THEORETICAL LIMITS FOR SIGNAL REFLECTIONS DUE TO INDUCTANCE FOR ON-CHIP INTERCONNECTIONS F. Huret, E. Paleczny, P. Kennis Institut d ’Electronique et de Microélectronique du Nord, UMR CNRS 9929 D. Deschacht, G. Servel Laboratoire d’Informatique, de Robotique et de Microélectronique, UMR CNRS 5506. SLIP ’2000, San Diego, April 8-9th. OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Comparison with previous work Conclusion INTRODUCTION 10 years of evolution 1989 0.7µm, 2 metal layers Up to 100,000 devices on a chip Typical CPU frequency 50MHz IC 1999 0.25µm, 6 metal Up to 10,000,000 devices on a chip Typical CPU frequency 400 MHz INTRODUCTION With the continued scaling down of technology, increased die aera : * cross-section decreases * interconnect length increases interconnections : blocking point of performances improvement Introduction of new materials such as Cu inclusion of inductance ? INTRODUCTION Interconnect delay dominates gate delay in current deep submicronic VLSI circuits. More accurate interconnect models and signal propagation characterization are required. With faster on-chip rise times inductance is becoming more important. Electromagnetic analysis is needed. THEORETICAL LIMITS Short lines : Static hypothesis l g 30 2 1 30 Long lines : A e l Traveling wave Ae l l ln x A x THEORETICAL LIMITS Range of lengths for inductance inclusion : ln x l 15 We have to determine : attenuation factor : phase factor x : attenuation coefficient ELECTROMAGNETIC ANALYSIS Methodology INTERCONNECTION = WAVEGUIDE Full wave analysis Finite Element Method Attenuation factor dB/cm ou Np/cm Phase factor rad/cm Zc Characteristic impedance Propagation parameters of the waveguide ELECTROMAGNETIC ANALYSIS Methodology Wire length L i1 a v1 i2 Zc v2 cosh( L ) v1 sinh( L ) i1 Zc Z c sinh( L ) v2 cosh( L ) i 2 j i1 i2 Z b v1 i1 c v1 v2 v1 1 i1 0 Z v 2 1 i2 v2 v1 1 i1 Y 0 v 2 1 i 2 i2 Y Definitons of the voltage-current matrices used in this analysis ELECTROMAGNETIC ANALYSIS Methodology Vin(t) (freq) (freq) Zc(freq) + Vout(t) Matched Load Impedances F.F.T. Vin(freq) F.F.T.-1 Chain Matrix * F.F.T = Fast Fourier Transform Vout(freq) ELECTROMAGNETIC ANALYSIS Application Interconnection geometry and environment passivation passivation 0.8 mm 2.4 mm 2.4 mm M5 M5 M5 SiO2 7.3 mm 0.8 mm SiO2 7.3 mm Si bulk 7Wcm 500 mm 1st configuration 2nd configuration Metal 5 : W=1 mm T= 1 mm 3rd configuration Aluminium or Copper ELECTROMAGNETIC ANALYSIS Application Frequency behavior of the attenuation factors 3 Al 2 .5 (N p/cm) 2 1 .5 1 1 s t c o n fig u ra t io n 2 n d c o n fig u ra t io n 0 .5 3 rd c o n fig u ra t io n 0 0 5 10 15 20 F r e q u e n c y (G H Z) 25 30 2 Cu 1 .8 1 .6 (N p/cm) 1 .4 1 .2 1 0 .8 0 .6 1 s t c o n fig u ra t io n 0 .4 2 n d c o n fig u ra t io n 0 .2 3 rd c o n fig u ra t io n 0 0 5 10 15 20 F r e q u e n c y (G H Z) 25 30 ELECTROMAGNETIC ANALYSIS Application Frequency behavior of the phase factors 20 Al 18 16 (rad/cm) 14 12 10 8 6 1 s t c o n fig u ra t io n 4 2 n d c o n fig u ra t io n 2 3 rd c o n fig u ra t io n 0 0 5 10 15 20 F r e q u e n c y (G H Z) 