+1)
for ๐‘˜ โˆˆ ๐ธ๐‘› . It is
obvious that ๐‘ฅ โˆˆ ๐‘‘ while ๐‘ฅ โˆ‰ ๐‘™1 .
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ‘. Let sup|๐ธ๐‘˜ | < โˆž. Then, we have
๐‘˜
(๐‘0 (๐ธ))๐›ฝ = (๐‘(๐ธ))๐›ฝ = (๐‘™โˆž (๐ธ))๐›ฝ = ๐‘™1 .
101
PROCEEDINGS OF IAM, V.4, N.2, 2015
๐๐ซ๐จ๐จ๐Ÿ. Since ๐‘‘ = ๐‘™1 , by using Theorem 4, we obtain the desired result.
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ’ [11]. We have ๐‘0 ๐›ฝ = ๐‘ ๐›ฝ = ๐‘™โˆž ๐›ฝ = ๐‘™1 .
๐๐ซ๐จ๐จ๐Ÿ. If ๐ธ๐‘˜ = {๐‘˜} for all ๐‘˜, by applying Corollary 3, we obtain the desired result.
๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ ๐Ÿ“. We have (๐‘‹(๐ธ))๐›ผ โŠ‚ ๐‘‘, where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Moreover if |๐ธ๐‘› | > 1
for an infinite number of ๐‘›, then these inclusions are strict.
๐๐ซ๐จ๐จ๐Ÿ. One can conclude from Theorem 4 with Part (๐‘–๐‘–) of Lemma 1 that
๐›ฝ
(๐‘‹(๐ธ))๐›ผ โŠ‚ (๐‘‹(๐ธ)) = ๐‘‘,
where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Moreover, if the sequence ๐‘Ž = (๐‘Ž๐‘– ) is defined by ๐‘Ž๐‘– =
1/2๐‘›โˆ’1 whenever ๐‘– โˆˆ ๐ธ๐‘› , then we have
โˆž
โˆž
1
โˆ‘ (sup|๐‘Ž๐‘– |) = โˆ‘ ๐‘›โˆ’1 < โˆž,
2
๐‘–โˆˆ๐ธ๐‘›
๐‘›=1
๐‘›=1
which means that ๐‘Ž โˆˆ ๐‘‘. Because |๐ธ๐‘› | > 1 for an infinite number of ๐‘›, we may
choose an index subsequence (๐‘›๐‘— ) of the positive integers with |๐ธ๐‘›๐‘— | > 1 for ๐‘— =
1, 2, โ‹ฏ. Let ๐›ผ๐‘— = min ๐ธ๐‘›๐‘— , we define the sequence ๐‘ฅ = (๐‘ฅ๐‘– ) as follows:
2๐‘›๐‘—โˆ’1
๐‘–๐‘“ ๐‘– = ๐›ผ๐‘—
๐‘›
โˆ’1
๐‘ฅ๐‘– = {โˆ’2 ๐‘—
๐‘–๐‘“ ๐‘– = ๐›ผ๐‘— + 1
0
otherwise,
for ๐‘– = 1, 2, โ‹ฏ. Thus โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– = 0 for all ๐‘˜, and ๐‘ฅ โˆˆ ๐‘‹(๐ธ). But
โˆž
โˆž
โˆž
โˆ‘|๐‘Ž๐‘˜ ๐‘ฅ๐‘˜ | = โˆ‘ โˆ‘ |๐‘Ž๐‘– ๐‘ฅ๐‘– | = โˆ‘ 2 = โˆž,
๐‘˜=1
๐›ผ
๐‘—=1 ๐‘–โˆˆ๐ธ๐‘›๐‘—
๐‘—=1
which shows that ๐‘Ž โˆ‰ (๐‘‹(๐ธ)) for ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }. Therefore, these inclusions
strictly hold. This step completes the proof.
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ“. Let sup|๐ธ๐‘˜ | < โˆž. We have (๐‘‹(๐ธ))๐›ผ โŠ‚ ๐‘™1 , where ๐‘‹ โˆˆ {๐‘™โˆž , ๐‘, ๐‘0 }.
๐‘˜
Moreover if |๐ธ๐‘› | > 1 for an infinite number of ๐‘›, then these inclusions are strict.
๐๐ซ๐จ๐จ๐Ÿ. Since ๐‘‘ = ๐‘™1 , by using Theorem 5, we obtain the desired result.
4.
