JAP22X3 Strictly Confidential: (For Internal and Restricted Use Only) MARKING SCHEME â´·¤çÜÌ ÂÚUèÿææ - I, 2013 SUMMATIVE ASSESSMENT – I, 2013 »ç‡æÌ / MATHEMATICS ·¤ÿææ - X / Class – X General Instructions : 1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity. The answers given in the marking scheme are the best suggested answers. 2. not Marking be done as per the instructions provided in the marking scheme. (It should be done according to one’s own interpretation or any other consideration). 3. Alternative methods be accepted. Proportional marks be awarded. 4. first If a question is attempted twice and the candidate has not crossed any answer, only attempt be evaluated and ‘EXTRA’ written with second attempt. 5. In case where no answers are given or answers are found wrong in this Marking Scheme, correct answers may be found and used for valuation purpose. ¹‡ÇU-¥ / SECTION – A ÂýàÙ â´•Øæ 1 âð 8 Ì·¤ ÂýˆØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ Question numbers 1 to 8 carry 1 mark each. 1 (b) 1 2 (d) 1 3 (d) 1 Page 1 of 12 4 (c) 5 (b) 6 (A) 7 (D) greater than one (C) X1 8 1 1 3 2 cm 1 n1 1 2 1 …………….1 1 ¹‡ÇU-Õ / SECTION – B ÂýàÙ â´•Øæ 9 âð 14 Ì·¤ ÂýˆØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·¤æ ãñÐ Question numbers 9 to 14 carry 2 marks each. 9 85517 119717 LCM5717 595 Page 2 of 12 2 10 p(x)x34x23x18 3 2 2 p(2)2 4(2) 3(2)18 816618 0 2 is zero of the given polynomial x 1 11 2 3 2x 1 3 5 2 x2 1 3x 1 4 3x 1 6 2 The polynomial is 2x25 3 x6 12 DE AC BE BD 5 _____ (1) EC DA DF AE BF BD 5 _____ (2) FE DA from (1) & (2) BE BF 5 EC FE EC FE 5 BE BF 2 13 C90 (angle in a semi circle) opp. 2 tanA 5 3 adj. opp. 3 tanB 5 2 adj. 2 3 tanA. tanB . 1 3 2 2 14 Page 3 of 12 f c.f 2 010 3 3 1020 4 7 2030 2 9 3040 5 14 4050 6 20 Median30 Median class 30 – 40 102 9 3 10 5 ………… ½ ……………………1 30232 …………………… ½ ¹‡ÇU-â / SECTION – C ÂýàÙ â´•Øæ 15 âð 24 Ì·¤ ÂýˆØð·¤ ÂýàÙ 3 ¥´·¤ ·¤æ ãñ´Ð Question numbers 15 to 24 carry 3 marks each. 15 • By Euclid’s division lemma, correct value of ‘b’8 and 3 ‘r’0, 1, 2, 3, 4, 5, 6, 7 • for all forms ‘a’ and rejecting which are not even with correct reason and thus given forms of even integer. 2 x2 7 16 2 3 2 x 2 2x1 1 2x 2 11x 1 16 x2 4 2 x 3 2 4x 2 1 2 x 2 2 1 2 7x 21 14x2 4 2 7 x 2 1 14x 2 7 2 2 1 3 q(x)2x7 r(x)3 to obtain the quotient and remainder g(x) q(x)r(x) (x22x1) (2x7)3 2x34x22x7x214x73 2x311x216x4P(x) Hence the division algorithm is verified Page 4 of 12 3 17 3 Graph of each line Since the lines are co-incident the system of linear equations are consistent with infinite solutions 18 For infinite number of solutions a1 b c 5 1 5 1 a2 b2 c2 k 4 k2 4 5 5 16 k k 3 2 4kk 4k k0, 8 k264 k8 but k 8 19 3 figure Page 5 of 12 Proof : ABCD is a gmAC