Time Dilation โ€ข Light moves at speed in all frames โ€ข Two events that

Time Dilation
๏‚ท Light moves at speed ๐‘ in all frames
๏‚ท Two events that occur simultaneously in one
reference frame may not be simultaneous in
another frame
๏‚ท Two events that occur at the same location
in frame ๐ด, separated by a time ๐‘ก๐ด , will take
a greater time ๐‘ก๐ต = ๐›พ ๐‘ก๐ด in frame ๐ต moving
at velocity ๐‘ฃ with respect to frame ๐ด
๏‚ท ๐›พ=
1
2
โˆš1โˆ’๐‘ฃ2
(with ๐›พ โ‰ฅ 1)
๐‘
Head Start Effect
๏‚ท
๏‚ท
๏‚ท
Two clocks are positioned at the end of a train of length ๐ฟ (as
measured in its own frame. The clocks are synchronized in the
trainโ€™s reference frame
The train travels past an observer at speed ๐‘ฃ. The observer will
see the rear clock showing a higher reading than the front clock
๐ฟ๐‘ฃ
by ฮ”๐‘ก = ๐‘ 2
The rear clock does not tick faster than the front clock, it simply
remains a fixed time ahead of the front clock
Length Contraction
๏‚ท An object in frame ๐ด moves with velocity ๐‘ฃ relative to frame ๐ต.
The object has length ๐‘™โ€ฒ along this direction of motion in ๐ดโ€™s
frame. The object has a shorter length ๐‘™ =
๐‘™โ€ฒ
๐›พ
in ๐ตโ€™s frame
๏‚ท Length contraction does not apply in the directions transverse to
the direction of motion (set by ๐‘ฃ) between two reference frames
Example
A muon moves from a height โ„Ž straight down towards the Earth
with a large velocity ๐‘ฃ. It decays after time ๐‘‡ in its own frame.
Can the muon reach the ground?
๏‚ท
๏‚ท
In the Earthโ€™s frame, time dilation applies. The muon
has to travel a distance โ„Ž in time ๐›พ ๐‘‡
In the muonโ€™s frame, length contraction kicks in. The
