Multiple Gate CMOS and Beyond Dept. of EECS, KAIST Yang-Kyu Choi Outline 1. Ultimate Scaling of MOSFETs - 3nm Nanowire FET - 8nm Non-Volatile Memory Device 2. Multiple Functions of MOSFETs 3. Summary 2 CMOS Evolution Scenario G S G D S D Fin Fin Fin Double gate Ω-gate All-around Buried Oxide Bulk-single gate SOI single gate No report for Sub-50nm LG=4nm NEC IEDM 2003 LG=8nm IBM IEDM 2003 LG=10nm AMD/Berkeley IEDM 2003 3 LG=10nm LETI VLSI 2005 This Work ITRS Roadmap 2006 LG (nm) 28 Bulk SG 1.1 EOT (nm) DG Bulk SG 0.15 Isd,leak (µA/µm) DG Bulk SG 1130 Id,sat (mA/mm) DG 2008 2011 2013 2020 5 22 16 13 0.9 0.5 0.6 0.8 0.5 0.2 0.32 0.1 0.11 0.11 1570 2490 1899 2220 2981 Source: ITRS 2005 roadmap Solution exist Solution being pursued No known solution 4 All-Around Gate (AAG) FinFET • AAG-FinFET Source – LG=3nm – WFin=3nm – EOT(HfO2)=1.2nm Gate Gate Drain • To fabricate sub-5nm silicon transistor, All-Around Gate (AAG) FinFET was proposed. 5 Process Flow of AAG-FinFET • • • • • • • • • • • (100) SOI wafer Silicon body thinning Fin patterning (dual-resist) Sacrificial oxidation Gate dielectric (HfO2) Poly-silicon deposition Gate patterning (dual-resist) Spacer formation Source/Drain implantation Spike annealing (1000oC) Forming gas annealing (450oC) 6 3nm AAG FinFET: Silicon-Fin Silicon fin HfO2 S Source Gate Gate 20nm Poly-si 3nm Drain Buried oxide 5nm 3nm Y.-K. Choi et al., VLSI, 2006 7 5nm 3nm AAG FinFET: Gate 5nm Poly-si HfO2 IFO 5nm 5nm Source Gate Gate Poly-si Gate Si Poly-si 3nm HfO2 Drain IFO 5nm Silicon fin 8 Si Drain Current [A/µm] Simulated Measured VD=1.0V 140 -4 10 VD=0.2V -5 10 DIBL=230mV/V SS=208 mV/dec HfO2 =1.4nm LG=3nm WFin=3nm -6 10 -7 10 -1.0 -0.6 -0.2 0.2 Gate Voltage [V] 0.6 120 100 80 60 40 20 0 1.0 Transconductance [µS/µm] 160 -3 10 Drain Current [µA/µm] I-V of 3nm AAG FinFET 350 HfO2 =1.4nm LG=3nm 250 W =3nm Fin 200 300 0.4V 150 VG=0.2V 100 50 0 0.0 0.2 0.4 0.6 0.8 Drain Voltage [V] • Large DIBL and SS due to thick EOT – ITRS requirement: 0.5nm EOT for DG 9 0.6V 1.0 Fundamental Limit of Scaling • Device scaling limit (Operating at 300K) – Heisenberg’s uncertainty principle – Shannon - von Neumann - Landauer (SNL) expression SCALING LIMIT 1.5 xmin h h h = = = ∆p 2mc Ebit 2mc k B T ln 2 = 1.5nm (T = 300 K ) Fabricated 3nm all-around gate FinFET is approaching to this fundamental limit. 10 Nanowire Structure • Silicon nanowire non-volatile memory structure for ultimate scaling Poly-silicon Blocking oxide Nitride trap layer Tunneling oxide Si Buried Oxide 8nm Non-Volatile Memory Omega-shape gate ONO-structure 11 8nm Si Nanowire NVM Poly-silicon Gate O S N O S Silicon Nanowire (7/10nm) etrap sites BOX Gate Tunneling oxide Nitride trap layer Blocking oxide 10nm Poly-silicon Y.-K. Choi et al., VLSI, 2007 12 8nm Si Nanowire NVM 8nm Gate 7/10nm 3.8nm 6.4nm 5.1nm Oxide Nitride Silicon TONO=15nm > LG=8nm 5.1nm 6.4nm 3.8nm 13 8nm Silicon Nanowire NVM with ONO -4 -4 -5 1x10 1x10 Drain Current [A/µm] Drain Current [A/µm] 1x10 ONO=3.8/6.4/5.1nm tProgram=80µsec 1x10 -6 10 -7 10 8V 10V Initial VPG=12V -8 10 LG=8nm W NW=7nm HNW=10.5nm -9 10 -10 10 -4 -3 -2 -1 -5 0 1 Gate Voltage [V] 2 ONO=3.8/6.4/5.1nm tErase=80µsec -6 10 -7 10 VER=-12V -10 -8V -8 10 LG=8nm W NW=7nm HNW=10.5nm -9 10 -10 3 10 -3 Initial -2 -1 0 1 Gate Voltage [V] • 8nm LG with 7nm WNW using ONO-structure - Acceptable electrical performance by omega-gate - Wide hysteresis shows the probability of multi-level NVM 14 2 3 8nm Si Nanowire Memory 4.0 3.0 L =8nm 3.0 G WNW=7nm 2.5 VPG=12V 2.5 2.0 VPG=10V 1.5 1.0 VPG=8V 0.5 0.0 ∆VT [V] ∆VT [V] 3.5 ONO=3.8/6.4/5.1nm -8 -7 -6 -5 -4 10 10 10 10 10 10 -3 -2 -1 0 LG=8nm WNW=7nm HNW=10nm 2.0 1.5 VER=-8V 1.0 -10V 0.5 1 10 10 10 10 0.0 VER=-12V -8 -7 -6 -5 -4 10 10 10 10 10 Program Time [sec] -3 -2 Erase Time [sec] • 8nm NVM: VT window = 2V – Program @ +12V/1msec, Erase @-12V/1msec 15 -1 0 10 10 10 10 10 1 Scaling Limit in NVM • Ultimately scaled NVM • Nanowire + SONOS TO/N/O=15nm > Lg=8nm Scaling Limit ! Y.-K. Choi et. al., VLSI 2007 • Close to end-point of semiconductor memory 16 Where to Go? Do wn MultiFunctioning Multi-Bit Sc al in g We are here 17 This Work ! Example of Fusion Memory (System in Package) DRAM NVM SRAM .. . Wafer level fusion !! • Increased volume • Complexity in assembly • Chip-to-chip interference 18 Principal of SONOS Flash Memory control oxide nitride ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ tunnel oxide S ⊖⊖⊖⊖ D ⊕⊕⊕⊕ ⊕⊕ ⊕⊕ S⊕ ⊕ ⊕⊕ D Substrate Substrate < program > < erase > Gate Gate ⊖⊖⊖⊖⊖⊖⊖⊖ S Gate D ⊕⊕⊕⊕ S⊕ ⊕ ⊕ ⊕ Substrate Substrate < read ‘0’ > < read ‘1’ > 19 Drain current Gate ‘1’ ‘0’ Gate voltage D Features of flash • High density ↑ • Non-volatile ↑ • Speed ↑ Principal of Capacitorless DRAM Gate S ⊖ ⊖ ⊕ ⊕⊕⊕⊕ Buried oxide D S ⊕⊕D ⊕⊕⊕ Buried oxide Substrate Substrate < program > < erase > Gate Gate ⊕⊕⊕⊕ Buried oxide D S Buried oxide Substrate Substrate < read ‘1’ > < read ‘0’ > Drain current S Gate D ‘1’ ‘0’ Time 20 Source : IEEE spectrum Dec. 2008 Features of 1T-DRAM • High speed ↑ • 2x denser than 1T/1C DRAM ↑ • 5x denser than SRAM ↑ • Volatile ↓ Basis of URAM Operation (1) Gate voltage flash program capacitorless 1T-DRAM program capacitorless 1T-DRAM erase Drain voltage Flash Memory Mode - Program : FN tunneling/HEI - Erase : FN tunneling/HHI (High gate & drain voltage) Capacitorless 1T-DRAM Mode - Program : Impact ionization - Erase : Forward junction current (Low gate & drain voltage) Disturbance Issue flash erase - Periodical refresh 21 Multi-Function (URAM) Operation Flash Memory electron DRAM hole Gate Oxide Nitride Oxide