Matrix transformations on sequence spaces ๐‘ฟ(๐‘ฌ)
In the present section, some classes of infinite matrices related with new
sequence spaces are characterized. Let A = (๐‘Ž๐‘›๐‘˜ ) be an infinite matrix of real
numbers and ๐‘‹ and ๐‘Œ be two sequence spaces. We write ๐ด๐‘› = (๐‘Ž๐‘›๐‘˜ )โˆž
k=1 for the
sequence in the ๐‘›-th row of ๐ด. It is clear that ๐ด โˆˆ (๐‘‹, ๐‘Œ) if and only if ๐ด๐‘› โˆˆ ๐‘‹๐›ฝ for
all ๐‘› and ๐ด๐‘ฅ โˆˆ ๐‘Œ for all ๐‘ฅ โˆˆ ๐‘‹.
We start with the following lemma which is needed to prove our main results.
๐‹๐ž๐ฆ๐ฆ๐š ๐Ÿ. If ๐‘Ž = (๐‘Ž๐‘˜ ) โˆˆ ๐‘‘, then the linear functional ๐‘“ โˆถ ๐‘0 (๐ธ) โ†’ โ„ defined by
102
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
โˆž
(๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘0 (๐ธ)),
๐‘“(๐‘ฅ) = โˆ‘ ๐‘Ž๐‘˜ ๐‘ฅ๐‘˜
๐‘˜=1
is bounded and
โˆž
โ€–๐‘“โ€– = โˆ‘ (sup|๐‘Ž๐‘– |) .
๐‘›=1
โˆ‘โˆž
โˆ‘
๐‘Ž
๐‘ฅ
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜ ๐‘– ๐‘– , the
๐‘–โˆˆ๐ธ๐‘›
๐๐ซ๐จ๐จ๐Ÿ. Since ๐‘“(๐‘ฅ) =
proof is obtained by the proof of
Theorem4.
Let A = (๐‘Ž๐‘›๐‘˜ ) be an infinite matrix. We consider the conditions
โˆž
sup (โˆ‘ sup |๐‘Ž๐‘›๐‘– |) < โˆž,
๐‘›
๐‘˜=1
(8)
๐‘–โˆˆ๐ธ๐‘˜
lim sup ๐‘Ž๐‘›๐‘– = 0
๐‘›โ†’โˆž ๐‘–โˆˆ๐ธ๐‘˜
โˆž
(๐‘˜ = 1, 2, โ‹ฏ ),
(9)
(10)
lim (โˆ‘ sup ๐‘Ž๐‘›๐‘– ) = 0,
๐‘›โ†’โˆž
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
lim sup ๐‘Ž๐‘›๐‘– = ๐‘™๐‘˜ for some ๐‘™๐‘˜ โˆˆ โ„ (๐‘˜ = 1, 2, โ‹ฏ ),
(11)
lim (โˆ‘ sup ๐‘Ž๐‘›๐‘– ) = ๐‘™ for some ๐‘™ โˆˆ โ„.
(12)
๐‘›โ†’โˆž ๐‘–โˆˆ๐ธ๐‘˜
โˆž
๐‘›โ†’โˆž
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐“๐ก๐ž๐จ๐ซ๐ž๐ฆ ๐Ÿ”. We have
(๐‘–) (๐‘0 (๐ธ), ๐‘™โˆž ) = (๐‘(๐ธ), ๐‘™โˆž ) = (๐‘™โˆž (๐ธ), ๐‘™โˆž ) and ๐ด โˆˆ (๐‘™โˆž (๐ธ), ๐‘™โˆž ) if and only if the
condition (8) holds;
(๐‘–๐‘–) ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘0 ) if and only if the conditions (8) and (9) hold;
(๐‘–๐‘–๐‘–) ๐ด โˆˆ (๐‘(๐ธ), ๐‘0 ) if and only if the conditions (8), (9) and (10) hold;
(๐‘–๐‘ฃ) ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘) if and only if the conditions (8) and (11) hold;
(๐‘ฃ) ๐ด โˆˆ (๐‘(๐ธ), ๐‘) if and only if the conditions (8), (11) and (12) hold.
