Time Dilation ๏ท Light moves at speed ๐ in all frames ๏ท Two events that occur simultaneously in one reference frame may not be simultaneous in another frame ๏ท Two events that occur at the same location in frame ๐ด, separated by a time ๐ก๐ด , will take a greater time ๐ก๐ต = ๐พ ๐ก๐ด in frame ๐ต moving at velocity ๐ฃ with respect to frame ๐ด ๏ท ๐พ= 1 2 โ1โ๐ฃ2 (with ๐พ โฅ 1) ๐ Head Start Effect ๏ท ๏ท ๏ท Two clocks are positioned at the end of a train of length ๐ฟ (as measured in its own frame. The clocks are synchronized in the trainโs reference frame The train travels past an observer at speed ๐ฃ. The observer will see the rear clock showing a higher reading than the front clock ๐ฟ๐ฃ by ฮ๐ก = ๐ 2 The rear clock does not tick faster than the front clock, it simply remains a fixed time ahead of the front clock Length Contraction ๏ท An object in frame ๐ด moves with velocity ๐ฃ relative to frame ๐ต. The object has length ๐โฒ along this direction of motion in ๐ดโs frame. The object has a shorter length ๐ = ๐โฒ ๐พ in ๐ตโs frame ๏ท Length contraction does not apply in the directions transverse to the direction of motion (set by ๐ฃ) between two reference frames Example A muon moves from a height โ straight down towards the Earth with a large velocity ๐ฃ. It decays after time ๐ in its own frame. Can the muon reach the ground? ๏ท ๏ท In the Earthโs frame, time dilation applies. The muon has to travel a distance โ in time ๐พ ๐ In the muonโs frame, length contraction kicks in. The โ muon must travel a distance ๐พ in time ๐ Lorentz Transformation ๏ท ๏ท Frame ๐โฒ moves at velocity ๐ฃ relative to frame ๐ The length and time between two events (an event is anything that has space and time coordinates) in ๐โฒ are related to those in ๐ by ฮ๐ฅ = ๐พ(ฮ๐ฅ โฒ + ๐ฃ ฮ๐ก โฒ ) ๐ฃ ฮ๐ก = ๐พ (ฮ๐ก โฒ + 2 ฮ๐ฅ โฒ ) ๐ ๏ท ๏ท ฮ๐ฅโฒ = ๐พ(ฮ๐ฅ โ ๐ฃ ฮ๐ก) ๐ฃ ฮ๐กโฒ = ๐พ (ฮ๐ก โ 2 ฮ๐ฅ) ๐ Since there is no transverse length contraction, ฮ๐ฆ = ฮ๐ฆ โฒ and ฮ๐ง = ฮ๐ง โฒ ฮ๐ฅ 2 โ ๐ 2 ฮ๐ก 2 has the same value in all reference frames Velocity Addition ๏ท An object moves at speed ๐ฃ1 with respect to frame ๐โฒ. Frame ๐โฒ moves at speed ๐ฃ2 with respect to frame ๐ in the same direction of motion as the object. The speed ๐ข of the object in frame ๐ is ๐ข= ๏ท ๏ท ๐ฃ1 + ๐ฃ2 ๐ฃ ๐ฃ 1 + 122 ๐ An object moving at speed ๐ in one reference frame moves at speed ๐ in all reference frames An object moving slower than ๐ in one reference frame moves slower than ๐ in all reference frames Momentum and Energy ๏ท The relativistic energy and momentum of a particle moving with velocity ๐ฃโ are given by ๐โ = ๐พ๐๐ฃโ ๐ธ = ๐พ๐๐ 2 ๏ท ๐โ โ ๐๐ฃโ 1 ๐ธ โ ๐๐ 2 + ๐ ๐ฃ 2 2 A particle moves at speed ๐ขโฒ in frame ๐โฒ, which moves at speed ๐ฃ relative to frame ๐. Momentum (๐พ๐ขโฒ ๐๐ขโฒ) and energy (๐พ๐ขโฒ ๐๐ 2 ) in ๐โฒ is related to that in ๐ by the same Lorentz transformation as space and time (with ๐พ โก ๐พ๐ฃ ) ๐ธ = ๐พ(๐ธ โฒ + ๐ฃ ๐โฒ ) ๐ฃ ๐ = ๐พ (๐โฒ + 2 ๐ธ โฒ ) ๐ ๏ท ๏ท Slow speeds (๐ฃ โช ๐) ๐ธโฒ = ๐พ(๐ธ โ ๐ฃ ๐) ๐ฃ ๐โฒ = ๐พ (๐ โ 2 ๐ธ) ๐ Energy and momentum are conserved in collisions within the same reference frame The invariant mass formula ๐ธ 2 โ ๐2 ๐ 2 = ๐2 ๐ 4 applies any mass in any reference frame Cartesian Coordinates Polar Coordinates An oldie but a goodie, yet not always the best choice! Area of a circle in Cartesian coordinates โ๐ 2 โ๐ฅ 2 ๐ โซ โซ ๐๐๐๐ ๐๐ฅ ๐๐ฆ โ ๐ฅ = ๐ Cos[๐] ๐ = โ๐ฅ 2 + ๐ฆ 2 ๐ฆ = ๐ Sin[๐] ๐ = ArcTan [ ๐๐ 2 โโ๐ 2 โ๐ฅ 2 โ๐ Polar to Cartesian ๐ฆ ] ๐ฅ Cartesian to Polar Unit Vectors Area of a circle in Polar coordinates 2๐ โซ ๐ ๐๐๐ ๐ฆ โซ ๐ ๐๐ ๐๐ โ 0 ๐๐ 2 0 ๐ฅฬ = Cos[๐] ๐ฬ โ Sin[๐] ๐ฬ ๐ฬ = Cos[๐] ๐ฅฬ + Sin[๐] ๐ฆฬ ๐ฆฬ = Sin[๐] ๐ฬ + Cos[๐] ๐ฬ ๐ฬ = โSin[๐] ๐ฅฬ + Cos[๐] ๐ฆฬ Area Element Area Element ๐๐ = ๐๐ฅ ๐๐ฆ ๐๐ = ๐ ๐๐ ๐๐ Cylindrical Coordinates Spherical Coordinates ๐ฅ = ๐ Cos[๐] ๐ = โ๐ฅ 2 + ๐ฆ 2 ๐ฆ = ๐ Sin[๐] ๐ = ArcTan [ ๐ง=๐ง ๐ง=๐ง Volume Element ๐๐ = ๐ 2 Sin[๐] ๐๐ ๐๐ ๐๐ ๐ฆ ] ๐ฅ ๐ = โ๐ฅ 2 + ๐ฆ 2 + ๐ง 2 (๐ฅ 2 + ๐ฆ 2 )1/2 ๐ = ArcTan [ ] ๐ฆ = ๐ Sin[๐] Sin[๐] ๐ง ๐ฆ ๐ = ArcTan [ ] ๐ง = ๐ Cos[๐] ๐ฅ Volume Element ๐ฅ = ๐ Sin[๐] Cos[๐] ๐๐ = ๐ 2 Sin[๐] ๐๐ ๐๐ ๐๐ Dot Product Cross Product แฌโ = ๐ด๐ฅ ๐ต๐ฅ + ๐ด๐ฆ ๐ต๐ฆ + ๐ด๐ง ๐ต๐ง ๐ดโ โ ๐ต แฌโเธซCos[๐] = เธซ๐ดโเธซเธซ๐ต ๐ดโ = ๐ด๐ฅ ๐ฅฬ + ๐ด๐ฆ ๐ฆฬ + ๐ด๐ง ๐งฬ แฌโ = ๐ต๐ฅ ๐ฅฬ + ๐ต๐ฆ ๐ฆฬ + ๐ต๐ง ๐งฬ ๐ต ๏ท ๏ท ๏ท แฌโ is a scalar ๐ดโ โ ๐ต 2 แฌโ = ๐ต แฌโ โ ๐ดโ ๐ดโ โ ๐ต ๐ดโ โ ๐ดโ = เธซ๐ดโเธซ For any unit vector ๐ฬ, ๐ดโ โ ๐ฬ represents the length of ๐ดโ along the direction ๐ฬ แฌโ = เตซ๐ด๐ฆ ๐ต๐ง โ ๐ด๐ง ๐ต๐ฆ เตฏ๐ฅฬ ๐ดโ × ๐ต + + (๐ด๐ง ๐ต๐ฅ โ ๐ด๐ฅ ๐ต๐ง )๐ฆฬ + + เตซ๐ด๐ฅ ๐ต๐ฆ โ ๐ด๐ฆ ๐ต๐ฅ เตฏ๐งฬ ๏ท แฌโ is a vector ๐ดโ × ๐ต ๏ท แฌโ = โ๐ต แฌโ × ๐ดโ ๐ดโ × ๐ต ๏ท Direction given by right-hand rule and magnitude แฌโ ๐ดโ × ๐ดโ = 0 แฌโเธซ = เธซ๐ดโเธซเธซ๐ต แฌโเธซSin[๐] equal to parallelogram area เธซ๐ดโ × ๐ต Law of Cosines ๏ท ๏ท แฌโ Triangle defined by vectors ๐ดโ and ๐ต แฌโ Thirds leg given by ๐ถโ = ๐ดโ โ ๐ต ๐ ๐ ๐ แฌโเธซ = เธซ๐จ แฌโเธซ + เธซ๐ฉ แฌแฌโเธซ โ ๐เธซ๐จ แฌโเธซเธซ๐ฉ แฌแฌโเธซ๐๐จ๐ฌ[๐ฝ] เธซ๐ช Proof แฌโเตฏ โ เตซ๐ดโ โ ๐ต แฌโเตฏ ๐ถโ โ ๐ถโ = เตซ๐ดโ โ ๐ต 2 2 แฌโเธซ โ 2 ๐ดโ โ ๐ต แฌโ = เธซ๐ดโเธซ + เธซ๐ต Trig Functions Cos[0] = 1 Sin[0] = 0 ๐ 1 ๐ โ3 Sin [ ] = Cos [ ] = 6 2 6 2 ๐ โ2 ๐ โ2 Sin [ ] = Cos [ ] = 4 2 4 2 ๐ ๐ 1 โ3 Sin [ ] = Cos [ ] = 3 2 3 2 ๐ ๐ Cos [ ] = 0 Sin [ ] = 1 2 2 Cos[๐ โ ๐ฅ] = โCos[๐ฅ] Sin[๐ โ ๐ฅ] = Sin[๐ฅ] โ ๐ฅ3 ๐ฅ5 ๐ฅ 2๐+1 ๐ ๐๐ฅ โ ๐ โ๐๐ฅ Sin[๐ฅ] = ๐ฅ โ + โ โฏ = โ(โ1)๐ = (2๐ + 1)! 3! 5! 2 ๐=0 โ Cos[๐ฅ] = 1 โ ๐ฅ2 ๐ฅ4 ๐ฅ 2๐ ๐ ๐๐ฅ + ๐ โ๐๐ฅ + โ โฏ = โ(โ1)๐ = (2๐)! 2! 4! 2 ๐=0 Sin[๐ฅ + ๐ฆ] = Sin[๐ฅ]Cos[๐ฆ] + Cos[๐ฅ]Sin[๐ฆ] Cos[๐ฅ + ๐ฆ] = Cos[๐ฅ]Cos[๐ฆ] โ Sin[๐ฅ]Sin[๐ฆ] Sin[2๐ฅ] = 2Sin[๐ฅ]Cos[๐ฅ] Cos[2๐ฅ] = Cos[๐ฅ]2 โ Sin[๐ฅ]2 = 2Cos[๐ฅ]2 โ 1 = 1 โ 2Sin[๐ฅ]2 Gaussโs Law Surface Integrals โฎ ๐๐ ๐ in ๐ธแฌโ = Electric field โฎ ๐ธแฌโ [๐โ] โ ๐๐โ = 1 ๐0 ๐0 = surface 4๐๐ ๐๐โ = Normal vector of infinitesimal area Integrate over infinitesimal area elements surface โฎ ๐[๐โ]๐๐ surface ๐ in = Charge enclosed in surface โฎ ๐นโ [๐โ] โ ๐๐โ = โฎ เตซ๐นโ [๐โ] โ ๐๐ฬเตฏ๐๐ surface surface ๐๐ฬ Choose Gaussian surface ๐๐ฬ is the normal direction ( (perpendicular to a surface) โฎ ๐๐ = โซ surface 0 ๐ โซ ๐ 2 Sin[๐] ๐๐ ๐๐ 2๐ surface 2๐ 0 ) ๐๐โ = ๐ฬ ๐๐ โฎ ๐ธแฌโ [๐โ] โ ๐๐โ = โฎ ๐ธ[๐]๐๐ = ๐ธ[๐] โฎ ๐๐ = ๐ธ[๐](4๐๐ 2 ) = 0 โฎ ๐นโ [๐โ] โ ๐๐โ = โซ surface Gaussian sphere โ ๐ โซ ๐[๐โ]๐ 2 Sin[๐] ๐๐ ๐๐ 0 or ๐ธแฌโ โ ๐๐โ = ๐ธ ๐๐ (๐ธแฌโ points radially and only depends on distance ๐ from origin) 0 โฎ ๐[๐โ]๐๐ = โซ that utilizes symmetry on every surface ๐ธแฌโ โ ๐๐โ = 0 Electric field from point charge ๐ at the origin Radial symmetry โ ๐ธแฌโ [๐โ] = ๐ธ[๐]๐ฬ Sphere of radius ๐ centered at the origin 2๐ ๐๐ฬ ๐ธแฌโ ๐ โซ เตซ๐นโ [๐โ] โ ๐ฬ เตฏ๐ 2 Sin[๐] ๐๐ ๐๐ ๐ธแฌโ [๐โ] = 0 ๐ 4๐๐0 ๐2 ๐ฬ Example: Infinite Sheet of Charge Infinite plane at ๐ฅ = 0 with uniform charge density ๐ ๐ธแฌโ [๐โ] = ๐ธ[๐ฅ]๐ฅฬ Translational symmetry โ (๐ธแฌโ points away from plane and only depends on distance ๐ฅ from plane) Gaussian cube with side length 2๐ centered on the plane ๏ท ๐ธ[๐ฅ]๐ฅฬ โ ๐๐โ = 0 for all sides that intersect the plane ๏ท ๐ธ[๐ฅ]๐ฅฬ โ ๐๐โ = ๐ธ[๐ฅ]๐๐ for both surfaces parallel to plane โฎ ๐ธแฌโ [๐โ] โ ๐๐โ = 2๐ธ[๐ฅ](4๐ 2 ) = ๐๐ฬ ๐ธแฌโ ๐ ๐ฅฬ 2๐0 แฌโ ๐ธ [๐โ] = เต ๐ โ ๐ฅฬ 2๐0 ๐(4๐ 2 ) ๐0 ๐ฅ>0 ๐ฅ<0 Exactly on the plane, electric field must be zero by symmetry! Discontinuity in ๐ธแฌโ across a sheet ๐ of charge is always ๐0 Value of ๐ธแฌโ on the sheet is the average of its values on both sides ๐ ๐0 Electrostatics ๐ = โ โซ ๐ธแฌโ โ ๐๐ โ Fundamental quantities: ๐ธแฌโ ๐ ๐ โ Charge distribution แฌโ๐ ๐ธแฌโ = โโ ๐ธแฌโ โ Force per unit charge on a test particle ๐ โ Potential energy per unit charge to place a test particle Work required to assemble charge distribution: ๐ ๐ ๐๐ ๐๐ 1 ๐ = โโ 2 ๐๐๐ (Point charges) ๐=1 ๐โ ๐ ๐0 1 ๐= โซ ๐ธ 2 ๐๐ฃ = โซ ๐ ๐ ๐๐ฃ (Charge distribution) 2 2 ๐ Conductors Key properties ๏ท แฌโ inside a conductor ๐ธแฌโ = 0 ๏ท ๐ = 0 inside a conductor ๏ท Any net charge resides on the surface ๏ท A conductor surface is equipotential ๏ท ๐ธแฌโ perpendicular to surface just outside a conductor Example: Parallel Plates (Ignoring Edge Effects) ๏ท Uniform charge density ๐ = ๐ ๐ด spread over both inner surfaces ๏ท ๐ธแฌโ = ๐ (โ๐งฬ ) ๐0 แฌโ outside plates between plates, ๐ธแฌโ = 0 ๐ ๐0 ๐ด = ๐1 โ ๐2 ๐ 2 2 ๐ ๐0 ๐ธ ๐โก = ๐ด๐ 2๐ถ 2 ๐ถโก (Capacitance) Energy Stored ( ) in Capacitor
© Copyright 2025 Paperzz