Proceedings of IAM, V.4, N.2, 2015, pp.96-108 SOME NEW SEMI-NORMED SEQUENCE SPACES OF NON-ABSOLUTE TYPE AND MATRIX TRANSFORMATIONS S. Erfanmanesh1, D. Foroutannia1 1 Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran e-mail: [email protected] Abstract. The purpose of the present study is to introduce the sequence spaces. We investigate some topological properties of these spaces and also establish some inclusion relations between them. Furthermore, we compute ๐ผ- and ๐ฝ-duals of these spaces and characterize the classes of infinite matrices. Keywords: Semi-normed sequence spaces, matrix domains, ๐ผ- and ๐ฝ-duals, matrix transformations. AMS Subject Classification: 46A45, 46B20, 40C05. 1. Introduction Let ๐ denotes the space of all real-valued sequences. Any vector subspace of ๐ is called a sequence space. We write ๐โ , ๐ and ๐0 for the spaces of all bounded, convergent and null sequences, respectively. Also by ๐๐ , ๐๐ and ๐1 , we denote the spaces of all bounded, convergent and absolutely convergent series, respectively. Let ๐, ๐ be two sequence spaces and A = (๐๐๐ ) be an infinite matrix of real numbers ๐๐๐ , where ๐, ๐ โ โ = {1, 2, โฏ }. We say that ๐ด defines a matrix mapping from ๐ into ๐, and we denote it by ๐ด: ๐ โ ๐, if for every sequence ๐ฅ = (๐ฅ๐ ) โ ๐ the sequence ๐ด๐ฅ = {( ๐ด๐ฅ)๐ } exists and is in ๐, where (๐ด๐ฅ)๐ = โโ ๐=1 ๐๐๐ ๐ฅ๐ for ๐ = 1, 2, โฏ. By (๐, ๐), we denote the class of all infinite matrices ๐ด such that ๐ด: ๐ โ ๐. For a sequence space ๐, the matrix domain ๐๐ด of an infinite matrix ๐ด is defined by ๐๐ด = {๐ฅ = (๐ฅ๐ ) โ ๐ โถ ๐ด๐ฅ โ ๐}, (1) which is a sequence space. The new sequence space ๐๐ด generated by the limitation matrix ๐ด from a sequence space ๐ can be the expansion or the contraction and or the overlap of the original space ๐. A matrix A = (๐๐๐ ) is called a triangle if ๐๐๐ = 0 for ๐ > ๐ and ๐๐๐ โ 0 for all ๐ โ โ. If ๐ด is triangle, then one can easily observe that the sequence spaces ๐๐ด and ๐ are linearly isomorphic, i.e., ๐๐ด โ ๐. In the past, several authors studied matrix transformations on sequence spaces that are the matrix domains of triangle matrices in classical spaces ๐๐ , ๐โ , ๐ and ๐0 . For instance, some matrix domains of the difference operator were studied in [4, 8, 9, 13], of the Riesz matrices in [1, 3], of the Euler matrices in [2, 6, 12], of the Cesáro matrices in [5, 14, 15], and of the Nörlund matrices in [16, 17]. In these studies the matrix domains are obtained by triangle matrices, hence these spaces 96 S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ are normed sequence spaces. For more details on the domain of triangle matrices in some sequence spaces, the reader may refer to Chapter 4 of [7]. The matrix domains given in this paper specify by a certain non-triangle matrix, so we should not expect that related spaces are normed sequence spaces. In this study, the normed sequence space ๐ is extended to semi-normed space ๐(๐ธ), where ๐ โ {๐โ , ๐, ๐0 }. We consider some topological properties of the spaces ๐โ (๐ธ), ๐(๐ธ) and ๐0 (๐ธ), and derive some inclusion relations concerning with them. Furthermore, we determine the ๐ผ- and ๐ฝ-duals for these spaces. Finally, we obtain the necessary and sufficient conditions on an infinite matrix belonging to the classes (๐(๐ธ); ๐โ ), (๐(๐ธ), ๐) and (๐(๐ธ), ๐0 ), where ๐ โ {๐โ , ๐, ๐0 }. The results are generalizations of some results of Malkowsky and Rakocevic [11]. In a similar way, the second Author has introduced the sequence spaces ๐๐ (๐ธ), where 1 โค ๐ < โ, [10]. 