doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Time-Domain CSI Compression Schemes for Explicit Beamforming in MU-MIMO Date: 2010-9-14 Authors: Name Affiliations Address Phone email Koichi Ishihara NTT Corporation Yusuke Asai NTT Corporation Riichi Kudo NTT Corporation Laurent Cariou Orange Labs Hikarino-oka Yokosuka-shi, Japan Hikarino-oka Yokosuka-shi Japan Hikarino-oka Yokosuka-shi, Japan 4, rue du clos courtel 35512 Cesson-Sévigné +81-46-8594233 +81-46-8593494 +81-46-8593140 +33 2 99 12 43 50 [email protected] t.co.jp [email protected] o.jp [email protected] .jp laurent.cariou@orange -ftgroup.com Submission Slide 1 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Introduction • Downlink (DL) MU-MIMO will be adopted to improve the spectrum efficiency in TGac. • We have shown CSI report requirements for TGac in explicit feedback and in need of some CSI compression scheme to achieve higher MAC efficiency for MU-MIMO transmission [1]. • In [2] and [3], time-domain CSI compression schemes were proposed to reduce the amount of CSI needed. – [2] uses discrete cosine transform (DCT). – [3] uses truncated inverse discrete Fourier transform (TiDFT). • In this submission, we present these CSI compression schemes and evaluate these performances. Submission Slide 2 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Concept of time-domain CSI feedback TD/FD conversion Power Power • Frequency-domain (FD) CSI-FB: CSI between a Tx antenna and a Rx antenna consists of Nsubc subcarrier components. • Time-domain (TD) CSI-FB: CSI consists of only Ng components since it is assumed that the actual channel impulse response is present only the GI duration. Less CSI-FB needed with TD than with FD: factor is Ng/Nsubc. freq. time Ng Nsubc Time-domain CSI Frequency-domain CSI Submission Slide 3 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 CSI compression scheme using DCT [2] • IDFT and DCT can create time-domain components. • In IDFT, the discontinuity at the band edges results in a spreading of energy in the impulse response since DFT assumes that the frequency response is periodic, which causes large CSI error. • In contrast, DCT can reduce the high-frequency components compared to DFT since it assumes mirror extension of the original data. Discontinuity Freq. Power Inverse discrete Fourier transform (IDFT) Freq. Channel gain IDFT Power DCT Continuity Freq. Ng Time Discrete cosine transform (DCT) Submission Slide 4 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 CSI compression scheme using TiDFT [3] • In IDFT, the discontinuity at the band edges results in a spreading of energy in the impulse response. • To overcome this problem, a truncated IDFT (TiDFT) matrix is applied: TiDFT matrix is the truncated SVD of pseudo-inverse matrix for IDFT. • TiDFT/FFT operation enables CSI compression since it can suppress CSI error due to discontinuity of the band edges. (NsubcxNFFT)-DFT matrix F Pseudo-inverse matrix 1 F F F FH H Truncated SVD decomposition ~ ~ ~ F UV * , rank F r TiDFT matrix Submission Slide 5 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Performance comparison of 3 CSI-FB schemes (1/2) Simulation parameters 100 80 Nb=8bits 5bits 60 CDF 7bits 4bits DCT 6bits 40 TiDFT 20 DCT TiDFT Conventional (FD) 0 -60 -50 -40 -30 -20 -10 MSE (dB) Nb: Number of bits for each CSI coefficient Submission Slide 6 Channel model Model E Bandwidth 40MHz Number of FFT points N 128 Number of subcarriers Nsubc 114 Number of antennas at AP NT 8 Number of antennas at STA NR 1 Number of CSI-FB components for DCT LDCT 32x2 Number of DCT points NDCT 64 Number of CSI-FB components for TiDFT LTiDFT 32 Note: CSI before compression is perfect CSI. When CSI before compression includes the effect of noise, MSE performance of DCT and TiDFT will be 3dB and 6dB better than conventional FD