The Lifting Scheme:
a custom-design construction of
biorthogonal wavelets
Sweldens95, Sweldens 98
(appeared in SIAM Journal on
Mathematical Analysis)
Relations of Biorthogonal Filters
~
( n)
h ( m 2 n ) h ( m)
2
m
( n)
~
g (m 2n) g (m)
2
m
h(m 2n) g~(m) 0
m
~
h ( m 2 n ) g ( m) 0
m
Biorthogonal Scaling Functions
and Wavelets
~
Dual
(t ), (t k ) (k )
Dual
(t ),~(t k ) (k )
~
wavelet dual scaling fns (t ), (t n) 0
dual wavelet scaling fns ~(t ), (t n) 0
Wavelet Transform
(in operator notation)
transpose
~
j H j j 1
~
j G j j 1
Filter operators are matrices
encoded with filter coefficients
with proper dimensions
j 1 H j G j
*
j
*
j
Note that up/down-sampling is
absorbed into the filter operators
Operator Notation
Relations on Filter Operators
Biorthogonality
Write in matrix form:
~ * ~ *
H j H j G jG j 1
~ * ~ *
H jG j G j H j 0
~
H j *
~ Hj
G j
H
Exact Reconstruction
* ~
*~
H j H j G jG j 1
~
~
j 1 H *j H j j 1 G*j G j j 1
~
~
H *j H j G *j G j j 1
*
j
1 0
G
0
1
~
* Hj
Gj ~ 1
G j
*
j
Theorem 8 (Lifting)
• Take an initial set of biorthogonal filter operators
H
old
j
~ old old ~ old
, H j ,Gj ,Gj
• A new set of biorthogonal filter operators can be
found as H j , H~ j , G j , G~ j
~
• Scaling functions and H and G untouched
Hj H
~ old
~
~ old
H j H j S jG j
old
j
*
old
G j G old
S
H
j
j
j
~
~ old
Gj Gj
~
~ old
H j 1 S H j
~
~ old
G j 0 1 G j
old
H
H
j 1
0 j
old
G *
j S 1 G j
Proof of Biorthogonality
H
~
* Hj
*
old*
G j ~ H old
G
j
j
G
j
*
j
H
~
H j *
1
*
~ H j Gj
G j
0
1
0
old*
j
G
old*
j
1
0
1
0
~ old
S 1 S H j
~ old
1 0 1 G j
~ old
0 H j
~ old 1
1 G j
~ old
S H j old*
S
old* 1
Gj
~ old H j
1 G j
0
1
S 1 0 1 S 1 0
1 0 1 0 1 0 1
Choice of S
• Choose S to increase the number of
vanishing moments of the wavelets
• Or, choose S so that the wavelet resembles a
particular shape
– This has important applications in automated
target recognition and medical imaging
Same thing expressed
in frequency domain
Corollary 6.
• Take an initial set of finite biorthogonal
filters h, h~ 0 , g 0 , g~
• Then a new set of finite biorthogonal filters
can be found as h, h~, g , g~
~
~0
h (w ) h (w ) g~ (w ) s (2w )
g (w ) g 0 (w ) h(w ) s(2w )
• where s(w) is a trigonometric polynomial
Details
Theorem 7 (Lifting scheme)
• Take an initial set of biorthogonal scaling
functions and wavelets , ~ 0 , 0 ,~
• Then a new set , ,~, ,~ which is formally
biorthognal can be found as
Same thing expressed
in indexed notation
• where the coefficients sk can be freely chosen.
Dual Lifting
~
• Now leave dual scaling function and H and
G filters untouched
Hj H
~
~ old
Hj Hj
old
j
~ old
S jG j
Gj G
~
~ old ~ * ~ old
Gj Gj S j H j
old
j
Fast Lifted Wavelet Transform
• Basic Idea: never explicitly form the new filters, but only
work with the old filter, which can be trivial, and the S
filter.