๐๐ซ๐จ๐จ๐Ÿ. (๐‘–) First we show that ๐ด โˆˆ (๐‘™โˆž (๐ธ), ๐‘™โˆž ) if and only if the condition (8)
holds. By the condition (8), we have ๐ด๐‘› โˆˆ ๐‘‘. So due to Theorem 4, ๐ด๐‘› โˆˆ
๐›ฝ
(๐‘™โˆž (๐ธ)) for ๐‘› = 1, 2, โ‹ฏ. Let ๐‘ฅ โˆˆ ๐‘™โˆž (๐ธ). Similar to the proof of Lemma 2, we
deduce that
โˆž
|๐ด๐‘› (๐‘ฅ)| โ‰ค (โˆ‘ |sup ๐‘Ž๐‘›๐‘– |) โ€–๐‘ฅโ€–๐ธ ,
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
for all ๐‘›. This implies that ๐ด๐‘ฅ โˆˆ ๐‘™โˆž for each ๐‘ฅ โˆˆ ๐‘™โˆž (๐ธ), so ๐ด โˆˆ (๐‘™โˆž (๐ธ), ๐‘™โˆž ).
Conversely let ๐ด โˆˆ (๐‘™โˆž (๐ธ), ๐‘™โˆž ). We define the sequence ๐‘ฅ = (๐‘ฅ๐‘– ) by ๐‘ฅ๐‘– =
sgn ๐‘Ž๐‘›๐‘– , where ๐‘– โˆˆ ๐ธ๐‘˜ is the first index of ๐ธ๐‘˜ such that |๐‘Ž๐‘›๐‘– | = sup|๐‘Ž๐‘›๐‘— |, and put
๐‘—โˆˆ๐ธ๐‘˜
the remaining elements zero. It is clear that ๐‘ฅ โˆˆ ๐‘™โˆž (๐ธ), so ๐ด๐‘ฅ โˆˆ ๐‘™โˆž and the
condition (8) must hold.
103
PROCEEDINGS OF IAM, V.4, N.2, 2015
Now we show that ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘™โˆž ) if and only if the condition (8) holds. Like
the previous part it's clear that ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘™โˆž ) if the condition (8) holds.
Conversely, suppose that ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘™โˆž ). By our hypothesis that ๐ด๐‘ฅ โˆˆ ๐‘™โˆž
whenever ๐‘ฅ โˆˆ ๐‘0 (๐ธ), it can be concluded that โˆ‘โˆž
๐‘˜=1 sup |๐‘Ž๐‘›๐‘™ | < โˆž for all ๐‘›;
๐‘™โˆˆ๐ธ๐‘˜
โ€ฒ
Otherwise if โˆ‘โˆž
๐‘˜=1 (sup |๐‘Ž๐‘›โ€ฒ ๐‘™ |) = โˆž, for some positive integer ๐‘› . There is a
๐‘™โˆˆ๐ธ๐‘˜
strictly increasing sequence (๐‘š๐‘— )โˆž
๐‘—=1 of positive integers such that
๐‘š๐‘—+1
โˆ‘ (sup|๐‘Ž๐‘›โ€ฒ ๐‘™ |) > ๐‘—.
๐‘™โˆˆ๐ธ๐‘˜
๐‘˜=๐‘š๐‘— +1
sgn ๐‘Ž
We define the sequence ๐‘ฅ = (๐‘ฅ๐‘– ) by ๐‘ฅ๐‘– = ๐‘— ๐‘›โ€ฒ ๐‘–, where ๐‘– โˆˆ ๐ธ๐‘˜ is the first
index of ๐ธ๐‘˜ such that |๐‘Ž๐‘›โ€ฒ ๐‘– | = sup|๐‘Ž๐‘›โ€ฒ ๐‘™ |, ๐‘š๐‘— < ๐‘˜ โ‰ค ๐‘š๐‘—+1 , and put the remaining
๐‘™โˆˆ๐ธ๐‘˜
elements zero, especially ๐‘ฅ๐‘˜ = 0 for 0 โ‰ค ๐‘˜ โ‰ค ๐‘š1 . It is obvious that ๐‘ฅ โˆˆ ๐‘0 (๐ธ), and
โˆž
โˆž
๐‘š๐‘—+1
โˆ‘ ๐‘Ž๐‘›โ€ฒ ๐‘˜ ๐‘ฅ๐‘˜ = โˆ‘ โˆ‘
๐‘˜=1
sup |๐‘Ž โ€ฒ |
๐‘™โˆˆ๐ธ๐‘˜ ๐‘› ๐‘™
๐‘—
โˆž
> โˆ‘ 1.
๐‘—=1 ๐‘˜=๐‘š๐‘— +1
๐‘—=1
This means that โˆ‘โˆž
๐‘˜=1 ๐‘Ž๐‘›โ€ฒ ๐‘˜ ๐‘ฅ๐‘˜ is divergent, which contradicts our assumption.