โ„Ž
muon must travel a distance ๐›พ in time ๐‘‡
Lorentz Transformation
๏‚ท
๏‚ท
Frame ๐‘†โ€ฒ moves at velocity ๐‘ฃ relative to frame ๐‘†
The length and time between two events (an event is anything that
has space and time coordinates) in ๐‘†โ€ฒ are related to those in ๐‘† by
ฮ”๐‘ฅ = ๐›พ(ฮ”๐‘ฅ โ€ฒ + ๐‘ฃ ฮ”๐‘ก โ€ฒ )
๐‘ฃ
ฮ”๐‘ก = ๐›พ (ฮ”๐‘ก โ€ฒ + 2 ฮ”๐‘ฅ โ€ฒ )
๐‘
๏‚ท
๏‚ท
ฮ”๐‘ฅโ€ฒ = ๐›พ(ฮ”๐‘ฅ โˆ’ ๐‘ฃ ฮ”๐‘ก)
๐‘ฃ
ฮ”๐‘กโ€ฒ = ๐›พ (ฮ”๐‘ก โˆ’ 2 ฮ”๐‘ฅ)
๐‘
Since there is no transverse length contraction, ฮ”๐‘ฆ = ฮ”๐‘ฆ โ€ฒ and ฮ”๐‘ง = ฮ”๐‘ง โ€ฒ
ฮ”๐‘ฅ 2 โˆ’ ๐‘ 2 ฮ”๐‘ก 2 has the same value in all reference frames
Velocity Addition
๏‚ท
An object moves at speed ๐‘ฃ1 with respect to frame ๐‘†โ€ฒ. Frame ๐‘†โ€ฒ moves
at speed ๐‘ฃ2 with respect to frame ๐‘† in the same direction of motion as
the object. The speed ๐‘ข of the object in frame ๐‘† is
๐‘ข=
๏‚ท
๏‚ท
๐‘ฃ1 + ๐‘ฃ2
๐‘ฃ ๐‘ฃ
1 + 122
๐‘
An object moving at speed ๐‘ in one reference frame moves at speed ๐‘
in all reference frames
An object moving slower than ๐‘ in one reference frame moves slower
than ๐‘ in all reference frames
Momentum and Energy
๏‚ท
The relativistic energy and momentum of a particle moving with velocity ๐‘ฃโƒ— are given by
๐‘โƒ— = ๐›พ๐‘š๐‘ฃโƒ—
๐ธ = ๐›พ๐‘š๐‘ 2
๏‚ท
๐‘โƒ— โ‰ˆ ๐‘š๐‘ฃโƒ—
1
๐ธ โ‰ˆ ๐‘š๐‘ 2 + ๐‘š ๐‘ฃ 2
2
A particle moves at speed ๐‘ขโ€ฒ in frame ๐‘†โ€ฒ, which moves at speed ๐‘ฃ
relative to frame ๐‘†. Momentum (๐›พ๐‘ขโ€ฒ ๐‘š๐‘ขโ€ฒ) and energy (๐›พ๐‘ขโ€ฒ ๐‘š๐‘ 2 ) in ๐‘†โ€ฒ is
related to that in ๐‘† by the same Lorentz transformation as space and
time (with ๐›พ โ‰ก ๐›พ๐‘ฃ )
๐ธ = ๐›พ(๐ธ โ€ฒ + ๐‘ฃ ๐‘โ€ฒ )
๐‘ฃ
๐‘ = ๐›พ (๐‘โ€ฒ + 2 ๐ธ โ€ฒ )
๐‘
๏‚ท
