Nanocomposite Photocatalysts for Solar Hydrogen Production Hydrogen Economy Carbon Economy Jae Sung Lee Pohang University of Science and Technology POSTECH Dept. of Chemical Engineering Photocatalytic PhotocatalyticHydrogen HydrogenProduction Production Photocatalyst Photocatalyst POSTECH Dept. of Chemical Engineering Sunlight Sunlightfor forHydrogen HydrogenProduction Production Photoelectrochemical Photoelectrochemical (PEC) (PEC)Cell Cell PV PV/Electrolysis /Electrolysis Photocatalysis Photocatalysis Sun Photocatalysts e- hυ H2 O2 S.C. H2O O2 H2 O2 Pt H2O No need for H2/O2 separation High efficiency Low stability Fabrication cost POSTECH Dept. of Chemical Engineering hυ H2 Low cost Low efficiency at present Photocatalytic PhotocatalyticWater WaterSplitting Splittingby byParticulate ParticulatePhotocatalysts Photocatalysts C.B e- hv≥Eg V.B e-++ he- e H+ Photocatalytic- Water Reduction 2H+ + 2e → H2 H2 hv or heat Recombination !! h+ O2 Photocatalytic Water OxidationH2O H2O + 2h+ → ½O2 + 2H+ Low Quantum Yield ! Low Photo-Activity ! Photocatalytic Overall Water Splitting H2O + hv → H2 + ½O2 POSTECH Dept. of Chemical Engineering (E = -1.23eV) Overall OverallWater WaterSplitting Splittingunder underUV UVlight light Q.Y. Q.Y.== 2× number of hydrogen molecules (or 4× number of oxygen molecules) Number of photons abosorbed H. G. Kim et al., Chem. Comm., 1077-1078 (1999) D. W. Hwang et al., J. Catal., 193, 40-48 (2000) J. Kim, Chem. Comm., 2488-2489 (2002) D. W. Hwang et al., J. Phys. Chem., 109(6), 2093-2102 (2005) POSTECH 1% 1% TiO2 (1972) SrTiO3 (1982) POSTECH Dept. of Chemical Engineering 10% 10% 30% 30% 23% 23% 35% 35% 50% 50% 50% 50% K4Nb6O17 K2La2Ti3O10 Sr2Nb2O7 Ba-La2Ti2O7 Ba-Sr2Nb2O7 La/NaTaO2 (2003) (2003) (2002) (1999) (1986) (1997) Domen Domen Kudo Solar SolarLight Light Spectrum Spectrum Sun 0% 0.5 % 3.5 % 46% 38% 17% Wavelength (nm) UV VIS 600 nm 1008 nm 1.59eV 3.26eV POSTECH Dept. of Chemical Engineering IR 2.07eV 1.23eV Band BandGaps Gapsand andBand BandPositions Positions Two Requirements for Band Structure: E (eV) NHE (V) -3.5 -1.0 -4.5 0.0 -5.5 +1.0 -6.5 +2.0 -7.5 +3.0 -8.5 +4.0 1. Band gap: 1.6 eV < Eg < 3.0eV 2. Band positions SiC (n,p) GaP (n,p) GaAs (n,p) CdS CdSe (n) (n) TiO2 (n) ZnO (n) Fe2O3 In2O3 SnO (n) (n) WO (n) 2 3 (n) H2O/O2 1.4eV 2.3eV 1.7eV 2.4eV 3.0eV 2.2eV 3.2eV 2.7eV 2.8eV 3.2eV 3.8eV POSTECH Dept. of Chemical Engineering H+/H2 (S2-/S) (@pH=1) Search Searchfor forthe theVisible VisibleLight LightPhotocatalysts Photocatalysts 1. New Single Phase Materials 1.1.New NewSingle SinglePhase PhaseMaterials Materials 2.2.Photosensitizer Photosensitizer(PS) (PS) 2. Photosensitizer (PS) 3.3.Modification ModificationofofUV UVPhotocatalysts Photocatalysts - -Cation CationDoping Doping - -Anion AnionDoping Doping(Nitrides, (Nitrides,Carbides, Carbides,Sulfides) Sulfides) 