CAUCHY CONDENSATION PRINCIPLE JIA-MING (FRANK) LIOU Let (an ) be a sequence of real numbers such that 0 ≤ an+1 ≤ an for all n ≥ 1, i.e. (an ) is a nonnegative, non increasing sequence of real numbers. Lemma 0.1. Suppose that 2k ≤ n < 2k+1 . Then a1 + k n k j=1 i=1 j=1 X X 1X j 2 a2j ≤ ai ≤ a1 + 2j a2j . 2 Proof. Since (an ) is nonincreasing, we observe that a3 + a4 ≥ 2a4 , a5 + a6 + a7 + a8 ≥ 4a8 and a2k−1 +1 + a2k−1 +2 + · · · + a2k ≥ 2k−1 a2k . Since 2k ≤ n < 2k+1 , and ai ≥ 0 for all i, we know n X ai = a1 + a2 + a3 + a4 + · · · + a2k−1 +1 + · · · + a2k + a2k +1 + · · · + an i=1 ≥ a1 + a2 + a3 + a4 + · · · + a2k−1 +1 + · · · + a2k = a1 + a2 + (a3 + a4 ) + · · · + (a2k−1 +1 + · · · + a2k ) ≥ a1 + a2 + 2a4 + · · · + 2k−1 a2k−1 1 = a1 + (2a2 + 4a4 + · · · + 2k a2k ) 2 k 1X j = a1 + 2 a2j . 2 j=1 Similarly, we observe that by the fact that (an ) is nonincreasing, a2 + a3 ≤ 2a2 , a4 + a5 + a6 + a7 ≤ 4a4 and a2k + a2k +1 + · · · + a2k+1 −1 < 2k a2k . Since ai ≥ 0, we know that n X ai = a1 + · · · + a2k−1 + · · · + an i=1 ≤ a1 + a2 + a3 + · · · + a2k + a2k +1 + · · · + an + an+1 + · · · + a2k+1 −1 = a1 + (a2 + a3 ) + · · · + (a2k + a2k +1 + · · · + a2k+1 −1 ) ≤ a1 + 2a2 + · · · + 2k a2k = a1 + k X 2j a2j . j=1 Hence we proved the inequality. 1 2 JIA-MING (FRANK) LIOU Corollary 0.1. (Cauchy condensation theorem) be a nonnegative non increasing P Let (an ) P ∞ n sequence of real numbers. Then either both ∞ a and n=1 n n=1 2 a2n converge or diverge. Proof. The proof follows from the above inequality. ( The proof is similar to the comparison test.) Theorem 0.1. The series ∞ X 1 is convergent if p > 1 and divergent if p ≤ 1. np n=1 Proof. Let an = 1/np . Then n 2 a2n Hence 1 1 = 2 · n p = np−n = (2 ) 2 n ∞ X n=1 2n a2n = 1 2p−1 n . n ∞ X 1 2p−1 n=1 is a geometric series with ratio 1/2p−1 . If p > 1, P p − 1 > 0. In this case 2p−1 > 1 and p−1 )n is convergent. If p < 1, p−1 thus 1/2 < 1. We know that theP infinite series ∞ n=1 (1/2 ∞ 1/2p−1P> 1, then the infinite series n=1 (1/2p−1 )n is divergent. If p = 1, 1/2p−1 = 1. We n know ∞ n=1 1 is divergent. Similarly, you can determine when the following series is convergent using the Cauchy condensation theorem ∞ X 1 , n(ln n)p n=2 1 n where ln n = loge n, and e = lim 1 + . n→∞ n
© Copyright 2026 Paperzz