๏‚ท
Slow speeds
(๐‘ฃ โ‰ช ๐‘)
๐ธโ€ฒ = ๐›พ(๐ธ โˆ’ ๐‘ฃ ๐‘)
๐‘ฃ
๐‘โ€ฒ = ๐›พ (๐‘ โˆ’ 2 ๐ธ)
๐‘
Energy and momentum are conserved in collisions within the same reference frame
The invariant mass formula ๐ธ 2 โˆ’ ๐‘2 ๐‘ 2 = ๐‘š2 ๐‘ 4 applies any mass in any reference frame
Cartesian Coordinates
Polar Coordinates
An oldie but a goodie, yet not always the best choice!
Area of a circle in Cartesian coordinates
โˆš๐‘…2 โˆ’๐‘ฅ 2
๐‘…
โˆซ โˆซ
๐‘๐‘Ž๐‘–๐‘›
๐‘‘๐‘ฅ ๐‘‘๐‘ฆ โ‡’
๐‘ฅ = ๐‘Ÿ Cos[๐œƒ]
๐‘Ÿ = โˆš๐‘ฅ 2 + ๐‘ฆ 2
๐‘ฆ = ๐‘Ÿ Sin[๐œƒ]
๐œƒ = ArcTan [
๐œ‹๐‘… 2
โˆ’โˆš๐‘…2 โˆ’๐‘ฅ 2
โˆ’๐‘…
Polar
to
Cartesian
๐‘ฆ
]
๐‘ฅ
Cartesian
to
Polar
Unit Vectors
Area of a circle in Polar coordinates
2๐œ‹
โˆซ
๐‘…
๐‘’๐‘Ž๐‘ ๐‘ฆ
โˆซ ๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘๐œƒ โ‡’
0
๐œ‹๐‘… 2
0
๐‘ฅฬ‚ = Cos[๐œƒ] ๐œŒฬ‚ โˆ’ Sin[๐œƒ] ๐œƒฬ‚
๐‘Ÿฬ‚ = Cos[๐œƒ] ๐‘ฅฬ‚ + Sin[๐œƒ] ๐‘ฆฬ‚
๐‘ฆฬ‚ = Sin[๐œƒ] ๐œŒฬ‚ + Cos[๐œƒ] ๐œƒฬ‚
๐œƒฬ‚ = โˆ’Sin[๐œƒ] ๐‘ฅฬ‚ + Cos[๐œƒ] ๐‘ฆฬ‚
Area Element
Area Element
๐‘‘๐‘‰ = ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ
๐‘‘๐‘‰ = ๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘๐œƒ
Cylindrical Coordinates
Spherical Coordinates
๐‘ฅ = ๐œŒ Cos[๐œƒ]
๐œŒ = โˆš๐‘ฅ 2 + ๐‘ฆ 2
๐‘ฆ = ๐œŒ Sin[๐œƒ]
๐œƒ = ArcTan [
๐‘ง=๐‘ง
๐‘ง=๐‘ง
Volume Element
๐‘‘๐‘‰ = ๐‘Ÿ 2 Sin[๐œƒ] ๐‘‘๐‘Ÿ ๐‘‘๐œƒ ๐‘‘๐œ™
๐‘ฆ
]
๐‘ฅ
๐‘Ÿ = โˆš๐‘ฅ 2 + ๐‘ฆ 2 + ๐‘ง 2
(๐‘ฅ 2 + ๐‘ฆ 2 )1/2
๐œƒ
=
ArcTan
[
]
๐‘ฆ = ๐‘Ÿ Sin[๐œƒ] Sin[๐œ™]
๐‘ง
๐‘ฆ
๐œ™ = ArcTan [ ]
๐‘ง = ๐‘Ÿ Cos[๐œƒ]
๐‘ฅ
Volume Element
๐‘ฅ = ๐‘Ÿ Sin[๐œƒ] Cos[๐œ™]
๐‘‘๐‘‰ = ๐‘Ÿ 2 Sin[๐œƒ] ๐‘‘๐‘Ÿ ๐‘‘๐œƒ ๐‘‘๐œ™
Dot Product
Cross Product
แˆฌโƒ— = ๐ด๐‘ฅ ๐ต๐‘ฅ + ๐ด๐‘ฆ ๐ต๐‘ฆ + ๐ด๐‘ง ๐ต๐‘ง
๐ดโƒ— โˆ™ ๐ต