Hence โˆ‘โˆž
๐‘˜=1 (sup |๐‘Ž๐‘›โ€ฒ ๐‘™ |) < โˆž and ๐ด๐‘› โˆˆ ๐‘‘, for all ๐‘›. Due to Lemma 2, the linear
๐‘™โˆˆ๐ธ๐‘˜
functional ๐‘“๐‘› : ๐‘0 (๐ธ) โ†’ โ„ defined by
โˆž
(๐‘ฅ = (๐‘ฅ๐‘˜ ) โˆˆ ๐‘0 (๐ธ)),
๐‘“๐‘› (๐‘ฅ) = โˆ‘ ๐‘Ž๐‘›๐‘˜ ๐‘ฅ๐‘˜
is bounded and โ€–๐‘“๐‘› โ€–
๐‘˜=1
= โˆ‘โˆž
๐‘˜=1 sup |๐‘Ž๐‘›โ€ฒ ๐‘™ |,
๐‘™โˆˆ๐ธ๐‘˜
for all ๐‘›. By applying the Banach-
Steinhaus theorem it follows that supโ€–๐‘“๐‘› โ€– < โˆž, so sup โˆ‘โˆž
๐‘˜=1|๐‘Ž๐‘›๐‘˜ | < โˆž and the
๐‘›
๐‘›
condition (8) must hold. The proof is completed according to the mentioned topics
and (๐‘™โˆž (๐ธ), ๐‘™โˆž ) โІ (๐‘(๐ธ), ๐‘™โˆž ) โІ (๐‘0 (๐ธ), ๐‘™โˆž ).
๐‘˜
(๐‘–๐‘–) Suppose that ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘0 ). We define the sequence ๐‘’ ๐‘˜ = (๐‘’๐‘–๐‘˜ )โˆž
๐‘–=1 by ๐‘’๐‘– =
1, where ๐‘– โˆˆ ๐ธ๐‘˜ is the first index of ๐ธ๐‘˜ such that |๐‘Ž๐‘›๐‘– | = sup|๐‘Ž๐‘›๐‘™ | for ๐‘˜ = 1, 2, โ‹ฏ,
๐‘™โˆˆ๐ธ๐‘˜
and put the remaining elements zero. Obviously ๐‘’ ๐‘˜ โˆˆ ๐‘0 (๐ธ) and ๐ด๐‘’ ๐‘˜ โˆˆ ๐‘0 , this
proves the necessity of the condition (9). The proof of the necessity of the
condition (8) is similar to previous part. Conversely, suppose that the conditions
(8) and (9) hold. For every ๐‘ฅ โˆˆ ๐‘0 (๐ธ)
104
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
โˆž
|๐ด๐‘› (๐‘ฅ)| =
|โˆ‘ โˆ‘ ๐‘Ž๐‘›๐‘– ๐‘ฅ๐‘– |
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
๐‘š
โ‰ค
โˆž
โˆ‘ sup |๐‘Ž๐‘›๐‘– | | โˆ‘ ๐‘ฅ๐‘– | + โˆ‘ sup|๐‘Ž๐‘›๐‘– | | โˆ‘ ๐‘ฅ๐‘– |
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=๐‘š+1
๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
๐‘š
โˆž
โ‰ค โ€–๐‘ฅโ€–๐ธ โˆ‘ sup|๐‘Ž๐‘›๐‘– | + sup | โˆ‘ ๐‘ฅ๐‘– | โˆ‘ sup |๐‘Ž๐‘›๐‘– |.
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜โ‰ฅ๐‘š+1
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=๐‘š+1
๐‘–โˆˆ๐ธ๐‘˜
Now take ๐‘š so large that sup |โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– | < ๐œ– and then take ๐‘› so large that
๐‘˜โ‰ฅ๐‘š+1
โˆ‘๐‘š
๐‘˜=1 sup |๐‘Ž๐‘›๐‘– | < ๐œ– (possible since lim sup |๐‘Ž๐‘›๐‘– | = 0). We have ๐ด๐‘ฅ โˆˆ ๐‘0 .
