Some remarks on the girth functions of convex bodies Paolo Gronchi Dipartimento di Matematica e Applicazioni per l’Architettura Università degli Studi di Firenze (joint work with Stefano Campi) Cortona 2007 1 What is the girth function? u u K n 1 ggKK(u) width(K|u (K|u) /) (u)==mean perimeter 2 Cortona 2007 2 First property of the girth function gK (u) is a support function (when extended homogeneously) unit segment ball [u,-u] n g K u V ( K , B, B , , B , u ) 2 n2 1 1 hu z dS1 K ; z u, z dS1 K ; z 2 S n1 2 S n1 area measure of order 1 Cortona 2007 convex 3 gK (u) is the support function of Π1K , the projection body of order 1 of K 1 h 1K (u ) u, z dS1 K ; z 2 S n1 Π1K is a zonoid Cortona 2007 4 Not all zonoids are projection bodies of order 1. All Minkowski h K (usums ) 0of disks are 1 projections bodies of order 1. K = segment parallel to u Π1K = disk in u Cortona 2007 5 This suggests that hΠ K (u) is not independent of 1 its values on u. In dimension 3, such an ellipsoid cannot be the sum of disks. In higher dimensions n for any K, It is easy to prove that, 1 h 1K (ei ) h 1 K ( e j ) h 1K (e1) h n1K1(e2 ) h 1K (e3 ) j 1 Cortona 2007 6 This suggests that hΠ K (u) is not independent of 1 its values on u. Integrating last inequality we find 1 h K u 4 u 1 h K z dz 1 S2 Cortona 2007 7 h 1K (e1) h 1K (e2 ) h 1K (e3 ) is equivalent to the existence of a box P such that h 1P(ei ) h 1K (ei ) , i 1,2,3. Cortona 2007 8 The existence of a cylinder C such that u h 1C (u) h 1K (u) , h 1C (v) h 1K (v) , v u , is equivalent to the statements 1 h 1K u h 1K z dz 4 u S 2 negative number! 1 h 1K v h 1K u h 1K z dz 2 4 u S 2 as a function of vu is a support function. Cortona 2007 9 h 1K u1 h 1K u2 h 1K u1 u2 0 42 u1 u2 u1 u2 hK u1 u2 u1 u2 hK u1 u2 hK u1 u2 2 Cortona 2007 10 n V K , B , , B, u V K , B , , B, u 1 2 2 V K , B,, B, u1 u2 V K , B,, B, u1 u2 V K , B,, B, u1 u2 V K , B,, B, z , u1 Bu2 VzKdz, B,, B, z , u1 u2 dz S n1 0 S n1 K , B,, B, u1 u2 , u1 u2 V 0 K u1, u2 Cortona 2007 11
© Copyright 2026 Paperzz