แˆฌโƒ—เธซCos[๐œƒ]
= เธซ๐ดโƒ—เธซเธซ๐ต
๐ดโƒ— = ๐ด๐‘ฅ ๐‘ฅฬ‚ + ๐ด๐‘ฆ ๐‘ฆฬ‚ + ๐ด๐‘ง ๐‘งฬ‚
แˆฌโƒ— = ๐ต๐‘ฅ ๐‘ฅฬ‚ + ๐ต๐‘ฆ ๐‘ฆฬ‚ + ๐ต๐‘ง ๐‘งฬ‚
๐ต
๏‚ท
๏‚ท
๏‚ท
แˆฌโƒ— is a scalar
๐ดโƒ— โˆ™ ๐ต
2
แˆฌโƒ— = ๐ต
แˆฌโƒ— โˆ™ ๐ดโƒ—
๐ดโƒ— โˆ™ ๐ต
๐ดโƒ— โˆ™ ๐ดโƒ— = เธซ๐ดโƒ—เธซ
For any unit vector ๐‘›ฬ‚, ๐ดโƒ— โˆ™ ๐‘›ฬ‚ represents the length
of ๐ดโƒ— along the direction ๐‘›ฬ‚
แˆฌโƒ— = เตซ๐ด๐‘ฆ ๐ต๐‘ง โˆ’ ๐ด๐‘ง ๐ต๐‘ฆ เตฏ๐‘ฅฬ‚
๐ดโƒ— × ๐ต
+ + (๐ด๐‘ง ๐ต๐‘ฅ โˆ’ ๐ด๐‘ฅ ๐ต๐‘ง )๐‘ฆฬ‚
+
+ เตซ๐ด๐‘ฅ ๐ต๐‘ฆ โˆ’ ๐ด๐‘ฆ ๐ต๐‘ฅ เตฏ๐‘งฬ‚
๏‚ท
แˆฌโƒ— is a vector
๐ดโƒ— × ๐ต
๏‚ท
แˆฌโƒ— = โˆ’๐ต
แˆฌโƒ— × ๐ดโƒ—
๐ดโƒ— × ๐ต
๏‚ท
Direction given by right-hand rule and magnitude
แˆฌโƒ—
๐ดโƒ— × ๐ดโƒ— = 0
แˆฌโƒ—เธซ = เธซ๐ดโƒ—เธซเธซ๐ต
แˆฌโƒ—เธซSin[๐œƒ] equal to parallelogram area
เธซ๐ดโƒ— × ๐ต
Law of Cosines
๏‚ท
๏‚ท
แˆฌโƒ—
Triangle defined by vectors ๐ดโƒ— and ๐ต
แˆฌโƒ—
Thirds leg given by ๐ถโƒ— = ๐ดโƒ— โˆ’ ๐ต
๐Ÿ
๐Ÿ
๐Ÿ
แˆฌโƒ—เธซ = เธซ๐‘จ
แˆฌโƒ—เธซ + เธซ๐‘ฉ
แˆฌแˆฌโƒ—เธซ โˆ’ ๐Ÿเธซ๐‘จ
แˆฌโƒ—เธซเธซ๐‘ฉ
แˆฌแˆฌโƒ—เธซ๐‚๐จ๐ฌ[๐œฝ]
เธซ๐‘ช
Proof
แˆฌโƒ—เตฏ โ‹… เตซ๐ดโƒ— โˆ’ ๐ต
แˆฌโƒ—เตฏ
๐ถโƒ— โ‹… ๐ถโƒ— = เตซ๐ดโƒ— โˆ’ ๐ต
2
2
แˆฌโƒ—เธซ โˆ’ 2 ๐ดโƒ— โ‹… ๐ต
แˆฌโƒ—
= เธซ๐ดโƒ—เธซ + เธซ๐ต
Trig Functions
Cos[0] = 1
Sin[0] = 0
๐œ‹
1
๐œ‹
โˆš3
Sin [ ] =
Cos [ ] =
6
2
6
2
๐œ‹
โˆš2
๐œ‹
โˆš2
Sin [ ] =
Cos [ ] =
4
2
4
2
๐œ‹
๐œ‹
1
โˆš3
Sin [ ] =
Cos [ ] =
3
2
3
2
๐œ‹
๐œ‹
Cos [ ] = 0
Sin [ ] = 1
2
2
Cos[๐œ‹ โˆ’ ๐‘ฅ] = โˆ’Cos[๐‘ฅ] Sin[๐œ‹ โˆ’ ๐‘ฅ] = Sin[๐‘ฅ]
โˆž
๐‘ฅ3 ๐‘ฅ5
๐‘ฅ 2๐‘—+1
๐‘’ ๐‘–๐‘ฅ โˆ’ ๐‘’ โˆ’๐‘–๐‘ฅ
Sin[๐‘ฅ] = ๐‘ฅ โˆ’ + โˆ’ โ‹ฏ = โˆ‘(โˆ’1)๐‘—
=
(2๐‘— + 1)!
3! 5!
2
๐‘—=0
โˆž
Cos[๐‘ฅ] = 1 โˆ’
๐‘ฅ2 ๐‘ฅ4
๐‘ฅ 2๐‘—
๐‘’ ๐‘–๐‘ฅ + ๐‘’ โˆ’๐‘–๐‘ฅ
+ โˆ’ โ‹ฏ = โˆ‘(โˆ’1)๐‘—
=
(2๐‘—)!
2! 4!