4.4.Composite CompositePhotocatalysts Photocatalysts 5.5.Solid SolidSolution Solution 5. Solid Solution 3. Modification Control of band position A Energy CB (Visible light) VB λ(nm) (Wide BG) POSTECH Dept. of Chemical Engineering (Narrow BG) 4. Composite Photocatalysts AANovel NovelUndoped, Undoped,Single Singlephase, phase, Photocatalyst, Photocatalyst,PbBi PbBi22Nb Nb22OO99 J. Am. Chem. Soc., 126(29), 8912-8913 (2004) J. Solid State Chem., 179, 1211-1215 (2006) A layered perovskite of Aurivillius phase X-ray diffraction pattern and the high-resolution TEM image of PbBi2Nb2O9 sintered at 1473K for 24h and its structure model POSTECH Dept. of Chemical Engineering Optical OpticalProperties Properties Absorbance (a. u.) A : TiO2-xNx B : PbBi2Nb2O9 (A) (A) (B) 200 300 400 500 600 700 800 wavelength /nm UV-Vis UV-VisDiffuse DiffuseReflectance Reflectancespectra spectra POSTECH Dept. of Chemical Engineering (B) Water WaterSplitting Splittingwith withSacrificial SacrificialAgents Agents(λ≥420 (λ≥420nm) nm) Band Gap Energy Catalysts Hydrogen Evolution Oxygen Evolution Eg(eV) λab(nm) μmol/gcat•hr 3Q.Y.(%) μmol/gcat•hr 3Q.Y.(%) PbBi2Nb2O9 2.88 431 7.6 0.95 520 29 TiO2-xNy 2.77 451 trace 0 221 14 Catalyst loaded with 1wt% Pt, 0.3g; light source, 450W W-Arc lamp(Oriel) with UV cut-off filter(λ≥420nm). Reaction was performed in aqueous methanol solution (methanol 30ml + distilled water 170ml) or in an aqueous AgNO3 solution(0.05mol/l, 200ml) H2O H2 Ag+ - Ag0 + CO2 CH3OH H2 Evolution POSTECH Dept. of Chemical Engineering + O2 H2O O2 Evolution Band BandGap GapReduction Reductionof ofLayered LayeredPerovskites PerovskitesBy ByPb Pb& &Bi Bi 2H- H2 CB e Bi Nb 4d Visible Light Ⅹ Nb (≥420 nm) O O 2p h+ Pb 6s VB O2 + 2H- - 2OH CH3CH(OH)CH3 CO2 Fig. O9 Fig.Total Totaland andpartial partialdensity densityofofstates states(DOS) (DOS)ofofPbBi PbBi2Nb 2Nb22O 9 POSTECH Dept. of Chemical Engineering Pb Strategies Strategiesfor forDevelopment Developmentof ofComposite CompositePhotocatalysts Photocatalysts O.F.C H.F.C Layered compound J.J.S.S.Jang Janget. et.al., al.,J.J.Catal., Catal.,231 231(2005) (2005)213 213 Nanoparticles (p-type) Bulk Oxide (n-type) What Whatfunctions functions?? → →Photocatalytic Photocatalyticp-n p-nNanodiodes Nanodiodes(PCD) (PCD) How Howtotofabricate fabricate?? → →Nano-Bulk Nano-BulkComposite Composite(NBC) (NBC) POSTECH Dept. of Chemical Engineering Photocatalytic Photocatalyticp-n p-nNanodidoes Nanodidoes Hydrothermal treatment method : CaFe2O4 : PbBi2Nb1.9W0.1O9 p-type CaFe2O4 150oC, 7days n-type PbBi2Nb1.9W0.1O9 Reactor Reactor PbBi W0.1OO9 synthesized by the solid state reaction method. PbBi2Nb 2Nb1.9 1.9W 0.1 9 synthesized by the solid state reaction method. CaFe CaFe2OO4 synthesized synthesizedby bythe thesol-gel sol-gelmethod. method. 