Drain 드레인 Source Quantum Barrier 22 Family of URAM S. Okonin et.al., SOI conf., 2001 R. Ranica et.al., VLSI symp., 2004 23 Process Flow (1) SOC Substrate SOI Substrate Si Si Buried oxide Si:C Si substrate Si substrate • Initial SOI substrate • Initial bulk substrate • Si:C epitaxial growth • Si epitaxial growth SON Substrate SOG Substrate Si Si n-well Si:Ge Si substrate Si substrate • Initial bulk substrate • Initial bulk substrate • Buried n-well implantation • Si:Ge epitaxial growth • p-body implantation • Si epitaxial growth 24 Process Flow (2) Puntch stop implantation fin Active fin lithography Hole barrier layer Si substrate Fin patterning HDP oxide deposition fin SiO2 Photoresist trimming SiO2 Hole barrier layer Si substrate Oxide CMP Oxide recess formation 25 Process Flow (3) Gate O/N/O formation fin Poly-Si deposition SiO2 SiO2 Hole barrier layer Si substrate Gate S/D implantation fin SiO2 Gate patterning SiO2 Hole barrier layer Si substrate Activation Forming gas annealing 26 URAM on SOI 27 Cross sectional view of URAMs URAM on SOI URAM on SiC URAM on Buried N-well 28 URAM On SiGe Drain current, V IDD (A) ID-VG Characteristics 10 -5 10 -6 10 -7 10 -8 10 -9 10 -10 10 -11 VD = 1V -1.0 SOI SOC SOG SON -0.5 0.0 0.5 1.0 1.5 2.0 Gate voltage, VG (V) • Superior device performances are result of the 3D nature. 29 ID-VD Characteristics (Kink) SOI SOC SON SOG 30 P/E in NVM Program Erase • P/E sensing windows are acceptable. 31 Reliability in NVM Retention Endurance • Data retention and endurance are acceptable. 32 Capacitorless 1T-DRAM in SOI PD URAM 0.8V 0.7V 0.6V 80 Source current, IS (µA) FD URAM 70 60 ∆Is=20µΑ 50 SOI URAM 40 ∆Is=7µΑ 30 20 80msec Conventional FinFET SONOS 10 0 0 50 100 150 200 Time, t (msec) < Measurement Results > < Potential Profile > • Proposed SOI URAM exhibits wider sensing current window. Y.-K. Choi et. al., IEDM 2007 33 Capacitorless 1T-DRAM in SON bulk MOSFET Y.-K. Choi et. al., VLSI 2008 32 Sensing current, IS (µA) 28 VSUB=0.5V 24 20 SON URAM 16 12 ∆IS=4µA 8 4 ∆IS=7µA VSUB=0.3V VSUB=0V 0 1 2 3 Time, t (msec) 4 5 < Measurement Results > < Excess Hole Concentration > • Capacitorless 1T-DRAM works in SON floating substrate. 34 Capacitorless 1T-DRAM at SOC Y.-K. Choi et. al., VLSI 2008 SON URAM SOC URAM Source current, IS (µA) 28 24 20 ∆IS=11µA 16 V =0.3V SUB 12 ∆IS=7µA 8 VSUB=0V 4 0 0 1 2 3 4 Time, t (msec) 5 < Measurement Results > < Excess Hole Concentration > • Capacitorless 1T-DRAM works in SOC floating substrate. 35 6 Summary IT only NT only N IT ⊗ T • 3nm MOSFET and 8nm non-volatile memory device were demonstrated. → Close to scaling limit. • Multi-function URAM was demonstrated. → Continuously increased density 36 Built-in Potential for Buried n-well SIMS profile of the buried n-well Simulation Result of Energy Band 0.9 eV • Built-in potential confines excess holes. 