Novel Dispersion and Self-Assembly of Carbon Nanotubes Mohammad F. Islam Department of Chemical Engineering and 100g Department of Materials Science & Engineering http://islamgroup.cheme.cmu.edu Korea-US NanoForum 2010, Seoul, Korea A il 5-6, April 5 6 2010 Funding Agencies NSF: CBET-0708418, DMR-0619424 and DMR-0645596 ACS PRF ACS-PRF Sloan Foundation DARPA Outline • Introduction I d i to S Soft f Materials M i l • Single g Wall Carbon Nanotubes (SWNTs) • Purification, Dispersions and Their Properties • Carbon Nanotube Aerogels • Conclusions Soft Materials - Introduction Introduction to Single Wall Carbon Nanotubes Diamond C60 “Buckminsterfullerene” Graphite Multiwall Carbon Nanotube (MWNT (MWNT)) Single wall Carbon Nanotube (SWNT (SWNT)) SWNTs have extraordinary anisotropic properties ~1 1 nm 100 nm – 10,000 nm SWNT Strength (~100x Steel) Tensile strength ~200 GPa Stiffness ~1 TPa Elongation ~30% Salvetat et al., PRL 82, 944 (2000) Electrical Conductivity (~Copper) Dekker et al., Nature 386, 474 (1997) Thermal Conductivity ~3x Diamond Incorporate anisotropic properties of SWNTs into composites Challenges • Large scale production of clean nanotubes. • Homogeneous H dispersion di i iin solvents l and dh host materials. i l van der Waals attraction: 40 KBT/nm • Control of diameter, chirality and length. • Determination of bulk properties and structural behavior. • Effective integration into composites. • Controlled integration into electronic circuits. Synthesis of SWNTs Research Experience for Undergraduates 2007 Hata et. al., Science 306, 1362 (2005) Purification of SWNTs Standard wet air burn with H2O2 Mild acid reflux Magnetic gradient fractionation Vacuum anneal 3 3.0 Purification only 5 2 1 Fractionated 0 -1 LMNT Purified LMNT puried and Fractionated HiPCO Purified HiPCO Purified and Fractionated -2 Collect magnetically 20 nm fractionated nanotubes magnet Inten nsity x 10 M (emu u/mg) x 10-3 Flow in nanotube 20 nm suspension -3 25 2.5 2.0 1.5 10 1.0 0.5 0.0 -12 -8 -4 0 4 8 12 H (Tesla) 500 1000 1500 -1 wavenumber (cm ) Nature Materials 4, 589 (2005) 2000 Surfactants Surfactant micelle + water + + oil H d Hydrophilic hili h headgroup d + Hydrophobic tail water Shake water Oil droplets + Dispersing SWNTs: Our Work Sodium Dodecyl Benzene Sulfonates (NaDDBS) SO3- Na+ C12H25 Surfactant: SWNTs: Time: SDS 3x10-4 5 days TX-100 TX 100 6x10-4 5 days N DDBS NaDDBS 5.00 2x10-2 2 months 2.50 0 Nano Letters 3, 269 (2003) 2.50 0 5.00 m Purified and Suspended SWNTs Are Undamaged 0.5 50 0.4 40 0.3 30 0.2 20 0.1 10 0.0 0 800 Electrical Properties p 1200 Emisssion Absorb bance Optical Properties 1600 Wavelength (nm) 6 Metallic (x5) Current (nA) 5 4 3 2 1 Semiconducting (x10) 0 -10 Nature Materials 4, 589 (2005) -5 0 Gate Voltage (V) 5 10 Aerogels:: Ultra Aerogels Ultra-light Mesoporous Materials Ultra-light Highly porous materials Very high strength-to-weight strength to weight Very high surface-area-to-volume ratio Ultra-light structural media Radiation detector Thermal insulator Battery electrode Supercapacitor Aerogel type Electrical Conductivity (S/cm) Thermal Conductivity (W/m-K) (W/m K) Density (g/cm3) Silica N/A ~ 0.003 0.0019 ~ 0.1 Rigidity Percolation Network formation at low Strong network Plateau M Modulus s, G' (Pa a) 105 104 103 102 101 100 10-1 10-3 10-2 10-1 Phys. Rev. Lett. 93, 168102 (2004) CNT Aerogels Increasing CNT concentration Phys. Rev. Lett. 93, 168102 (2004) NanoLetters 6, 313 (2006) CNT gels do not break apart CNT Aerogels Density: 0.02 g/cm3 Advanced Materials 19, 661 (2007) 1 µm SWNT Aerogels 100g weight on 3 aerogel posts Total aerogel mass: 12.8 mg Density 0.02 g/cm3 Supports at least 10 µm 100g ~8,000x own weight 20 nm SWNT Aerogel g posts p Electrical Conductivity up to ~10 S/cm Surface area 1860 m2/g Thermal Conductivity ~0.3 W/m-K Advanced Materials 19, 661 (2007) 3 µm CNT Aerogels Current (mA) 1500 750 0 -0.8 08 -0.4 04 0 -750 -1500 04 0.4 08 0.8 Voltage (V) Backfilling with epoxy Epon 828 Resin +EpiKure 3234 Crosslinker Vacuum Aerogel Resin “wicks” into sample Epoxy + cross linker Vacuum removed • C Conductivity d i i llargely l unaffected by backfilling • Improved composite conductivity Adv. Mater. 17, 1186, 2005 Fracture - Complete fill • Can be backfilled with various substances Fusing CNT Aerogel PRL 89, 075505 (2002) Fusing CNT Aerogel Nature Nanotech. 3, 17 (2008) Fusing CNT Aerogel Irradiation gives rise to covalent bonds between the tubes. The overall Th ll strength t th off the th nanotube t b materials t i l may increase. i Increase the tensile strength of macroscopic nanotube products. A beneficial effect on the electronic properties Irradiation with moderate doses may increase the conductivity of nanotube networks. Spatially localized irradiation can be used for creating functional electronic nanotube-based devices. Is it possible to fuse CNTs in 3D structure? Fused CNT Aerogel Fused CNT Aerogel Fused CNT Aerogel Defects on CNTs A fused CNT junction Fused CNT Aerogel HP Outside_hole holder_400V_annealing Outside_carbontape_200V_annealing 8 7 6 5 4 2 J (A/cm ) 3 2 1 0 -1 -2 -3 -4 -5 -6 7 -7 -8 -5 -4 -3 -2 -1 0 Voltage (V) 1 2 3 4 5 Conclusions • W We fabricated f b i t d self-assembled lf bl d carbon b nanotube t b based b d ultra-light, lt li ht large l surface area-to-volume ratio electrically conducting porous structure – CNT aerogel. • CNTs can be fused at junction points to increase mechanical strength and thermal properties. 100g
© Copyright 2026 Paperzz