25 30 20 Cu 18 16 (rad/cm) 14 12 10 8 6 1 s t c o n fig u ra t io n 4 2 n d c o n fig u ra t io n 2 3 rd c o n fig u ra t io n 0 0 5 10 15 20 F r e q u e n c y (G H Z) 25 30 ELECTROMAGNETIC ANALYSIS Application Attenuation determination A e l Traveling wave 40 25 Al 1 s t c o n fig u ra t io n 35 2 n d c o n fig u ra t io n 30 2 n d c o n fig u ra t io n 20 3 rd c o n fig u ra t io n 25 20 15 10 Cu 1 s t c o n fig u ra t io n Atte nuation v alue Atte nuation v alue A x 3 rd c o n fig u ra t io n 15 10 5 5 0 0 0 5 10 L e n g th (mm) 15 20 0 5 10 L e n g th (mm) 15 Attenuation value of the wave, for 10 GHz, versus interconnection length 20 ELECTROMAGNETIC ANALYSIS Application Theoretical limits : ln x l 15 We have determined To determine x : comparison output signal between RC and RLCG models OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Conclusion LIMIT BETWEEN RLC AND RC MODELS The RLCG line model deduced from the electromagnetic analysis : j. ( R j.L. ).(G j.C. ) R j.L. G j.C. 1800 C (fF/cm) Zc 1600 1st configuration 1400 2nd configuration 1200 3rd configuration 1000 800 600 400 200 0 0 5 10 15 20 25 30 Frequency (GHZ) 35 40 45 LIMIT BETWEEN RLC AND RC MODELS These calculated values are used to build the distributed RC model Rline n Cline 2.n Cline n n cells COMPARISON BETWEEN : HSPICE simulations : RC model Electromagnetic analysis : RLC model LIMIT BETWEEN RLC AND RC MODELS Waveform of input and output signals in the range of lengths with inductance effect LIMIT BETWEEN RLC AND RC MODELS Waveform of input and output signals in the range of lengths with inductance effect LIMIT BETWEEN RLC AND RC MODELS Attenuation determination : Limit : the amplitude of the reflected wave is sufficiently low to give the reflection effect negligible 1 st s tru c tu re - L =1 0 m m - A l 1 3 .5 3 .5 st s tru c tu re - L =1 6 m m - C u Inp ut sig na l 3 O up ut R C m o d e l O utp ut R L C M o d e l 2 1 .5 1 O up ut R C m o d e l O utp ut R L C M o d e l 2 .5 V o ltag e (V ) 2 .5 V o lta g e (V ) Inp ut S ig na l 3 2 1 .5 1 0 .5 0 .5 0 0 0 100 200 300 T im e (p s ) 400 500 600 0 100 200 300 400 T im e (p s ) 500 600 700 800 OUTLINE OF THE TALK Theoretical limits : ln x l 15 We have determined x Illustration of the theoretical limits : - in frequency-domain - in time domain ILLUSTRATION OF THEORETICAL LIMITS in the frequency-domain Aluminium Aluminium 60 3 1st configuration 1st configuration 2nd configuration 50 2nd configuration 3rd configuration 3rd configuration 2 Upper limit (mm) Lower limit (mm) 2,5 1,5 1 40 30 20 10 0,5 0 0 0 5 10 15 20 25 0 30 5 Frequency (GHz) 10 15 Frequency (GHz) Copper 3 20 1st configuration 1st configuration 2nd configuration 2nd configuration 50 Upper limit (mm) 3rd configuration Lower limit (mm) 30 Copper 60 2,5 25 2 1,5 1 3rd configuration 40 30 20 10 0,5 0 0 0 5 10 15 Frequency (GHz) 20 25 30 0 5 10 15 Frequency (GHz) 20 25 30 ILLUSTRATION OF THEORETICAL LIMITS in the frequency-domain Frequency Time domain f 1 tr 1 3 0,9 2,5 2 0,8 2 3 Voltage (V) 1 Relative module 4 1,5 0,7 0,6 1 0,5 0,5 0 0,4 0 0,3 100 200 300 Time (ps) 400 500 