37 Band-Offset for Si:C & Si:Ge (2) C-V for Band Engineered Substrate Energy Band Diagram Normalized capacitance 1.0 0.8 0.6 0.4 Si/Si0.7Ge0.3/Si Si/Si0.94C0.06/Si ∆EV= 200 meV ∆EV=-180 meV 0.2 0.0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 Gate voltage, VG (V) 0.0 0.5 • Double slopes appear in weak accumulation region. 38 Scaling Issue (Why capacitorless DRAM?) µ-processor Cache memory SRAM (32F2) Cache portion 50% in 2006 83% in 2008 90% in 2011 Is this memory or µ-processor ? • Cell capacitance in DRAM > 25fF (non-scalable) Cell area (~8F2) is continuously reduced. • Capacitorless DRAM is a promising candidate for embedded memory. 39 Soft-Program Issue Gate voltage flash program capacitorless 1T-DRAM program capacitorless 1T-DRAM erase Disturbance Issue - Periodical refresh Drain voltage 1T-DRAM mode Set VT of all cells to 0.2V by adjustment of trapped charges Capacitorless 1T-DRAM operation Verification VT=0.2V? yes refresh Initialization : no 40 GIDL Program Method 2 Gate voltage 1 0 Drain voltage -1 100 nsec -2 GIDL Threshold voltage, VT (V) Source current, IS (µA) Bias (V) Impact ionization 100 nsec 40 20 12µA 0 0 200 400 600 Time, t (µsec) 800 0.6 0.5 Impact ionization program VG=1, VD=2V GIDL program VG=-2V, VD=2V 0.4 0.3 10 1000 < 1T-DRAM Measurement > 0 10 1 2 3 4 10 10 10 Stress time, t (sec) 10 5 < Soft-program test > • GIDL program method mitigates soft-programming. [J.-W. Han et. al., EDL, Apr. 2009] 41 G-to-S/D Underlap Structure Gate S ⊖ ⊕ ⊖ D Buried oxide 50nm Substrate G-to-S/D Overlap junction Gate S ⊖ ⊖ ⊕ Buried oxide D Gate D S Buried oxide Substrate G-to-S/D Underlap [J.-W. Han et. al., EDL, May 2009] 42 3 2 VG 1 0 V D -1 -2 0.45 50 nsec 50 nsec G-to-S/D underlap 50 40 30 8 µA G-to-S/D overlap 20 10 0 0.0 11 µA Threshold voltage, VT (V) Source current, IS (µA/µm) Bias (V) G-to-S/D Underlap Structure 0.40 1.0 G-to-S/D overlap 0.35 0.30 0.25 0.20 0.15 0.5 Time, t (msec) Stress bais : VG=1V, VD=2.5V G-to-S/D underlap 0 10 1 2 3 10 10 10 Stress time, t (sec) 10 4 10 < Soft-program test > < 1T-DRAM Measurement > • G-to-S/D underlap structure mitigates soft-programming. [J.-W. Han et. al., EDL, May 2009] 43 5 Issue and Solution of G-to-S/D Underlap Device Structure S Buried oxide SiO2 D Substrate SiO2 Spacer Gate S Buried oxide Substrate High-k Spacer High-k D overlap with SiO2 spacer 100 Source current (µA/µm) Gate 120 80 ∆IS=11µA 60 underlap with HfO2 spacer 40 20 ∆IS,SiO2=20µA 0 underlap with -20 SiO2 spacer -40 10 ∆IS,HfO2=55µA hold read 20 erase 30 40 Time (nsec) hold 50 read 60 < Simulation Results > • High-k spacer countervails the parasitic series resistance [J.-W. Han et. al., EDL, May 2009] of the G-to-S/D underlap. 44
© Copyright 2026 Paperzz