2. The sequence spaces ๐ฟ(๐ฌ) for ๐ฟ โ {๐โ , ๐, ๐๐ } Let ๐ธ = (๐ธ๐ ) be a partition of finite subsets of the positive integers such that ๐๐๐ฅ๐ธ๐ < ๐๐๐๐ธ๐+1 , (2) ๐ = 1, 2, โฏ . We define the sequence spaces ๐(๐ธ) for ๐ โ {๐โ , ๐, ๐0 } by โ ๐(๐ธ) = { ๐ฅ = (๐ฅ๐ )โ ๐=1 โ ๐ โถ ( โ ๐ฅ๐ ) ๐โ๐ธ๐ โ ๐ }. ๐=1 ๐(๐ธ) is a semi-normed space with the semi-norm โ. โ๐ธ , which is defined by the following way: โ๐ฅโ๐ธ = ๐ ๐ข๐|โ๐โ๐ธ๐ ๐ฅ๐ |. (3) ๐ It should be noted that the function โ. โ๐ธ cannot be the norm, since if ๐ฅ = (1, โ1, 0, 0, โฏ ) and ๐ธ๐ = {2๐ โ 1, 2๐} for all ๐, then โ๐ฅโ๐ธ = 0 while ๐ฅ โ 0. It is also significant that in the special case ๐ธ๐ = {๐} for = 1, 2, โฏ , we have ๐(๐ธ) = ๐ and โ๐ฅโ๐ธ = โ๐ฅโโ , where ๐ฅ โ ๐ and โ๐ฅโโ = ๐ ๐ข๐๐ |๐ฅ๐ | is the usual norm of the spaces ๐โ , ๐ and ๐0 . Suppose ๐ธ = (๐ธ๐ ) is a sequence of finite subsets of the positive integers that satisfies the condition (2). If the infinite matrix A = (๐๐๐ ) is defined by 1 ๐๐ ๐ โ ๐ธ๐ ๐๐๐ = { (4) 0 otherwise, with the notation of (1), we can redefine the spaces ๐โ (๐ธ), ๐(๐ธ) and ๐0 (๐ธ) as follows: ๐โ (๐ธ) = (๐โ )๐ด ๐๐๐ ๐(๐ธ) = (๐)๐ด ๐๐๐ ๐0 (๐ธ) = (๐0 )๐ด . Now, we may begin with the following theorem which is essential in the study. Theorem 1. The sequence spaces ๐(๐ธ) for ๐ โ {๐โ , ๐, ๐0 } are complete seminormed vector spaces with respect to the semi-norm defined by (3). 97 PROCEEDINGS OF IAM, V.4, N.2, 2015 ๐๐ซ๐จ๐จf. This is a routine verification and so we omit the detail. It can easily be checked that the absolute property does not hold on the space ๐(๐ธ), that is โ๐ฅโ๐ธ โ โ|๐ฅ|โ๐ธ for at least one sequence in this space which says that ๐(๐ธ) is the sequence space of non-absolute type, where |๐ฅ| = (|๐ฅ๐ |). Throughout this article, we denote the cardinal number of the set ๐ธ๐ by |๐ธ๐ |. Theorem 2. Let ๐ = { ๐ฅ = (๐ฅ๐ )โ ๐=1 โถ โ๐โ๐ธ๐ ๐ฅ๐ = 0, โ๐ }. The quotient spaces ๐โ (๐ธ)โ๐, ๐(๐ธ)โ๐ and ๐0 (๐ธ)โ๐ are linearly isomorphic to the spaces ๐โ , ๐ and ๐0 , respectively. ๐๐ซ๐จ๐จ๐. Let ๐ โ {๐โ , ๐, ๐0 }. Consider the map ๐ โถ ๐(๐ธ) โ ๐ defined by โ ๐๐ฅ = ( โ ๐ฅ๐ ) ๐โ๐ธ๐ ๐=1 for all ๐ฅ โ ๐(๐ธ). The linearity of ๐ is trivial. Let ๐ฆ โ ๐ and ๐ผ๐ = |๐ธ๐ | for all ๐. We define the sequence ๐ฅ = (๐ฅ๐ ) by ๐ฅ๐ = ๐ฆ๐ โ๐ผ๐ for all ๐ โ ๐ธ๐. It is clear that ๐ฅ โ ๐(๐ธ) and ๐๐ฅ = ๐ฆ. Thus the map ๐ is surjective. By applying the first isomorphism theorem we have ๐(๐ธ) = ๐ / ๐, because ๐๐๐๐ = ๐. Note that the mapping defined in Theorem 2, ๐ is not injective. While the โ๐๐ฅโโ = โ๐ฅโ๐ธ , for all ๐ฅ โ ๐(๐ธ). ๐๐๐๐ข๐ง๐ข๐ญ๐ข๐จ๐ง ๐. Let ๐ธ = (๐ธ๐ ) be a partition of finite subsets of the positive integers that satisfies the condition (2), and ๐ = (๐ ๐ ) be a strictly increasing sequence of the positive integers. The generated partition ๐ป = (๐ป๐ ) is defined by ๐ธ and ๐ , as follows ๐ ๐ ๐ป๐ = โ ๐ธ๐ , ๐=๐ ๐โ1 +1 for ๐ = 1,2, โฏ. Here and in the sequel, we shall use the convention that any term with a zero subscript is equal to zero. Note that any arbitrary partition ๐ป = (๐ป๐ ) that satisfies the condition (2) generate by the partition ๐ธ = (๐ธ๐ ) and the sequence ๐ = (๐ ๐ ), where ๐ธ๐ = {๐} and ๐ ๐ = ๐๐๐ฅ ๐ป๐ for all ๐. It is also important to know ๐ ๐ โ ๐ ๐โ1 = |๐ป๐ |. In the following, the inclusion relation between the spaces ๐(๐ธ) and ๐(๐ป) is examined. Obviously if ๐ ๐ โ ๐ ๐โ1 > 1 only for a finite number of ๐, then ๐(๐ธ) = ๐(๐ป). Especially if |๐ป๐ | > 1 only for a finite number of ๐, then ๐ = ๐(๐ป), where ๐ โ {๐โ , ๐, ๐0 }. ๐๐ก๐๐จ๐ซ๐๐ฆ ๐. Let ๐ธ, ๐ and ๐ป be as in Definition 1. Then, the following statements hold: (๐) If sup(๐ ๐ โ ๐ ๐โ1 ) < โ, ๐ 98 S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ we have ๐โ (๐ธ) โ ๐โ (๐ป), and ๐0 (๐ธ) โ ๐0 (๐ป). (๐๐) If there is a positive integer ๐ such that ๐ ๐ = ๐๐ for all ๐, then ๐(๐ธ) โ ๐(๐ป). (๐๐๐) Moreover if ๐ ๐ โ ๐ ๐โ1 > 1 for an infinite number of ๐, then the inclusion relations in parts (๐) and (๐๐) are strict. ๐๐ซ๐จ๐จ๐. (๐) Suppose that ๐ = ๐ ๐ข๐๐ (๐ ๐ โ ๐ ๐โ1 ) and ๐ฅ = (๐ฅ๐ ) โ ๐โ (๐ธ), we have ๐ ๐ sup | โ ๐ฅ๐ | = sup | ๐ ๐โ๐ป๐ ๐ โ โ ๐ฅ๐ | โค ๐sup | โ ๐ฅ๐ | < โ. ๐=๐ ๐โ1 +1 ๐โ๐ธ๐ ๐ ๐โ๐ธ๐ This shows ๐ฅ = (๐ฅ๐ ) โ ๐โ (๐ป), so ๐โ (๐ธ) โ ๐โ (๐ป). Since ๐ ๐ โ ๐ฅ๐ = ๐โ๐ป๐ โ โ ๐ฅ๐ , (5) ๐=๐ ๐โ1 +1 ๐โ๐ธ๐ for all ๐, we can conclude ๐0 (๐ธ) โ ๐0 (๐ป). (๐๐) The inclusion ๐(๐ธ) โ ๐(๐ป) holds, since ๐ ๐ โ ๐ ๐โ1 = ๐ for all ๐. (๐๐๐) By assumption ๐ ๐ โ ๐ ๐โ1 > 1 for an infinite number of ๐, one can choose a subsequence (๐๐ ) in โ with ๐ ๐๐ โ ๐ ๐๐โ1 > 1 for ๐ = 1, 2, โฏ. We define the sequence ๐ฅ = (๐ฅ๐ ) such that ๐ ๐๐ ๐ = ๐ ๐๐โ1 + 1 โ ๐ฅ๐ = {๐ ๐๐ ๐ = ๐ ๐๐โ1 + 2 (6) ๐โ๐ธ๐ 0 otherwise, for ๐ = 1, 2, โฏ. It is obvious that โ๐โ๐ป๐ ๐ฅ๐ = 0, so ๐ฅ โ ๐(๐ป) while the ๐ฅ โ ๐(๐ธ), for ๐ โ {๐โ , ๐, ๐0 }. Hence the inclusions in parts (๐) and (๐๐) are strict. ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐. Let ๐ป = (๐ป๐ ) be a partition of finite subsets of the positive integers that satisfies the condition (2). Then, the following statements hold: (๐) If sup|๐ป๐ | < โ, we have ๐โ โ ๐โ (๐ป), and ๐0 โ ๐0 (๐ป). ๐ (๐๐) If there is a positive integer ๐ such that |๐ป๐ | = ๐๐ for all ๐, then ๐ โ ๐(๐ป). (๐๐๐) Moreover if |๐ป๐ | > 1 for an infinite number of ๐, then the inclusion relations in parts (๐) and (๐๐) are strict. ๐๐ซ๐จ๐จ๐. If ๐ธ๐ = {๐} and ๐ ๐ = ๐๐๐ฅ ๐ป๐ for all ๐, then the partition ๐ป = (๐ป๐ ) is generated by ๐ธ = (๐ธ๐ ) and ๐ = (๐ ๐ ). The desired result follows from Theorem 3. ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐. Let ๐ and ๐ be two positive integers. If we put ๐ธ๐ = {๐๐ โ ๐ + 1, ๐๐ โ ๐ + 2, โฏ , ๐๐} and ๐ป๐ = {๐๐๐ โ ๐๐ + 1, ๐๐๐ โ ๐๐ + 2, โฏ , ๐๐๐} for all ๐, then ๐(๐ธ) โ ๐(๐ป), where ๐ โ {๐โ , ๐, ๐0 }. Moreover if ๐ > 1, then these inclusions are strict. ๐๐ซ๐จ๐จ๐. If ๐ ๐ = ๐๐ for all ๐, then the partition ๐ป = (๐ป๐ ) is generated by ๐ธ and ๐ . The desired result follows from Theorem 3. 