0,2 0,1 0 0 5 10 15 20 25 30 Frequency (GHz) 35 40 45 50 ILLUSTRATION OF THEORETICAL LIMITS in the time-domain Aluminium 1.4 Aluminium 30 2nd configuration 1 3rd configuration 1st configuration 2nd configuration 25 Upper limit (mm) Lower limit (mm) 1st configuration 1.2 0.8 0.6 0.4 3rd configuration 20 15 10 5 0.2 0 0 0 50 100 150 200 250 300 0 350 20 40 60 80 Copper 1.6 160 180 200 30 3rd configuration Upper limit (mm) Lower limit (mm) 140 35 2nd configuration 1.2 120 Copper 40 1st configuration 1.4 100 tr (ps) tr (ps) 1 0.8 0.6 0.4 25 20 15 1st configuration 10 2nd configuration 5 0.2 3rd configuration 0 0 0 50 100 150 tr (ps) 200 250 300 350 0 20 40 60 80 100 tr (ps) 120 140 160 180 200 OUTLINE OF THE TALK Introduction Theoretical limits Electromagnetic analysis : - Methodology - Application Limits between RLC and RC models Illustration of the theoretical limits : - in frequency-domain - in time domain Comparison with previous work Conclusion COMPARISON WITH PREVIOUS WORK « Figures of Merit to characterize the Importance of On-chip Inductance » DAC 98, June 1998 The two figures of merit can be combined into a two sided inequality that determines the range of the length of interconnect in which inductance effects are significant : tr 2 L l R C 2 L.C 1st configuration : 2nd configuration : R = 17300 W/m C = 170 pF/m L = 490 nH/m G#0 R = 17300 W/m C = 63.6 pF/m L = 655 nH/m G#0 COMPARISON WITH PREVIOUS WORK 1st configuration - Copper 25 1st configuration - L=1mm - Cu 4 Vin 3,5 Vout 20 3 15 Voltage (V) Limit (mm) Upper limit Lower limit DAC Limit 10 2,5 2 1,5 5 1 0,5 0 0 20 40 60 80 100 120 140 160 180 200 0 tr (ps) 0 50 st 1 configuration - L=2mm - Cu 4 Vin Vout 3 2,5 3 1,5 200 250 300 Vin 3,5 2 150 Time (ps) 1st configuration - L=10mm - Cu 4 Voltage (V) Voltage (V) 3,5 100 Vout 2,5 2 1 1,5 0,5 1 0,5 0 0 50 100 Time (ps) 150 200 250 0 0 100 200 Time (ps) 300 400 500 COMPARISON WITH PREVIOUS WORK 2nd configuration - Copper 40 2 4 nd configuration - L=2mm - Cu Vin 3,5 30 Upper limit 25 Lower limit Voltage (V) Limit (mm) 35 3 2,5 DAC Limit 20 15 2 1,5 10 1 5 0,5 0 0 20 40 60 80 100 120 140 160 180 0 200 0 tr (ps) 50 2nd configuration - L=15mm - Cu 4 3,5 100 Time (ps) 150 200 250 2nd configuration - L=25mm - Cu 4 Vin Vin Vout 3,5 3 Vout 3 Voltage (V) Voltage (V) Vout 2,5 2 1,5 2,5 2 1,5 1 1 0,5 0,5 0 0 50 100 150 200 Time (ps) 250 300 350 400 0 0 100 200 300 400 Time (ps) 500 600 700 800 CONCLUSION A full-wave electromagnetic analysis have been presented to build accurate interconnect models, including inductance effects. New limits for signal reflections due to inductance for on-chip interconnections have been proposed. CONCLUSION These limits have been illustrated with typical interconnection geometries, for Al and Cu wires. This study shows evidence demonstrating that a range exists for which inductance effects cannot be neglected and requires a transmission line model. CONCLUSION FUTURE WORK : Interconnect coupling : taking into account not only the coupling capacitance, but also the impact of inductance and mutual inductance.
© Copyright 2026 Paperzz