2 4 POSTECH Dept. of Chemical Engineering Photocatalytic Photocatalyticp-n p-nNanodiodes Nanodiodes(PCD) (PCD) Angew. Angew.Chem. Chem.Int. Int.Ed. Ed.44 44(2005) (2005)4585 4585 POSTECH Dept. of Chemical Engineering Water WaterSplitting Splittingwith withSacrificial Sacrificialagents agents(λ≥420 (λ≥420nm) nm) Catalysts Band Gap Energy Hydrogen Evolution Oxygen Evolution Eg(eV) λab(nm) μmol/gcat•hr 3Q.Y.(%) μmol/gcat•hr 3Q.Y.(%) CaFe2O4/ PbBi2Nb1.9W0.1O9 2.75 450 34.8 4.16 675 38 PbBi2Nb2O9 2.88 431 7.6 0.95 520 29 CaFe2O4 1.99 623 trace 0 trace 0 TiO2-xNy 2.77 451 trace 0 221 14 Catalyst loaded with 0.1wt% Pt, 0.3g; light source, 450W W-Arc lamp(Oriel) with UV cut-off filter(λ≥420nm). Reaction was performed in aqueous methanol solution (methanol 30ml + distilled water 170ml) or in an aqueous AgNO3 solution(0.05mol/l, 200ml). POSTECH Dept. of Chemical Engineering Photocatalytic Photocatalyticp-n p-nNanodiodes Nanodiodeswith withan anOhmic OhmicJunction Junction Appl. Phys. Lett., 89, 064103 (2006) WO3 (A) W(CO)6 (B) WO3 (D) WO3 PbBi2Nb1.9Ti0.1O9 PbBi2Nb1.9Ti0.1O9 200 nm W/PbBi2Nb1.9Ti0.1O9 O2 2OH- O2 + 2H+ Flow WO3 W metal (C) WO3/W/PbBi2Nb1.9Ti0.1O9 PbBi2Nb1.9Ti0.1O9 POSTECH Dept. of Chemical Engineering Photocatalytic Photocatalytic HH22and andOO22evolution evolutionfrom fromwater waterunder undervisible visiblelight light(λ≥420nm) (λ≥420nm) Catalysts Band Gap Energy Hydrogen Evolution Oxygen Evolution Eg(eV) λab(nm) μmol/gcat•hr 3Q.Y.(%) μmol/gcat•hr 3Q.Y.(%) WO3/W/ PbBi2Nb1.9Ti0.1O9 2.86 433 49.33 6.06 741 41 CaFe2O4/ PbBi2Nb1.9W0.1O9 2.75 450 34.8 4.16 675 38 PbBi2Nb2O9 2.88 431 7.6 0.95 520 29 CaFe2O4 1.99 623 trace 0 trace 0 TiO2-xNy 2.77 451 trace 0 221 14 Catalyst loaded with 0.1wt% Pt, 0.3g; light source, 450W W-Arc lamp(Oriel) with UV cut-off filter(λ≥420nm). Reaction was performed in aqueous methanol solution (methanol 30ml + distilled water 170ml) or in an aqueous AgNO3 solution(0.05mol/l, 200ml). POSTECH Dept. of Chemical Engineering p-n p-nNanocomposite NanocompositePhotocatalysts Photocatalysts--Summary Summary Schottky Schottky p-n p-n p-n/ohmic p-n/ohmic n-type metal CB 2H+ e- e- EF H2 O2+2H+ h+ VB 2OH- Ohmic contact Schottky Schottky Junction Junction One Onephoton photonprocess process + Effective +-e-separation Effectivehh-e separation POSTECH Dept. of Chemical Engineering One Onephoton photonprocess process + Effective +-e-separation Effectivehh-e separation Two Twophoton photonprocess process Higher Highernet netphotonenergies photonenergieswhile while absorbing long wavelength photons absorbing long wavelength photons + - separation Effective +-e- separation Effectivehh-e Ecocat Ecocat People People $$ponsors General Motors National Research Laboratory Hydrogen Energy R&D Center (The 21st Century Frontier R&D Program) POSTECH Dept. of Chemical Engineering
© Copyright 2026 Paperzz