99 PROCEEDINGS OF IAM, V.4, N.2, 2015 3. The ๐ถ- and ๐ท-duals of the sequence space ๐ฟ(๐ฌ) In this section, we compute the ๐ผ- and ๐ฝ-duals for the sequence spaces ๐โ (๐ธ), ๐(๐ธ) and ๐0 (๐ธ). For the sequence spaces ๐ and ๐, the set ๐(๐, ๐) defined by ๐(๐, ๐) = {๐ = (๐๐ ) โ ๐ โถ (๐๐ ๐ฅ๐ )โ ๐=1 โ ๐ โ๐ฅ = (๐ฅ๐ ) โ ๐} is called the multiplier space of ๐ and ๐. With the above notation, the ๐ผ- and ๐ฝduals of a sequence space ๐, which are respectively denoted by ๐ ๐ผ and ๐๐ฝ , are defined by ๐ ๐ผ = ๐(๐, ๐โ ), ๐๐ฝ = ๐(๐, ๐๐ ). ๐๐๐ฆ๐ฆ๐ ๐ [๐๐]. Let ๐, ๐, ๐ โ ๐. We have (๐) ๐ โ ๐ implies ๐(๐, ๐ ) โ ๐(๐, ๐). (ii) ๐ โ ๐ implies ๐(๐, ๐) โ ๐(๐, ๐). In particular ๐ ๐ผ โ ๐๐ฝ . ๐๐ก๐๐จ๐ซ๐๐ฆ ๐. Define the set ๐ as follows: โ ๐ = { ๐ = (๐๐ ) โ ๐ โถ โ (sup|๐๐ |) < โ }, ๐=1 ๐โ๐ธ๐ then (๐0 (๐ธ))๐ฝ = (๐(๐ธ))๐ฝ = (๐โ (๐ธ))๐ฝ = ๐. ๐๐ซ๐จ๐จ๐. Obviously (๐โ (๐ธ))๐ฝ โ (๐(๐ธ))๐ฝ โ (๐0 (๐ธ))๐ฝ by Part (๐) of Lemma 1. So it is sufficient to verify the inclusions ๐ โ (๐โ (๐ธ))๐ฝ and (๐0 (๐ธ))๐ฝ โ ๐. Let ๐ โ ๐ be given. Since ๐ธ = (๐ธ๐ ) is a partition of the positive integers, we have โ โ |โ ๐๐ ๐ฅ๐ | = ๐=1 |โ โ ๐๐ ๐ฅ๐ | ๐=1 ๐โ๐ธ๐ โ โค โ (sup |๐๐ |) | โ ๐ฅ๐ | ๐=1 ๐โ๐ธ๐ ๐โ๐ธ๐ โ โค sup | โ ๐ฅ๐ | โ (sup|๐๐ |) < โ, ๐ ๐โ๐ธ๐ ๐=1 (7) ๐โ๐ธ๐ for all ๐ฅ โ ๐โ (๐ธ). This shows ๐๐ฅ โ ๐๐ , thus ๐ โ (๐โ (๐ธ))๐ฝ and hence ๐ โ (๐โ (๐ธ))๐ฝ . Now, let ๐ โ (๐โ (๐ธ))๐ฝ be given. We consider the linear functional ๐๐ โถ ๐0 (๐ธ) โ โ defined by ๐ ๐๐ (๐ฅ) = โ โ ๐๐ ๐ฅ๐ ๐=1 ๐โ๐ธ๐ for ๐ = 1, 2, โฏ. Similar to (7), we obtain 100 (๐ฅ = (๐ฅ๐ ) โ ๐0 (๐ธ)), S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ ๐ |๐๐ (๐ฅ)| โค sup | โ ๐ฅ๐ | โ (sup|๐๐ |), ๐ ๐โ๐ธ๐ ๐=1 ๐โ๐ธ๐ for every ๐ฅ โ ๐0 (๐ธ). So the linear functional ๐๐ is bounded and โ๐๐ โ โค โ๐๐=1 (sup |๐๐ |). We now prove reverse of the above inequality. Without loss of ๐โ๐ธ๐ generality we assume there is an index ๐ such that 1 โค ๐ โค ๐๐๐ฅ๐ธ๐ and ๐๐ โ 0, since the case ๐๐ = 0 for all 1 โค ๐ โค ๐๐๐ฅ๐ธ๐ is trivial. We define the sequence ๐ฅ = (๐ฅ๐ ) by ๐ฅ๐ = sgn ๐๐ , where ๐ โ ๐ธ๐ is the first index of ๐ธ๐ such that |๐๐ | = sup|๐๐ | ๐โ๐ธ๐ for 1 โค ๐ โค ๐, and put the remaining elements zero. Obviously ๐ฅ โ ๐0 (๐ธ), so ๐ |๐๐ (๐ฅ)| โ๐๐ โ โฅ = โ (sup |๐๐ |), โ๐ฅโ๐ธ ๐โ๐ธ๐ ๐=1 and โ๐๐ โ = โ๐๐=1 (sup |๐๐ |) ๐โ๐ธ๐ ๐0 (๐ธ) โ โ defined by for ๐ = 1, 2, โฏ. Since ๐ โ (๐0 (๐ธ))๐ฝ , the map ๐๐ โถ โ (๐ฅ = (๐ฅ๐ ) โ ๐0 (๐ธ)) ๐๐ (๐ฅ) = โ โ ๐๐ ๐ฅ๐ ๐=1 ๐โ๐ธ๐ is well-defined and linear, and also the sequence (๐๐ ) is pointwise convergent to ๐๐ . By using the Banach-Steinhaus theorem, it can be shown that โ๐๐ โ โค supโ๐๐ โ < โ, so โโ ๐=1 (sup |๐๐ |) < โ and ๐ โ ๐. This completes the proof. ๐ ๐โ๐ธ๐ It is clear that ๐ = ๐1 when sup|๐ธ๐ | < โ, since ๐ โ โ โ (sup|๐๐ |) โค โ|๐๐ |, ๐=1 and โ ๐โ๐ธ๐ ๐=1 โ โ โ|๐๐ | = โ โ |๐๐ | = (sup|๐ธ๐ |) โ (sup|๐๐ |). ๐=1 ๐=1 ๐โ๐ธ๐ ๐ ๐=1 ๐โ๐ธ๐ When sup|๐ธ๐ | = โ, we have ๐1 โ ๐ and the inclusion is strict. Since if ๐ธ1 = {1, 2} ๐ (n = 2, 3, โฏ ), and ๐ธ๐ = {min ๐ธ๐โ1 + ๐(๐ + 1), โฏ , max ๐ธ๐ + ๐(๐ + 1) }, 1 and if the sequence ๐ฅ = (๐ฅ๐ ) is chosen such that ๐ฅ๐ = ๐(๐+1) for ๐ โ ๐ธ๐ . It is obvious that ๐ฅ โ ๐ while ๐ฅ โ ๐1 . ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐. Let sup|๐ธ๐ | < โ. Then, we have ๐ (๐0 (๐ธ))๐ฝ = (๐(๐ธ))๐ฝ = (๐โ (๐ธ))๐ฝ = ๐1 . 101 PROCEEDINGS OF IAM, V.4, N.2, 2015 ๐๐ซ๐จ๐จ๐. Since ๐ = ๐1 , by using Theorem 4, we obtain the desired result. ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐ [11]. We have ๐0 ๐ฝ = ๐ ๐ฝ = ๐โ ๐ฝ = ๐1 . ๐๐ซ๐จ๐จ๐. If ๐ธ๐ = {๐} for all ๐, by applying Corollary 3, we obtain the desired result. ๐๐ก๐๐จ๐ซ๐๐ฆ ๐. We have (๐(๐ธ))๐ผ โ ๐, where ๐ โ {๐โ , ๐, ๐0 }. Moreover if |๐ธ๐ | > 1 for an infinite number of ๐, then these inclusions are strict. ๐๐ซ๐จ๐จ๐. One can conclude from Theorem 4 with Part (๐๐) of Lemma 1 that ๐ฝ (๐(๐ธ))๐ผ โ (๐(๐ธ)) = ๐, where ๐ โ {๐โ , ๐, ๐0 }. Moreover, if the sequence ๐ = (๐๐ ) is defined by ๐๐ = 1/2๐โ1 whenever ๐ โ ๐ธ๐ , then we have โ โ 1 โ (sup|๐๐ |) = โ ๐โ1 < โ, 2 ๐โ๐ธ๐ ๐=1 ๐=1 which means that ๐ โ ๐. Because |๐ธ๐ | > 1 for an infinite number of ๐, we may choose an index subsequence (๐๐ ) of the positive integers with |๐ธ๐๐ | > 1 for ๐ = 1, 2, โฏ. Let ๐ผ๐ = min ๐ธ๐๐ , we define the sequence ๐ฅ = (๐ฅ๐ ) as follows: 2๐๐โ1 ๐๐ ๐ = ๐ผ๐ ๐ โ1 ๐ฅ๐ = {โ2 ๐ ๐๐ ๐ = ๐ผ๐ + 1 0 otherwise, for ๐ = 1, 2, โฏ. Thus โ๐โ๐ธ๐ ๐ฅ๐ = 0 for all ๐, and ๐ฅ โ ๐(๐ธ). But โ โ โ โ|๐๐ ๐ฅ๐ | = โ โ |๐๐ ๐ฅ๐ | = โ 2 = โ, ๐=1 ๐ผ ๐=1 ๐โ๐ธ๐๐ ๐=1 which shows that ๐ โ (๐(๐ธ)) for ๐ โ {๐โ , ๐, ๐0 }. Therefore, these inclusions strictly hold. This step completes the proof. ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐. Let sup|๐ธ๐ | < โ. We have (๐(๐ธ))๐ผ โ ๐1 , where ๐ โ {๐โ , ๐, ๐0 }. ๐ Moreover if |๐ธ๐ | > 1 for an infinite number of ๐, then these inclusions are strict. ๐๐ซ๐จ๐จ๐. Since ๐ = ๐1 , by using Theorem 5, we obtain the desired result. 4. Matrix transformations on sequence spaces ๐ฟ(๐ฌ) In the present section, some classes of infinite matrices related with new sequence spaces are characterized. Let A = (๐๐๐ ) be an infinite matrix of real numbers and ๐ and ๐ be two sequence spaces. We write ๐ด๐ = (๐๐๐ )โ k=1 for the sequence in the ๐-th row of ๐ด. It is clear that ๐ด โ (๐, ๐) if and only if ๐ด๐ โ ๐๐ฝ for all ๐ and ๐ด๐ฅ โ ๐ for all ๐ฅ โ ๐. We start with the following lemma which is needed to prove our main results. ๐๐๐ฆ๐ฆ๐ ๐. If ๐ = (๐๐ ) โ ๐, then the linear functional ๐ โถ ๐0 (๐ธ) โ โ defined by 102 S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ โ (๐ฅ = (๐ฅ๐ ) โ ๐0 (๐ธ)), ๐(๐ฅ) = โ ๐๐ ๐ฅ๐ ๐=1 is bounded and โ โ๐โ = โ (sup|๐๐ |) . ๐=1 โโ โ ๐ ๐ฅ ๐=1 ๐โ๐ธ๐ ๐ ๐ , the ๐โ๐ธ๐ ๐๐ซ๐จ๐จ๐. Since ๐(๐ฅ) = proof is obtained by the proof of Theorem4. Let A = (๐๐๐ ) be an infinite matrix. We consider the conditions โ sup (โ sup |๐๐๐ |) < โ, ๐ ๐=1 (8) ๐โ๐ธ๐ lim sup ๐๐๐ = 0 ๐โโ ๐โ๐ธ๐ โ (๐ = 1, 2, โฏ ), (9) (10) lim (โ sup ๐๐๐ ) = 0, ๐โโ ๐=1 ๐โ๐ธ๐ lim sup ๐๐๐ = ๐๐ for some ๐๐ โ โ (๐ = 1, 2, โฏ ), (11) lim (โ sup ๐๐๐ ) = ๐ for some ๐ โ โ. (12) ๐โโ ๐โ๐ธ๐ โ ๐โโ ๐=1 ๐โ๐ธ๐ ๐๐ก๐๐จ๐ซ๐๐ฆ ๐. We have (๐) (๐0 (๐ธ), ๐โ ) = (๐(๐ธ), ๐โ ) = (๐โ (๐ธ), ๐โ ) and ๐ด โ (๐โ (๐ธ), ๐โ ) if and only if the condition (8) holds; (๐๐) ๐ด โ (๐0 (๐ธ), ๐0 ) if and only if the conditions (8) and (9) hold; (๐๐๐) ๐ด โ (๐(๐ธ), ๐0 ) if and only if the conditions (8), (9) and (10) hold; (๐๐ฃ) ๐ด โ (๐0 (๐ธ), ๐) if and only if the conditions (8) and (11) hold; (๐ฃ) ๐ด โ (๐(๐ธ), ๐) if and only if the conditions (8), (11) and (12) hold. ๐๐ซ๐จ๐จ๐. (๐) First we show that ๐ด โ (๐โ (๐ธ), ๐โ ) if and only if the condition (8) holds. By the condition (8), we have ๐ด๐ โ ๐. So due to Theorem 4, ๐ด๐ โ ๐ฝ (๐โ (๐ธ)) for ๐ = 1, 2, โฏ. Let ๐ฅ โ ๐โ (๐ธ). Similar to the proof of Lemma 2, we deduce that โ |๐ด๐ (๐ฅ)| โค (โ |sup ๐๐๐ |) โ๐ฅโ๐ธ , ๐=1 ๐โ๐ธ๐ for all ๐. This implies that ๐ด๐ฅ โ ๐โ for each ๐ฅ โ ๐โ (๐ธ), so ๐ด โ (๐โ (๐ธ), ๐โ ). Conversely let ๐ด โ (๐โ (๐ธ), ๐โ ). We define the sequence ๐ฅ = (๐ฅ๐ ) by ๐ฅ๐ = sgn ๐๐๐ , where ๐ โ ๐ธ๐ is the first index of ๐ธ๐ such that |๐๐๐ | = sup|๐๐๐ |, and put ๐โ๐ธ๐ the remaining elements zero. It is clear that ๐ฅ โ ๐โ (๐ธ), so ๐ด๐ฅ โ ๐โ and the condition (8) must hold. 103 PROCEEDINGS OF IAM, V.4, N.2, 2015 Now we show that ๐ด โ (๐0 (๐ธ), ๐โ ) if and only if the condition (8) holds. Like the previous part it's clear that ๐ด โ (๐0 (๐ธ), ๐โ ) if the condition (8) holds. Conversely, suppose that ๐ด โ (๐0 (๐ธ), ๐โ ). By our hypothesis that ๐ด๐ฅ โ ๐โ whenever ๐ฅ โ ๐0 (๐ธ), it can be concluded that โโ ๐=1 sup |๐๐๐ | < โ for all ๐; ๐โ๐ธ๐ โฒ Otherwise if โโ ๐=1 (sup |๐๐โฒ ๐ |) = โ, for some positive integer ๐ . There is a ๐โ๐ธ๐ strictly increasing sequence (๐๐ )โ ๐=1 of positive integers such that ๐๐+1 โ (sup|๐๐โฒ ๐ |) > ๐. ๐โ๐ธ๐ ๐=๐๐ +1 sgn ๐ We define the sequence ๐ฅ = (๐ฅ๐ ) by ๐ฅ๐ = ๐ ๐โฒ ๐, where ๐ โ ๐ธ๐ is the first index of ๐ธ๐ such that |๐๐โฒ ๐ | = sup|๐๐โฒ ๐ |, ๐๐ < ๐ โค ๐๐+1 , and put the remaining ๐โ๐ธ๐ elements zero, especially ๐ฅ๐ = 0 for 0 โค ๐ โค ๐1 . It is obvious that ๐ฅ โ ๐0 (๐ธ), and โ โ ๐๐+1 โ ๐๐โฒ ๐ ๐ฅ๐ = โ โ ๐=1 sup |๐ โฒ | ๐โ๐ธ๐ ๐ ๐ ๐ โ > โ 1. ๐=1 ๐=๐๐ +1 ๐=1 This means that โโ ๐=1 ๐๐โฒ ๐ ๐ฅ๐ is divergent, which contradicts our assumption. Hence โโ ๐=1 (sup |๐๐โฒ ๐ |) < โ and ๐ด๐ โ ๐, for all ๐. Due to Lemma 2, the linear ๐โ๐ธ๐ functional ๐๐ : ๐0 (๐ธ) โ โ defined by โ (๐ฅ = (๐ฅ๐ ) โ ๐0 (๐ธ)), ๐๐ (๐ฅ) = โ ๐๐๐ ๐ฅ๐ is bounded and โ๐๐ โ ๐=1 = โโ ๐=1 sup |๐๐โฒ ๐ |, ๐โ๐ธ๐ for all ๐. By applying the Banach- Steinhaus theorem it follows that supโ๐๐ โ < โ, so sup โโ ๐=1|๐๐๐ | < โ and the ๐ ๐ condition (8) must hold. The proof is completed according to the mentioned topics and (๐โ (๐ธ), ๐โ ) โ (๐(๐ธ), ๐โ ) โ (๐0 (๐ธ), ๐โ ). ๐ (๐๐) Suppose that ๐ด โ (๐0 (๐ธ), ๐0 ). We define the sequence ๐ ๐ = (๐๐๐ )โ ๐=1 by ๐๐ = 1, where ๐ โ ๐ธ๐ is the first index of ๐ธ๐ such that |๐๐๐ | = sup|๐๐๐ | for ๐ = 1, 2, โฏ, ๐โ๐ธ๐ and put the remaining elements zero. Obviously ๐ ๐ โ ๐0 (๐ธ) and ๐ด๐ ๐ โ ๐0 , this proves the necessity of the condition (9). The proof of the necessity of the condition (8) is similar to previous part. Conversely, suppose that the conditions (8) and (9) hold. For every ๐ฅ โ ๐0 (๐ธ) 104 S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ โ |๐ด๐ (๐ฅ)| = |โ โ ๐๐๐ ๐ฅ๐ | ๐=1 ๐โ๐ธ๐ ๐ โค โ โ sup |๐๐๐ | | โ ๐ฅ๐ | + โ sup|๐๐๐ | | โ ๐ฅ๐ | ๐=1 ๐โ๐ธ๐ ๐โ๐ธ๐ ๐=๐+1 ๐โ๐ธ๐ ๐โ๐ธ๐ ๐ โ โค โ๐ฅโ๐ธ โ sup|๐๐๐ | + sup | โ ๐ฅ๐ | โ sup |๐๐๐ |. ๐=1 ๐โ๐ธ๐ ๐โฅ๐+1 ๐โ๐ธ๐ ๐=๐+1 ๐โ๐ธ๐ Now take ๐ so large that sup |โ๐โ๐ธ๐ ๐ฅ๐ | < ๐ and then take ๐ so large that ๐โฅ๐+1 โ๐ ๐=1 sup |๐๐๐ | < ๐ (possible since lim sup |๐๐๐ | = 0). We have ๐ด๐ฅ โ ๐0 . ๐โโ ๐โ๐ธ๐ ๐โ๐ธ๐ (๐๐๐) Suppose that ๐ด โ (๐(๐ธ), ๐0 ). Since the sequences ๐ ๐ โ ๐(๐ธ), we deduce that ๐ด๐ ๐ โ ๐0 for ๐ = 1, 2, โฏ. This implies that (sup |๐๐๐ | )โ ๐=1 โ ๐0 , so the condition ๐โ๐ธ๐ (9) holds. Also if the sequence ๐ = (๐๐ ) is defined by ๐๐ = 1 when ๐๐๐ = sup|๐๐๐ | ๐โ๐ธ๐ for some ๐, and we put the remaining elements zero. Then ๐ โ ๐(๐ธ) indicate that โ ๐ด๐ = (โโ ๐=1 sup |๐๐๐ |) ๐โ๐ธ๐ โ ๐0 , so the condition (10) is satisfied. The proof of ๐=1 the necessity of the condition (8) is similar to the part (๐). Conversely, suppose that the conditions (8), (9) and (10) hold. For every ๐ฅ โ ๐(๐ธ) there is a finite number as ๐ such that lim โ๐โ๐ธ๐ ๐ฅ๐ = 0. If the sequence ๐ฆ = (๐ฆ๐ ) defined by ๐ฆ๐ = |๐ธ๐ | for ๐ โ ๐ธ๐ , then โ ๐ ๐โโ โ โ ๐ด๐ (๐ฅ) = โ ๐๐๐ ๐ฅ๐ = โ ๐๐๐ (๐ฅ๐ โ ๐ฆ๐ ) + โ ๐๐๐ ๐ฆ๐ = ๐ ๐ + ๐ก๐ , ๐=1 ๐=1 ๐=1 โ where ๐ ๐ = โโ ๐=1 ๐๐๐ (๐ฅ๐ โ ๐ฆ๐ ) and ๐ก๐ = โ๐=1 ๐๐๐ ๐ฆ๐ . By applying part (๐๐), we deduce that ๐ด โ (๐0 (๐ธ), ๐0 ). So lim ๐ ๐ = 0, since(๐ฅ๐ โ ๐ฆ๐ ) โ ๐0 (๐ธ). On the other ๐โโ hand, lim ๐ก๐ = 0 by the condition (10), since ๐โโ โ โ ๐ก๐ โค โ โ |๐๐๐ ๐ฆ๐ | โค ๐ โ sup|๐๐๐ |. ๐=1 ๐โ๐ธ๐ ๐=1 ๐โ๐ธ๐ Therefore ๐ด โ (๐(๐ธ), ๐0 ). (๐๐ฃ) Let ๐ด โ (๐0 (๐ธ), ๐). Using the sequences ๐ ๐ , the necessity of the condition (11) is immediate. The proof of the necessity of the condition (8) is similar to the part (๐). Conversely, suppose that the conditions (8) and (11) hold. If ๐ต = (๐๐๐ ) be a matrix such that ๐๐๐ = ๐๐๐ โ ๐๐ where ๐ โ ๐ธ๐ , for every ๐, ๐ โ โ, we first prove that ๐ต โ (๐0 (๐ธ), ๐0 ). Let ๐ > 0 and ๐ > 0 be given. Due to (11), there is a 105 PROCEEDINGS OF IAM, V.4, N.2, 2015 positive number ๐๐ such that |sup ๐๐๐ โ ๐๐ | โค ๐๐ , for all ๐ โฅ ๐๐ . Take ๐ = ๐โ๐ธ๐ max ๐๐ , we have 1โค๐โค๐ ๐ ๐ ๐ ๐ โ|๐๐ | โค โ |๐๐ โ sup ๐๐๐ | + โ sup|๐๐๐ | โค ๐ + โ sup|๐๐๐ | , ๐=1 ๐โ๐ธ๐ ๐=1 ๐=1 ๐โ๐ธ๐ ๐=1 ๐โ๐ธ๐ for every ๐ โฅ ๐. If ๐ โ โ, due to the condition (8), it can be concluded that (๐๐ )โ ๐=1 โ ๐1 . Since sup ๐๐๐ = sup ๐๐๐ โ ๐๐ , we have sup ๐๐๐ โ 0 as ๐ โ โ and ๐โ๐ธ๐ ๐โ๐ธ๐ ๐โ๐ธ๐ also sup โโ ๐=1 sup |๐๐๐ | < โ. Hence ๐ต โ (๐0 (๐ธ), ๐0 ), by part (๐๐). This implies that ๐ ๐โ๐ธ๐ ๐ต๐ฅ โ ๐0 for all ๐ฅ โ ๐0 (๐ธ), so โ โ lim โ ๐๐๐ ๐ฅ๐ = โ ๐๐ ( โ ๐ฅ๐ ) . ๐โโ (13) ๐=1 ๐=1 ๐โ๐ธ๐ ๐ฝ โ Since (โ๐โ๐ธ๐ ๐ฅ๐ )๐=1 โ ๐0 when ๐ฅ โ ๐0 (๐ธ) and (๐๐ )โ ๐=1 โ ๐0 , by Corollary 4, we have โโ ๐=1 ๐๐ (โ๐โ๐ธ๐ ๐ฅ๐ ) < โ for all ๐ฅ โ ๐0 (๐ธ). This result and the relation (13) show that ๐ต โ (๐0 (๐ธ), ๐0 ). The proof of the part (๐ฃ) is similar to the part (๐๐๐). It should be noted when ๐ธ๐ = {๐} for ๐ = 1, 2, โฏ, the conditions (8), (9), (10), (11) and (12) can be rewritten as follows, respectively. โ sup (โ|๐๐๐ |) < โ, ๐ ๐=1 lim ๐๐๐ = 0 ๐โโ (๐ = 1, 2, โฏ ), (16) ๐=1 lim ๐๐๐ = ๐๐ for some ๐๐ โ โ (๐ = 1, 2, โฏ ), ๐โโ (17) โ lim (โ ๐๐๐ ) = ๐ for some ๐ โ โ. ๐โโ (15) โ lim (โ ๐๐๐ ) = 0, ๐โโ (14) ๐=1 (18) ๐๐จ๐ซ๐จ๐ฅ๐ฅ๐๐ซ๐ฒ ๐ [๐๐]. We have (๐) (๐0 , ๐โ ) = (๐, ๐โ ) = (๐โ , ๐โ ) and ๐ด โ (๐โ , ๐โ ) if and only if the condition (14) holds; (๐๐) ๐ด โ (๐0 , ๐0 ) if and only if the conditions (14) and (15) hold ; (๐๐๐) ๐ด โ (๐, ๐0 ) if and only if the conditions (14), (15) and (16) hold; (๐๐ฃ) ๐ด โ (๐0 , ๐) if and only if the conditions (14) and (17) hold; (๐ฃ) ๐ด โ (๐, ๐) if and only if the conditions (14), (17) and (18) hold. ๐๐๐๐๐ซ๐๐ง๐๐๐ฌ 106 S. ERFANMANESH, D. FOROUTANNIA: SOME NEW SEMI-NORMED SEQUENCE โฆ 1. Altay B., Baลar F., On the paranormed Riesz sequence spaces of nonabsolute type, Southeast Asian Bull. Math., Vol.26, No.5, 2002, pp.701-715. 2. Altay B., Baลar F., Some Euler sequence spaces of non-absolute type, Ukr. Math. J., Vol.57, No.1, 2005, pp.1-17. 3. Altay B., Baลar F., Some paranormed Riesz sequence spaces of nonabsolute type, Southeast Asian Bull. Math., Vol.30, No.5, 2006, pp.591608. 4. Altay B., Baลar F., The fine spectrum and the matrix domain of the difference operator โ on the sequence space ๐๐ , (0 < ๐ < 1), Commun. Math. Anal. Vol.2, No.2, 2007, pp.1-11. 5. Altay B., Baลar F., Malkowsky E., Matrix transformations on some sequence spaces related to strong Cesàro summability and boundedness, Appl. Math. Comput. Vol.211, No.2, 2009, pp.255-264. 