Before Lifting
~ old
j H j j 1
~ old
j G j j 1
Forward Transform
~ old
~
~ old
j H j j 1 H j S j G j j 1
~ old
H j j 1 S j j
Inverse Transform
j 1 H *j j G *j j
H
old *
j
j G
H
old *
j
j
old *
j
S jH
S j j G
old *
j
j
old *
j
j
Examples
Interpolating Wavelet Transform
Biorthogonal Haar Transform
The Lazy Wavelet
• Subsampling operators E (even) and D (odd)
E *
D E
E
H
*
lazy
j
1 0
D
0
1
* E
D 1
D
*
~ lazy
~ lazy
lazy
H j E and G j G j D
Interpolating Scaling Functions
and Wavelets
• Interpolating filter: always pass through the
data points
• Can always take Dirac function as a formal
dual
~
H int
j E S jD
~ int
Hj E
G int
j D
~ int
~*
Gj D S j E
Theorem 15
• The set of filters resulting from
interpolating scaling functions, and Diracs
as their formal dual, can be seen as a dual
lifting of the Lazy wavelet.
~
H j H E S jD
~*
~
~ int ~ ~ int
H j H j S j G j (1 S j S j ) E S j D
int
*
int
*
*~
G j G j S j H j S j E (1 S j S j ) D
~
~ int
~*
Gj Gj D S j E
int
j
Algorithm of Interpolating
Wavelet Transform
(indexed form)
Example: Improved Haar
• Increase vanishing moments of the wavelets
from 1 to 2
• We have
~0
h (w ) h(w ) 12 12 e iw
0
~
1
1 iw
g (w ) g (w ) e
2
2
After lifting : g (w ) g 0 (w ) h(w ) s(2w )
Details
Verify Biorthogonality
~
( n)
h
(
m
2
n
)
h
(
m
)
2
m
( n)
~
g (m 2n) g (m)
2
m
h(m 2n) g~(m) 0
m
~
h ( m 2 n ) g ( m) 0
m
~0
hn hn { 12 12 }n 0,1
g~n g n0 { 21 12 }n 0,1
Improved Haar (cont)
0th moment van ishes : g (0) 0
g 0 (0) h(0) s(0)
1
2
12 12 s(0) 0
s(0) 0
1st moment van ishes : g ' (0) 0
g ' (w ) g 0 ' (w ) h' (w ) s (2w ) 2h(w ) s ' (2w )
g 0 ' (w ) 2i e iw
g ' (0) g 0 ' (0) h' (0) s (0) 2h(0) s ' (0)
2i 0 2( 12 12 ) s ' (0)
2i 2 s ' (0) 0
s ' (0) 4i
Choose : s(w )
i
4
sin w
1 e iw e iw
4
2
e iw e iw
8
ei 2w e i 2w
ei 2w e i 2w
s(2w )
and s(2w )
8
8
g (w ) g 0 (w ) h(w ) s(2w )
g(0) = g’(0)
=0
i 2w
i 2w
e
e
21 12 e iw 12 12 e iw
8
161 ei 2w 161 eiw 12 12 e iw 161 e i 2w 161 e i 3w
~
~0
h (w ) h (w ) g~ (w ) s (2w )
i 2w
i 2w
e
e
12 12 e iw -21 12 e iw
8
161 ei 2w 161 eiw 12 12 e iw 161 e i 2w 161 ei 3w
Details
Verify Biorthogonality
~
( n)
h
(
m
2
n
)
h
(
m
)
2
m
~(m) 0
h
(
m
2
n
)
g
m
~
h ( m 2 n ) g ( m) 0
( n)
~
g (m 2n) g (m)
2
m
hn { 12 12 }n 0,1
~
1
1
1
hn 16
16
2
g n 161
g~n { 21
1
16
1
2
1
2 n 0 ,1
}
m
1
2
1
16
1
2
1
16
1
16 n 2 , 1, 0 ,1, 2 , 3
1
16 n 2 , 1, 0 ,1, 2 , 3
© Copyright 2026 Paperzz