2
๐‘—=0
Sin[๐‘ฅ + ๐‘ฆ] = Sin[๐‘ฅ]Cos[๐‘ฆ] + Cos[๐‘ฅ]Sin[๐‘ฆ]
Cos[๐‘ฅ + ๐‘ฆ] = Cos[๐‘ฅ]Cos[๐‘ฆ] โˆ’ Sin[๐‘ฅ]Sin[๐‘ฆ]
Sin[2๐‘ฅ] = 2Sin[๐‘ฅ]Cos[๐‘ฅ]
Cos[2๐‘ฅ] = Cos[๐‘ฅ]2 โˆ’ Sin[๐‘ฅ]2
= 2Cos[๐‘ฅ]2 โˆ’ 1 = 1 โˆ’ 2Sin[๐‘ฅ]2
Gaussโ€™s Law
Surface Integrals
โˆฎ ๐‘‘๐‘Ž
๐‘„ in
๐ธแˆฌโƒ— = Electric field
โˆฎ ๐ธแˆฌโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žโƒ— =
1
๐œ–0
๐œ–0 =
surface
4๐œ‹๐‘˜
๐‘‘๐‘Žโƒ— = Normal vector of infinitesimal area
Integrate over
infinitesimal
area elements
surface
โˆฎ ๐‘“[๐‘Ÿโƒ—]๐‘‘๐‘Ž
surface
๐‘„ in = Charge enclosed in surface
โˆฎ ๐นโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žโƒ— =
โˆฎ เตซ๐นโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žฬ‚เตฏ๐‘‘๐‘Ž
surface
surface
๐‘‘๐‘Žฬ‚
Choose Gaussian surface
๐‘‘๐‘Žฬ‚ is the normal direction
(
(perpendicular to a surface)
โˆฎ ๐‘‘๐‘Ž = โˆซ
surface
0
๐œ‹
โˆซ ๐‘… 2 Sin[๐œƒ] ๐‘‘๐œƒ ๐‘‘๐œ™
2๐œ‹
surface
2๐œ‹
0
)
๐‘‘๐‘Žโƒ— = ๐‘Ÿฬ‚ ๐‘‘๐‘Ž
โˆฎ ๐ธแˆฌโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žโƒ— = โˆฎ ๐ธ[๐‘Ÿ]๐‘‘๐‘Ž = ๐ธ[๐‘Ÿ] โˆฎ ๐‘‘๐‘Ž = ๐ธ[๐‘Ÿ](4๐œ‹๐‘Ÿ 2 ) =
0
โˆฎ ๐นโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žโƒ— = โˆซ
surface
Gaussian sphere โ‡’
๐œ‹
โˆซ ๐‘“[๐‘Ÿโƒ—]๐‘… 2 Sin[๐œƒ] ๐‘‘๐œƒ ๐‘‘๐œ™
0
or ๐ธแˆฌโƒ— โˆ™ ๐‘‘๐‘Žโƒ— = ๐ธ ๐‘‘๐‘Ž
(๐ธแˆฌโƒ— points radially and only depends on distance ๐‘Ÿ from origin)
0
โˆฎ ๐‘“[๐‘Ÿโƒ—]๐‘‘๐‘Ž = โˆซ
that utilizes symmetry
on every surface ๐ธแˆฌโƒ— โˆ™ ๐‘‘๐‘Žโƒ— = 0
Electric field from point charge ๐‘ž at the origin
Radial symmetry โ‡’
๐ธแˆฌโƒ— [๐‘Ÿโƒ—] = ๐ธ[๐‘Ÿ]๐‘Ÿฬ‚
Sphere of radius ๐‘… centered at the origin
2๐œ‹
๐‘‘๐‘Žฬ‚
๐ธแˆฌโƒ—
๐œ‹
โˆซ เตซ๐นโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘Ÿฬ‚ เตฏ๐‘… 2 Sin[๐œƒ] ๐‘‘๐œƒ ๐‘‘๐œ™
๐ธแˆฌโƒ— [๐‘Ÿโƒ—] =
0
๐‘ž
4๐œ‹๐œ–0 ๐‘Ÿ2
๐‘Ÿฬ‚
Example: Infinite Sheet of Charge
Infinite plane at ๐‘ฅ = 0 with uniform charge density ๐œŽ