6. Altay B., Baลar F., M. Mursaleen, On the Euler sequence spaces which include the spaces ๐๐ and ๐โ , Inform. Sci. Vol.176, 2006, pp.1450-1462. 7. Baลar F., Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, ฤฐstanbul, 2012. 8. Baลar F., Altay B., On the space of sequences of ๐-bounded variation and related matrix mappings, Ukr. Math. J., Vol.55, No.1, 2003, pp.136-147. 9. Baลar F., Altay B., Mursaleen M., Some generalizations of the space ๐๐ฃ๐ of ๐- bounded variation sequences, Nonlinear Anal., Vol.68, No.2, 2008, pp.273-287. 10. Foroutannia D., A new semi-normed sequence space of non-absolute type and matrix transformation, Turk. J. Math., Vol.39, 2015, pp.830-841. 11. Malkowsky E., Rakoฤeviฤ V., An Introductionm into the Theory of Sequence Spaces and Measures of Noncompactness, Zbornik Radova, Matematiฤki Institut SANU, Belgrade, Vol.9, No.17, 2000, pp.143-243. 12. Mursaleen M., Baแนฃar F., Altay B., On the Euler sequence spaces which include the spaces ๐๐ and ๐โ ๐ผ๐ผ, Nonlinear Anal., Vol.65, 2006, p.707-717. 13. Mursaleen M., Noman A K., On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, Vol.52, No.3-4, 2010, pp.603-617. 14. Ng P.N., Lee P.Y., Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., Vol.20, No.2, 1978, pp.429-433. 15. ลengönül M., Basar F., Some new Cesàro sequence spaces of non-absolute type which include the spaces ๐0 and ๐, Soochow J. Math., Vol.31, No.1, 2005, pp.107-119. 16. Wang C.S., On Nörlund sequence spaces, Tamkang J. Math., Vol.9, 1978, pp.269-274. 17. Yeลilkayagil M., Baลar F., On the paranormed Nörlund sequence space of non- absolute type, Abstr. Appl. Anal., Article ID 858704, 2014, 9 p. 107 PROCEEDINGS OF IAM, V.4, N.2, 2015 Bษzi yeni qeyri-mütlษq tip yarฤฑm normallaลmฤฑล ardฤฑcฤฑllฤฑq fษzalarฤฑ vษ matrix çevrilmษlษri S. Erfanmanesh, D. Foroutannia XÜLASฦ Bu iลin mษqsษdi ardฤฑcฤฑllฤฑq fษzalarฤฑnฤฑ daxil etmษkdir. Biz bu fษzalarฤฑn bษzi topoloji xassษlษri araลdฤฑrฤฑrฤฑq vษ hษmçinin onlarฤฑn arasฤฑnda daxilolma münasibษtlษri qururuq. Bundan ษlavษ, biz bu fษzalarฤฑn ฮฑ- vษ ฮฒ-duallarฤฑnฤฑ hesablayฤฑr vษ sonsuz matrislษrin siniflษrini xarakterizษ edirik. Açar sözlษr: yarฤฑmnormallaลmฤฑล ardฤฑcฤฑllฤฑq fษzalarฤฑ, matris oblastฤฑ, ฮฑ- vษ ฮฒ-duallarฤฑ, matris çevirmษlษr. ะะตะบะพัะพััะต ะฝะพะฒัะต ะฝะตะฐะฑัะพะปัััะฝะพะณะพ ัะธะฟะฐ ะฟะพะปั-ะฝะพัะผะธัะพะฒะฐะฝะฝัะต ะฟัะพัััะฐะฝััะฒะฐ ะฟะพัะปะตะดะพะฒะฐัะตะปัะฝะพััะตะน ะธ ะผะฐััะธัะฝัะต ะฟัะตะพะฑัะฐะทะพะฒะฐะฝะธั ะก. ะััะฐะฝะผะฐะฝะตั, ะ. ะคะพัะพััะฐะฝะฝะธะฐ ะ ะะะฎะะ ะฆะตะปั ะดะฐะฝะฝะพะณะพ ะธััะปะตะดะพะฒะฐะฝะธั ะทะฐะบะปััะฐะตััั ะฒ ะฒะฒะตะดะตะฝะธะธ ะฟัะพัััะฐะฝััะฒ ะฟะพัะปะตะดะพะฒะฐัะตะปัะฝะพััะตะน. ะั ะธััะปะตะดัะตะผ ะฝะตะบะพัะพััะต ัะพะฟะพะปะพะณะธัะตัะบะธะต ัะฒะพะนััะฒะฐ ััะธั ะฟัะพัััะฐะฝััะฒ, ะฐ ัะฐะบะถะต ัััะฐะฝะพะฒะธัั ะฝะตะบะพัะพััะต ะพัะฝะพัะตะฝะธะน ะฒะบะปััะตะฝะธะน ะผะตะถะดั ะฝะธะผะธ. ะัะพะผะต ัะพะณะพ, ะผั ะฒััะธัะปัะตะผ ฮฑ- ะธ ะฑะตัะฐ-ะดะฒะพะนััะฒะตะฝะฝัะต ััะธั ะฟัะพัััะฐะฝััะฒ ะธ ะพั ะฐัะฐะบัะตัะธะทัะตะผ ะบะปะฐััั ะฑะตัะบะพะฝะตัะฝัั ะผะฐััะธั. ะะปััะตะฒัะต ัะปะพะฒะฐ: ะฟะพะปั-ะฝะพัะผะธัะพะฒะฐะฝะฝัะต ะฟัะพัััะฐะฝััะฒะฐ ะฟะพัะปะตะดะพะฒะฐัะตะปัะฝะพััะตะน, ะผะฐััะธัะฝัะต ะดะพะผะตะฝั, ฮฑ- ะธ ะฑะตัะฐ-ัะพะฟััะถะตะฝะฝัะต, ะผะฐััะธัะฝัะต ะฟัะตะพะฑัะฐะทะพะฒะฐะฝะธั. 108
© Copyright 2026 Paperzz