๐‘›โ†’โˆž ๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
(๐‘–๐‘–๐‘–) Suppose that ๐ด โˆˆ (๐‘(๐ธ), ๐‘0 ). Since the sequences ๐‘’ ๐‘˜ โˆˆ ๐‘(๐ธ), we deduce that
๐ด๐‘’ ๐‘˜ โˆˆ ๐‘0 for ๐‘˜ = 1, 2, โ‹ฏ. This implies that (sup |๐‘Ž๐‘›๐‘– | )โˆž
๐‘˜=1 โˆˆ ๐‘0 , so the condition
๐‘–โˆˆ๐ธ๐‘˜
(9) holds. Also if the sequence ๐‘’ = (๐‘’๐‘– ) is defined by ๐‘’๐‘– = 1 when ๐‘Ž๐‘›๐‘– = sup|๐‘Ž๐‘›๐‘™ |
๐‘™โˆˆ๐ธ๐‘˜
for some ๐‘˜, and we put the remaining elements zero. Then ๐‘’ โˆˆ ๐‘(๐ธ) indicate that
โˆž
๐ด๐‘’ = (โˆ‘โˆž
๐‘˜=1 sup |๐‘Ž๐‘›๐‘™ |)
๐‘™โˆˆ๐ธ๐‘˜
โˆˆ ๐‘0 , so the condition (10) is satisfied. The proof of
๐‘›=1
the necessity of the condition (8) is similar to the part (๐‘–).
Conversely, suppose that the conditions (8), (9) and (10) hold. For every
๐‘ฅ โˆˆ ๐‘(๐ธ) there is a finite number as ๐‘™ such that lim โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– = 0. If the sequence
๐‘ฆ = (๐‘ฆ๐‘– ) defined by ๐‘ฆ๐‘– = |๐ธ๐‘™ | for ๐‘– โˆˆ ๐ธ๐‘˜ , then
โˆž
๐‘˜
๐‘˜โ†’โˆž
โˆž
โˆž
๐ด๐‘› (๐‘ฅ) = โˆ‘ ๐‘Ž๐‘›๐‘˜ ๐‘ฅ๐‘˜ = โˆ‘ ๐‘Ž๐‘›๐‘˜ (๐‘ฅ๐‘˜ โˆ’ ๐‘ฆ๐‘˜ ) + โˆ‘ ๐‘Ž๐‘›๐‘˜ ๐‘ฆ๐‘˜ = ๐‘ ๐‘› + ๐‘ก๐‘› ,
๐‘˜=1
๐‘˜=1
๐‘˜=1
โˆž
where ๐‘ ๐‘› = โˆ‘โˆž
๐‘˜=1 ๐‘Ž๐‘›๐‘˜ (๐‘ฅ๐‘˜ โˆ’ ๐‘ฆ๐‘˜ ) and ๐‘ก๐‘› = โˆ‘๐‘˜=1 ๐‘Ž๐‘›๐‘˜ ๐‘ฆ๐‘˜ . By applying part (๐‘–๐‘–), we
deduce that ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘0 ). So lim ๐‘ ๐‘› = 0, since(๐‘ฅ๐‘˜ โˆ’ ๐‘ฆ๐‘˜ ) โˆˆ ๐‘0 (๐ธ). On the other
๐‘›โ†’โˆž
hand, lim ๐‘ก๐‘› = 0 by the condition (10), since
๐‘›โ†’โˆž
โˆž
โˆž
๐‘ก๐‘› โ‰ค โˆ‘ โˆ‘ |๐‘Ž๐‘›๐‘– ๐‘ฆ๐‘– | โ‰ค ๐‘™ โˆ‘ sup|๐‘Ž๐‘›๐‘– |.
๐‘˜=1 ๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
Therefore ๐ด โˆˆ (๐‘(๐ธ), ๐‘0 ).