respectively because of time domain smoothing. K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Performance comparison of 3 CSI-FB schemes (2/2) 0 Simulation parameters 10 -1 Average BER 10 -2 10 DL MU-MIMO: AP(8Tx) to 4 STAs(1Tx) Ideal Conv. (4bits) Conv. (5bits) Conv. (6bits) DCT (4bits) DCT (5bits) DCT (6bits) TiDFT (4bits) TiDFT (5bits) TiDFT (6bits) -3 10 -4 10 -5 10 DCT 10 15 TiDFT 20 Channel model Model E Bandwidth 40MHz Modulation 64QAM Coding rate 5/6 Transmit beamforming ZF Number of CSI-FB components for DCT LDCT 32x2 Number of DCT points NDCT 64 Number of CSI-FB components for TiDFT LTiDFT 32 Note: “Ideal” means Perfect CSI. The original CSI of three CSI-FB schemes is perfect CSI. The CSI error is due to quantization error and CSI compression operation. If original CSI includes the effect of noise, BER performance of time domain 30 CSI-FB becomes much better than conventional scheme because of noise reduction by smoothing. 25 SNR (dB) Submission Slide 7 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Amount of FB information and calculation complexity FB information bits per STA DCT (3+2xNbxNTxNR)xLDCT TiDFT (3+2xNbxNTxNR)xLTiDFT Conv. (3+2xNbxNTxNR)xNsubc Number of additional multiplications for TD conversion Number of additional multiplications 12000 Nb=6bits FB information (bits) 10000 8000 6000 4000 2000 0 DCT Submission TiDFT Conv. Slide 8 DCT TiDFT AP 2NDCTlog2(NDCT) NsubcxLTiDFT STA 2NDCTlog2(NDCT) Nlog2N 4000 3500 @STA @AP 3000 2500 2000 1500 1000 500 0 DCT TiDFT K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Effect of the number of CSI-FB coefficients 100 100 Nb=6bits Nb=6bits 80 80 LDCT=32x2 60 LDCT=16x2 CDF CDF 60 LDCT=32x2, 24x2, 16x2 40 LDCT=24x2 40 20 20 DCT DCT 0 0 -50 -45 -40 -35 -30 -25 -20 -15 -10 MSE (dB) -45 -40 -35 -30 -25 -20 -15 MSE (dB) Channel model B (small delay spread) Submission -50 Channel model E (large delay spread) Slide 9 K. Ishihara et al.,(NTT) -10 doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Performance comparison of 3 CSI-FB schemes (2/2) 0 10 -1 10 -2 10 -3 12000 Nb=6bits 10000 FB information (bits) Average BER 10 Channel model B Nb = 6bits 8000 6000 4000 2000 Ideal 10 -4 0 DCT(L=16x2) DCT DCT(L=24x2) DCT(L=32x2) 10 -5 10 15 20 25 30 35 40 Conv. Note: When using optimization of TiDFT matrix, TiDFT can also reduce the number of FB information bits. SNR (dB) When the delay spread is small, the amount of FB information can reduce by controlling the number of CSI-FB components L. Submission Slide 10 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 Conclusion • We presented the performance evaluations for time-domain CSI-FB schemes to reduce the amount of FB information. • Time-domain approach can reduce FB information since the number of channel impulse response components fits within GI period. – DCT reduces CSI-FB information by about half of the conventional one with some additional calculation. – TiDFT is the most effective scheme of CSI compression although calculation complexity increases at STA. • The amount of FB information can be adjusted dynamically by controlling the number of CSI-FB components with the demand of CSI accuracy. • In addition, time-domain operation can improve the CSI estimation accuracy by reducing the noise on the estimated channel coefficients. Submission Slide 11 K. Ishihara et al.,(NTT) doc.: IEEE 802.11-10/1131r0 doc.: IEEE 802.11-09/0161r1 Sept. 2010 References [1] K. Ishihara et al., CSI Report for Explicit Feedback Beamforming in Downlink MU-MIMO, IEEE 802.1110/0332r0, Mar. 2010. [2] K. Ishihara et al., CSI Feedback Scheme using DCT for Explicit Beamforming, IEEE 802.11-10/0806r1, July 2010. [3] L. Cariou and M. Diallo, Time Domain CSI report for explicit feedback, IEEE 802.11-10/0586r1, May 2010. Submission Slide 12 K. Ishihara et al.,(NTT)
© Copyright 2026 Paperzz