The 4th U.S.-Korea NanoForum April 26-27, 2007, Honolulu, USA Improvement of Device Efficiency in Conjugated Polymer/Fullerene NanoComposite Solar Cells School of Semiconductor & Chemical Engineering * Chonbuk National University, Korea Soo-Hyoung Lee S * S * * Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Organic Solar Cells All Organic solar cell Dye-sensitized solar cell e– e– LUMO LUMO HOMO h+ HOMO Electron Electron Anode Donor Acceptor Cathode τinj CB Cathode τc c D*/D+ τr Vo surface states Electron Acceptor c Electron Donor Anode Substrate I3/I D/D + VB TiO2 Dye Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University All organic solar cells Type of Active Layer Material Low Molecules Cathode Structure D/A Heterojunction Electron Acceptor Electron Donor Substrate Anode Double Active Layer e– e– LUMO Polymers LUMO D/A Bulk Heterojunction HOMO h Anode + HOMO Electron Electron Cathode Donor Acceptor (p) (n) Single Active Layer Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Polymer-Fullerene Solar Cell Host matrix morphology effect Eff = 2.5 % @ 80 mW / cm2 Sean E. Shaheen, et al., Appl. Phys. Lett. 78, 841 (2001) Toluene Chlorobenzene Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Polymer-Fullerene Solar Cell w/o Annealing 70oC 150oC ITO / PEDOT / P3HT:PCBM / Al Eff = 5 % @ 80 mW / cm2 (Annealing after Al deposition 150oC for 30 mins) Heeger et al., Adv. Funct. Mater., 15, 1617 (2005) Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Polymer-Fullerene Solar Cell Total thickness of active layer : < 100-150 nm D/A Bulk Heterojunction (Single layer) Maximum Efficiency: ~ 5 % Nano-composited interpenentrating network (IPN) structure Photoinduced charge generation in a 3D-network interfaces D/A Bulk-heterojuction (BHJ): ¾ Electron-donor (p-type): conjugated polymers ¾ Electron-acceptor (n-type): Electron fullerene (derivatives) e– e– LUMO transfer from Polymer to C60 occurs in a pico-second (<10-12) LUMO HOMO h+ Anode HOMO Electron Electron Cathode Donor Acceptor (p) (n) Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Polymer-Fullerene Solar Cell How to make efficiency improvements? D/A Bulk Heterojunction High EFF Materials High Jsc Voc FF p-type n-type Nano-composited IPN structure High Absorption Separation Transportation Interface control of organic/metal p-type Devices Structure Bandgap (Eg) HOMO & LUMO Mechanism Treatment Additives Crystallinity ETC… ETC… n-type Cathode Anode Effective charge transportiation / collection Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 1 Efficient solar cells with interlayer Interlayer (~10 nm): blocking of electron & exciton from active layer D/A Bulk Heterojunction 2.97 p-type 3.7 n-type p-type 4.8 ITO Active 4.2 5.2 PEDOT 5.33 Al n-type MDMO-PPV 6.1 PEDOT:PSS Interlayer PCBM O O S S + O O SO3- Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 1 Efficient solar cells with interlayer 1.5 1.0 Dark 2 Current( mA/cm ) 0.5 0.0 -0.5 -1.0 -1.5 Photo -2.0 without interlayer with interlayer -2.5 -3.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Bias (V) Voc(V) Jsc(mA/cm2) FF EFF(%) without interlayer 0.72 -1.062 0.301 0.229 with interlayer 0.73 -1.940 0.409 0.583 Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 2 Use of Triplet (Phosphorescence) Organic Materials ¾ Conventional polymer-fullerene organic solar cell (PPV-PCBM system) + SM Red-Dopant MDMO – PPV : p-type material PCBM : n-type material Red-Dopant : absorber & ET (long lifetime) 2.97 3.7 4.2 4.8 Red-Dopant (Phosphorescence) ITO Al 5.2 PEDOT 5.33 MDMO-PPV 6.1 PCBM Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 2 Use of Triplet (Phosphorescence) Organic Materials • Power-conversion efficiency ≡ Light absorption ≡ Thickness of organic layer ∉ Exciton diffusion length (10-30 nm @ organic) • Exciton diffusion length = Mobility × Lifetime • Triplet (phosporescence) organic materials have “long exciton lifetime ≥ µS “ (fluorescence material: ≤ nS) -2 w/o RD - Singlet - Triplet w/ RD -3 Al Al eISC -4 hν -5 ○ ITO MDMO-PPV ○ ITO PCBM Red Dopant -6eV ITO MDMO Red Dopant -PPV PCBM Al Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 2 Use of Triplet (Phosphorescence) Organic Materials ¾ Energy Transfer in PL measurement ¾ Photocurrent generation (MDMO-PPV & Red Dopant) (MDMO-PPV & Red Dopant) 1400 MDMO-PPV Red Dopant PPV + RD 5% PPV + RD 10% PPV + RD 15% 1000 -6 3x10 Photocurrent (arb, unit) PL intensity (A.U.)) 1200 800 600 400 2 1 MDMO-PPV:PCBM MDMO-PPV:PCBM(1:2) MDMO-PPV:PCBM:R-Dopant MDMO-PPV:PCBM(1:2):TER002(10%) 200 0 550 600 650 700 Wavelength(nm) 750 800 0 400 600 800 Wavelength (nm) Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University 1000 Approach # 2 Use of Triplet (Phosphorescence) Organic Materials ¾ Device Performances ITO/ PEDT:PSS/ MDMO-PPV : PCBM/ LiF/ Al ITO/ PEDT:PSS/ MDMO-PPV : PCBM : R-Dopant / LiF/ Al 100 40 480nm MDMO-PPV:PCBM(1:2) MDMO-PPV:PCBM MDMO-PPV:PCBM(1:2):R-Dopant(10%) MDMO-PPV:PCBM:R-Dopant 74.2mW/cm2 MDMO-PPV:PCBM(1:2) MDMO-PPV:PCBM MDMO-PPV:PCBM(1:2):R-Dopant(10%) MDMO-PPV:PCBM:R-Dopant Current (x10 A) -6 -6 Current (x10 A) 50 20 0 -1.0 -0.5 0.0 Voltage (V) 0.5 1.0 0 -50 -1.0 -0.5 0.0 Voltage (V) 0.5 1.0 Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University Approach # 2 Use of Triplet (Phosphorescence) Organic Materials Voc (V) Jsc(mA/cm2) FF EFF(%) IPCE(%) 36.81 ITO/ PEDT:PSS/ MDMO-PPV : PCBM/ LiF/ Al 480nm(2.4mW/cm2) 0.8 0.4 0.44 4.97 74.2mW/cm2 0.85 2.62 0.42 1.28 ITO/ PEDT:PSS/ MDMO-PPV : PCBM : R-Dopant / LiF/ Al 480nm(2.4mW/cm2) 0.8 0.64 0.46 8.25 74.2mW/cm2 0.85 3.64 0.41 1.72 58.68 Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University More Questions or Discussion ? Welcome !! Thank you !! Chonbuk National University Soo-Hyoung Lee, Ph.D. Professor School of Semiconductor & Chemical Engineering Chonbuk National University 664-14 Duckjin-dong, Jeonju, 561-756, Korea 063-270-2435 / 011-9960-9363 (Phone) 063-270-2306 (Fax) [email protected] Organic Organic Optoelectronic Optoelectronic Materials Materials Lab Lab // Chonbuk Chonbuk National National University University
© Copyright 2026 Paperzz