(๐‘–๐‘ฃ) Let ๐ด โˆˆ (๐‘0 (๐ธ), ๐‘). Using the sequences ๐‘’ ๐‘˜ , the necessity of the condition
(11) is immediate. The proof of the necessity of the condition (8) is similar to the
part (๐‘–). Conversely, suppose that the conditions (8) and (11) hold. If ๐ต = (๐‘๐‘›๐‘– )
be a matrix such that ๐‘๐‘›๐‘– = ๐‘Ž๐‘›๐‘– โˆ’ ๐‘™๐‘˜ where ๐‘– โˆˆ ๐ธ๐‘˜ , for every ๐‘›, ๐‘˜ โˆˆ โ„•, we first
prove that ๐ต โˆˆ (๐‘0 (๐ธ), ๐‘0 ). Let ๐‘€ > 0 and ๐œ– > 0 be given. Due to (11), there is a
105
PROCEEDINGS OF IAM, V.4, N.2, 2015
positive number ๐‘๐‘˜ such that |sup ๐‘Ž๐‘›๐‘– โˆ’ ๐‘™๐‘˜ | โ‰ค ๐‘€๐œ– , for all ๐‘› โ‰ฅ ๐‘๐‘˜ . Take ๐‘ =
๐‘–โˆˆ๐ธ๐‘˜
max ๐‘๐‘˜ , we have
1โ‰ค๐‘˜โ‰ค๐‘€
๐‘š
๐‘š
๐‘š
๐‘š
โˆ‘|๐‘™๐‘˜ | โ‰ค โˆ‘ |๐‘™๐‘˜ โˆ’ sup ๐‘Ž๐‘›๐‘– | + โˆ‘ sup|๐‘Ž๐‘›๐‘– | โ‰ค ๐œ– + โˆ‘ sup|๐‘Ž๐‘›๐‘– | ,
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
for every ๐‘› โ‰ฅ ๐‘. If ๐‘€ โ†’ โˆž, due to the condition (8), it can be concluded that
(๐‘™๐‘˜ )โˆž
๐‘˜=1 โˆˆ ๐‘™1 . Since sup ๐‘๐‘›๐‘– = sup ๐‘Ž๐‘›๐‘– โˆ’ ๐‘™๐‘˜ , we have sup ๐‘๐‘›๐‘– โ†’ 0 as ๐‘› โ†’ โˆž and
๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
๐‘–โˆˆ๐ธ๐‘˜
also sup โˆ‘โˆž
๐‘˜=1 sup |๐‘๐‘›๐‘– | < โˆž. Hence ๐ต โˆˆ (๐‘0 (๐ธ), ๐‘0 ), by part (๐‘–๐‘–). This implies that
๐‘›
๐‘–โˆˆ๐ธ๐‘˜
๐ต๐‘ฅ โˆˆ ๐‘0 for all ๐‘ฅ โˆˆ ๐‘0 (๐ธ), so
โˆž
โˆž
lim โˆ‘ ๐‘Ž๐‘›๐‘˜ ๐‘ฅ๐‘˜ = โˆ‘ ๐‘™๐‘˜ ( โˆ‘ ๐‘ฅ๐‘– ) .
๐‘›โ†’โˆž
(13)
๐‘˜=1
๐‘˜=1
๐‘–โˆˆ๐ธ๐‘˜
๐›ฝ
โˆž
Since (โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– )๐‘˜=1 โˆˆ ๐‘0 when ๐‘ฅ โˆˆ ๐‘0 (๐ธ) and (๐‘™๐‘˜ )โˆž
๐‘˜=1 โˆˆ ๐‘0 , by Corollary 4, we
have โˆ‘โˆž
๐‘˜=1 ๐‘™๐‘˜ (โˆ‘๐‘–โˆˆ๐ธ๐‘˜ ๐‘ฅ๐‘– ) < โˆž for all ๐‘ฅ โˆˆ ๐‘0 (๐ธ). This result and the relation (13)
show that ๐ต โˆˆ (๐‘0 (๐ธ), ๐‘0 ). The proof of the part (๐‘ฃ) is similar to the part (๐‘–๐‘–๐‘–).
It should be noted when ๐ธ๐‘— = {๐‘—} for ๐‘— = 1, 2, โ‹ฏ, the conditions (8), (9),
(10), (11) and (12) can be rewritten as follows, respectively.
โˆž
sup (โˆ‘|๐‘Ž๐‘›๐‘˜ |) < โˆž,
๐‘›
๐‘˜=1
lim ๐‘Ž๐‘›๐‘˜ = 0
๐‘›โ†’โˆž
(๐‘˜ = 1, 2, โ‹ฏ ),
(16)
๐‘˜=1
lim ๐‘Ž๐‘›๐‘˜ = ๐‘™๐‘˜ for some ๐‘™๐‘˜ โˆˆ โ„ (๐‘˜ = 1, 2, โ‹ฏ ),
๐‘›โ†’โˆž
(17)
โˆž
lim (โˆ‘ ๐‘Ž๐‘›๐‘˜ ) = ๐‘™ for some ๐‘™ โˆˆ โ„.
๐‘›โ†’โˆž
(15)
โˆž
lim (โˆ‘ ๐‘Ž๐‘›๐‘˜ ) = 0,
๐‘›โ†’โˆž
(14)
๐‘˜=1
(18)
๐‚๐จ๐ซ๐จ๐ฅ๐ฅ๐š๐ซ๐ฒ ๐Ÿ” [๐Ÿ๐Ÿ]. We have
(๐‘–) (๐‘0 , ๐‘™โˆž ) = (๐‘, ๐‘™โˆž ) = (๐‘™โˆž , ๐‘™โˆž ) and ๐ด โˆˆ (๐‘™โˆž , ๐‘™โˆž ) if and only if the condition (14)
holds;
(๐‘–๐‘–) ๐ด โˆˆ (๐‘0 , ๐‘0 ) if and only if the conditions (14) and (15) hold ;
(๐‘–๐‘–๐‘–) ๐ด โˆˆ (๐‘, ๐‘0 ) if and only if the conditions (14), (15) and (16) hold;
(๐‘–๐‘ฃ) ๐ด โˆˆ (๐‘0 , ๐‘) if and only if the conditions (14) and (17) hold;
(๐‘ฃ) ๐ด โˆˆ (๐‘, ๐‘) if and only if the conditions (14), (17) and (18) hold.
๐‘๐ž๐Ÿ๐ž๐ซ๐ž๐ง๐œ๐ž๐ฌ
106
S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โ€ฆ
1. Altay B., BaลŸar F., On the paranormed Riesz sequence spaces of
nonabsolute type, Southeast Asian Bull. Math., Vol.26, No.5, 2002,
pp.701-715.
2. Altay B., BaลŸar F., Some Euler sequence spaces of non-absolute type, Ukr.
Math. J., Vol.57, No.1, 2005, pp.1-17.
3. Altay B., BaลŸar F., Some paranormed Riesz sequence spaces of nonabsolute type, Southeast Asian Bull. Math., Vol.30, No.5, 2006, pp.591608.
4. Altay B., BaลŸar F., The fine spectrum and the matrix domain of the
difference operator โˆ† on the sequence space ๐‘™๐‘ , (0 < ๐‘ < 1), Commun.
Math. Anal. Vol.2, No.2, 2007, pp.1-11.
5. Altay B., BaลŸar F., Malkowsky E., Matrix transformations on some
sequence spaces related to strong Cesàro summability and boundedness,
Appl. Math. Comput. Vol.211, No.2, 2009, pp.255-264.
6. Altay B., BaลŸar F., M. Mursaleen, On the Euler sequence spaces which
include the spaces ๐‘™๐‘ and ๐‘™โˆž , Inform. Sci. Vol.176, 2006, pp.1450-1462.
7. BaลŸar F., Summability Theory and Its Applications, Bentham Science
Publishers, e-books, Monographs, ฤฐstanbul, 2012.
8. BaลŸar F., Altay B., On the space of sequences of ๐‘-bounded variation and
related matrix mappings, Ukr. Math. J., Vol.55, No.1, 2003, pp.136-147.
9. BaลŸar F., Altay B., Mursaleen M., Some generalizations of the space ๐‘๐‘ฃ๐‘
of ๐‘- bounded variation sequences, Nonlinear Anal., Vol.68, No.2, 2008,
pp.273-287.
10. Foroutannia D., A new semi-normed sequence space of non-absolute type
and matrix transformation, Turk. J. Math., Vol.39, 2015, pp.830-841.
11. Malkowsky E., Rakoฤeviฤ‡ V., An Introductionm into the Theory of
Sequence Spaces and Measures of Noncompactness, Zbornik Radova,
Matematiฤki Institut SANU, Belgrade, Vol.9, No.17, 2000, pp.143-243.
12. Mursaleen M., Baแนฃar F., Altay B., On the Euler sequence spaces which
include the spaces ๐‘™๐‘ and ๐‘™โˆž ๐ผ๐ผ, Nonlinear Anal., Vol.65, 2006, p.707-717.
13. Mursaleen M., Noman A K., On some new difference sequence spaces of
non-absolute type, Math. Comput. Modelling, Vol.52, No.3-4, 2010,
pp.603-617.
14. Ng P.N., Lee P.Y., Cesàro sequence spaces of non-absolute type,
Comment. Math. Prace Mat., Vol.20, No.2, 1978, pp.429-433.
15. ลžengönül M., Basar F., Some new Cesàro sequence spaces of non-absolute
type which include the spaces ๐‘0 and ๐‘, Soochow J. Math., Vol.31, No.1,
2005, pp.107-119.
16. Wang C.S., On Nörlund sequence spaces, Tamkang J. Math., Vol.9, 1978,
pp.269-274.
17. YeลŸilkayagil M., BaลŸar F., On the paranormed Nörlund sequence space of
non- absolute type, Abstr. Appl. Anal., Article ID 858704, 2014, 9 p.
