Legendre Polynomials Recurrence Relation pk 1 ( x) p0 ( x) 1 (2k 1) k xpk ( x) pk 1 ( x), (k 1) k 1 the first several Legendre polynomials p1 ( x) x k 1,2,3,..... Legendre Polynomials the first several Legendre polynomials Properties Legendre’s DE Legendre’s DE (1 x 2 ) y' '2 xy'n(n 1) y 0 Legendre’s DE solution n0 (1 x 2 ) y' '2 xy' 0 p0 ( x) n 1 (1 x 2 ) y' '2 xy'2 y 0 p1 ( x) n2 (1 x 2 ) y' '2 xy'6 y 0 p2 ( x) n3 (1 x 2 ) y' '2 xy'12 y 0 p3 ( x) (1 x 2 ) y' '2 xy'n(n 1) y 0 pn (x) Legendre Polynomials Legendre’s DE Legendre polynomials Norm Square orthogonal set Pn ( x)n0 is orthogonal with respect to the weight function p(x) = 1 on [ -1, l]. The orthogonality relation expanding a function Fourier series, Fourier cosine series, and Fourier sine series are three ways of expanding a function in terms of an orthogonal set of functions Fourier-Legendre Series Fourier-Legendre Series The Fourier-Legendre series of a function defined on the interval (-1, 1) is given by f ( x) cn Pn ( x) n 0 cn 2 n 1 1 2 1 f ( x) Pn ( x)dx Example Write out the first few nonzero terms in the Fourier-Legendre expansion of Fourier-Legendre Series Fourier-Legendre Series The Fourier-Legendre series of a function defined on the interval (-1, 1) is given by f ( x) cn Pn ( x) n 0 cn 2 n 1 1 2 1 f ( x) Pn ( x)dx Example Write out the first few nonzero terms in the Fourier-Legendre expansion of Fourier-Legendre Series Fourier-Legendre Series The Fourier-Legendre series of a function defined on the interval (-1, 1) is given by f ( x) cn Pn ( x) n 0 cn 2 n 1 1 2 1 f ( x) Pn ( x)dx Alternative Form of Series x cos f ( x) f (cos ) Cn Pn (cos ) n 0 where 2n 1 Cn f (cos ) Pn (cos ) sin d 2 0
© Copyright 2026 Paperzz