In 's ABE and CFB ABECFB (alternate angles) AC ABE ~ CFB (AA similarity) AB AE 5 CF BC ABBC AECF (property) 20 3 Given, to prove Construction : AEBC and DFBC Proof : In AOE and DOF AOEDOF (Vertically Opp. s) AEODFO 90 (const.) AOE ~ DOF (AA) AO AE 5 --------- (1) DO DF 1 3 BC 3 AE ar DABC AE 2 5 5 1 ar DBCD DF 3 BC 3 DF 2 AO from (1) 5 DO 21 3 1 sin (AB) 2 2 sin(AB)sin60 sin (AB)sin 30 A 1 B 5 608 eqn. (1) sin(AB) A 2 B 5 308 2A eqn. (2) 5 908 5 9082 5 458 Applying A45 in ---------- (1) AB60 A Page 6 of 12 3 45B60 B604515 1 2 tanu1 5 tanu 22 5 tan 2 u1 5 tan 2 u1 23 1 2 tan u 1 tan 2 u 2 3 2 1 2 tanu3 1 5 2 tanu 5 22 25 0 C.I f x v5 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 Total 5 11 19 30 15 80 05 15 25 35 45 2 1 0 1 2 x ah S f i xi S fi xi 2 a h fv 3 10 11 0 30 30 39 39 3 10 80 254.875 29.875 5 25 1 24 Since 340 is mode 300 – 400 is modal class f1 2 f0 Mode l 1 3 h 2 f1 2 f0 2 f 2 20 2 x 340 5 300 1 3 100 40 2 x 2 14 2 20 2 x 405 3 100 26 2 x 522x 1005x Page 7 of 12 3 3x 48 x 16 ¹‡ÇU-Î / SECTION – D ÂýàÙ â´•Øæ 25 âð 34 Ì·¤ ÂýˆØð·¤ ÂýàÙ 4 ¥´·¤æð ·¤æ ãñÐ Question numbers 25 to 34 carry 4 marks each. 25 Time required by 3 children to complete a card together LCM of 10, 16, 20 2222580 These children possess following values : Caring, respect for elders, creative and helpful 26 4 4 Solution x3 y5 27 ABBCAC 3x12x3y5 Page 8 of 12 4 x3y4 ---------- (1) 3x1x9y6 2x9y5 ---------- (2) Multiply (1) by 3 3 x 2 9 y 5 12 2 x2 9 y 5 5 2 1 2 x 5 7 y1 AB22 cm Side of 22 cm 28 4 In ABC 2 2 2 AC AB BC -----------(1) In BAD 2 2 2 AD AB BD -----------(2) (1) - (2) AC2AD2BC2BD2 3 BC2 4 3 AC2AD2 (AC2AB2) 4 2 AC 4AD23AB2 29 Construction : Join AC 2 BC ACCD Page 9 of 12 4 BC AC 5 (i) CD BC In D ABC and D BDC AC BC 5 BC CD and C 5 C (common) D ABC ~ D BDC AB BC 5 (ii) BD CD from (i) and (ii), we get AC AB 5 BC BD BD 5 BC 30 LHS 5 [ Q AB 5 AC] sec2 u 2 tan 2 u 1 secu 2 tanu 1 1 secu 1 tanu 4 secu 1 tanu secu 2 tanu 1 secu 2 tanu 1 1 secu 1 tanu 5 secu 2 tanu secu 1 tanu 1 1 1 1 secu 1 tanu sinu 1 2 sinu 1 RHS 5 2 5 cosu cosu cosu 1 2 2 1 4 1 4 4 1 2 3 2 1 2 2 2 31 1 1 1 5 4 1 2 3 2 1 16 16 2 1 3 5 1 2 2 2 Page 10 of 12 4 32 2 2 We have cos 1sin 4 c2 5 12 c2 1 d2 d So, cosu5 c2 1 d2 sinu cosu Then tanu5 5 c d 33 Classes 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 50 – 60 f Cum. freq. 5 5 p 5p 20 25p 15 40p q 40pq 5 45pq n60 45pq60 pq15 n 30 2 Median class 20 – 30 l20, h10, f20, Cf5p n2 Cf Medianl 2 h f 25 2 p 28.520 1725p 2 p8 pq15 q15p7 q7 4 34 Here h10 4 Page 11 of 12 xi 2 75 fi fi xi Class mark ui 5 10 25 28 45 55 65 3 2 1 30 50 28 12 75 A 0 0 10 15 85 95 1 2 10 30 f100 x 5 A1 fiui zfiui68 S f i ui 68 3 10 3 h 5 75 2 S fi 100 10 x 5 68.2 ***** Page 12 of 12
© Copyright 2026 Paperzz