107
PROCEEDINGS OF IAM, V.4, N.2, 2015
Bษ™zi yeni qeyri-mütlษ™q tip yarฤฑm normallaลŸmฤฑลŸ ardฤฑcฤฑllฤฑq fษ™zalarฤฑ vษ™
matrix çevrilmษ™lษ™ri
S. Erfanmanesh, D. Foroutannia
XÜLASฦ
Bu iลŸin mษ™qsษ™di ardฤฑcฤฑllฤฑq fษ™zalarฤฑnฤฑ daxil etmษ™kdir. Biz bu fษ™zalarฤฑn bษ™zi topoloji
xassษ™lษ™ri araลŸdฤฑrฤฑrฤฑq vษ™ hษ™mçinin onlarฤฑn arasฤฑnda daxilolma münasibษ™tlษ™ri qururuq. Bundan
ษ™lavษ™, biz bu fษ™zalarฤฑn ฮฑ- vษ™ ฮฒ-duallarฤฑnฤฑ hesablayฤฑr vษ™ sonsuz matrislษ™rin siniflษ™rini
xarakterizษ™ edirik.
Açar sözlษ™r: yarฤฑmnormallaลŸmฤฑลŸ ardฤฑcฤฑllฤฑq fษ™zalarฤฑ, matris oblastฤฑ, ฮฑ- vษ™ ฮฒ-duallarฤฑ,
matris çevirmษ™lษ™r.
ะะตะบะพั‚ะพั€ั‹ะต ะฝะพะฒั‹ะต ะฝะตะฐะฑัะพะปัŒัŽั‚ะฝะพะณะพ ั‚ะธะฟะฐ ะฟะพะปัƒ-ะฝะพั€ะผะธั€ะพะฒะฐะฝะฝั‹ะต
ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒะฐ ะฟะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ะตะน ะธ ะผะฐั‚ั€ะธั‡ะฝั‹ะต ะฟั€ะตะพะฑั€ะฐะทะพะฒะฐะฝะธั
ะก. ะ•ั€ั„ะฐะฝะผะฐะฝะตัˆ, ะ”. ะคะพั€ะพัƒั‚ะฐะฝะฝะธะฐ
ะ ะ•ะ—ะฎะœะ•
ะฆะตะปัŒ ะดะฐะฝะฝะพะณะพ ะธััะปะตะดะพะฒะฐะฝะธั ะทะฐะบะปัŽั‡ะฐะตั‚ัั ะฒ ะฒะฒะตะดะตะฝะธะธ ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒ
ะฟะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ะตะน. ะœั‹ ะธััะปะตะดัƒะตะผ ะฝะตะบะพั‚ะพั€ั‹ะต ั‚ะพะฟะพะปะพะณะธั‡ะตัะบะธะต ัะฒะพะนัั‚ะฒะฐ ัั‚ะธั…
ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒ, ะฐ ั‚ะฐะบะถะต ัƒัั‚ะฐะฝะพะฒะธั‚ัŒ ะฝะตะบะพั‚ะพั€ั‹ะต ะพั‚ะฝะพัˆะตะฝะธะน ะฒะบะปัŽั‡ะตะฝะธะน ะผะตะถะดัƒ ะฝะธะผะธ.
ะšั€ะพะผะต ั‚ะพะณะพ, ะผั‹ ะฒั‹ั‡ะธัะปัะตะผ ฮฑ- ะธ ะฑะตั‚ะฐ-ะดะฒะพะนัั‚ะฒะตะฝะฝั‹ะต ัั‚ะธั… ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒ ะธ
ะพั…ะฐั€ะฐะบั‚ะตั€ะธะทัƒะตะผ ะบะปะฐััั‹ ะฑะตัะบะพะฝะตั‡ะฝั‹ั… ะผะฐั‚ั€ะธั†.
ะšะปัŽั‡ะตะฒั‹ะต ัะปะพะฒะฐ: ะฟะพะปัƒ-ะฝะพั€ะผะธั€ะพะฒะฐะฝะฝั‹ะต ะฟั€ะพัั‚ั€ะฐะฝัั‚ะฒะฐ ะฟะพัะปะตะดะพะฒะฐั‚ะตะปัŒะฝะพัั‚ะตะน,
ะผะฐั‚ั€ะธั‡ะฝั‹ะต ะดะพะผะตะฝั‹, ฮฑ- ะธ ะฑะตั‚ะฐ-ัะพะฟั€ัะถะตะฝะฝั‹ะต, ะผะฐั‚ั€ะธั‡ะฝั‹ะต ะฟั€ะตะพะฑั€ะฐะทะพะฒะฐะฝะธั.
108