๐ธแˆฌโƒ— [๐‘Ÿโƒ—] = ๐ธ[๐‘ฅ]๐‘ฅฬ‚
Translational symmetry โ‡’
(๐ธแˆฌโƒ— points away from plane and only depends on distance ๐‘ฅ from plane)
Gaussian cube with side length 2๐‘  centered on the plane
๏‚ท
๐ธ[๐‘ฅ]๐‘ฅฬ‚ โˆ™ ๐‘‘๐‘Žโƒ— = 0 for all sides that intersect the plane
๏‚ท
๐ธ[๐‘ฅ]๐‘ฅฬ‚ โˆ™ ๐‘‘๐‘Žโƒ— = ๐ธ[๐‘ฅ]๐‘‘๐‘Ž for both surfaces parallel to plane
โˆฎ ๐ธแˆฌโƒ— [๐‘Ÿโƒ—] โˆ™ ๐‘‘๐‘Žโƒ— = 2๐ธ[๐‘ฅ](4๐‘  2 ) =
๐‘‘๐‘Žฬ‚
๐ธแˆฌโƒ—
๐œŽ
๐‘ฅฬ‚
2๐œ–0
แˆฌโƒ—
๐ธ [๐‘Ÿโƒ—] = เตž ๐œŽ
โˆ’
๐‘ฅฬ‚
2๐œ–0
๐œŽ(4๐‘  2 )
๐œ–0
๐‘ฅ>0
๐‘ฅ<0
Exactly on the plane, electric field
must be zero by symmetry!
Discontinuity in ๐ธแˆฌโƒ— across a sheet
๐œŽ
of charge is always
๐œ–0
Value of ๐ธแˆฌโƒ— on the sheet is the
average of its values on both sides
๐‘ž
๐œ–0
Electrostatics
๐œ™ = โˆ’ โˆซ ๐ธแˆฌโƒ— โ‹… ๐‘‘๐‘ โƒ—
Fundamental quantities:
๐ธแˆฌโƒ—
๐œ™
๐œŒ โ€“ Charge distribution
แˆฌโƒ—๐œ™
๐ธแˆฌโƒ— = โˆ’โˆ‡
๐ธแˆฌโƒ— โ€“ Force per unit charge on a test particle
๐œ™ โ€“ Potential energy per unit charge
to place a test particle
Work required to assemble charge distribution:
๐‘
๐‘˜ ๐‘ž๐‘– ๐‘ž๐‘—
1
๐‘ˆ = โˆ‘โˆ‘
2
๐‘Ÿ๐‘—๐‘˜
(Point charges)
๐‘–=1 ๐‘—โ‰ ๐‘–
๐œ–0
1
๐‘ˆ=
โˆซ ๐ธ 2 ๐‘‘๐‘ฃ = โˆซ ๐œŒ ๐œ™ ๐‘‘๐‘ฃ (Charge distribution)
2
2
๐œŒ
Conductors
Key properties
๏‚ท
แˆฌโƒ— inside a conductor
๐ธแˆฌโƒ— = 0
๏‚ท
๐œŒ = 0 inside a conductor
๏‚ท
Any net charge resides on the surface
๏‚ท
A conductor surface is equipotential
๏‚ท
๐ธแˆฌโƒ— perpendicular to surface just outside a conductor
Example: Parallel Plates
(Ignoring Edge Effects)
๏‚ท
Uniform charge density ๐œŽ =
๐‘„
๐ด
spread over both
inner surfaces
๏‚ท
๐ธแˆฌโƒ— =
๐œŽ
(โˆ’๐‘งฬ‚ )
๐œ–0
แˆฌโƒ— outside plates
between plates, ๐ธแˆฌโƒ— = 0
๐‘„
๐œ–0 ๐ด
=
๐œ™1 โˆ’ ๐œ™2
๐‘ 
2
2
๐‘„
๐œ–0 ๐ธ
๐‘ˆโ‰ก
=
๐ด๐‘ 
2๐ถ
2
๐ถโ‰ก
(Capacitance)
Energy Stored
(
)
in Capacitor