Nano Material Applications in Fuel Cell Dept. of Chemical Eng. Yonsei Univ. Prof. Y.G. Shul, H.S. Kim Nano Materials in Fuel Cell • Hydrogen Release Catalyst • Novel Anode Catalyst • Organic-Inorganic Membrane Fuel Cell Applications • Heteropolyacid(HPA)-SiO2 nanoparticles for high temperature operation of a direct methanol fuel cell • Preparation and characterization of new carbon for fuel cell application • Pulse Electrodeposition for Preparing PEM Fuel Cell Electrode • Investigation of alloy catalyst for accelerating hydrogen release from NaBH4 In this study • Preparation nanohybride particle (HPA/SiO2) By micro emulsion technique SiO2 . .. ... ....... ... .. .. . . .......... . . . .. . . .. ... ............... .......... . . . . . .... ...... . . . . . . . . . .. ... .. ............. ............ .. .. . . .. . .... ... .... . . . Nano scale Heteropoly acid • Characterization : TEM, Solid state NMR, TMP adsorption, N2 adsorption, FT-IR Heteropolyacid-SiO2 nanoparticles 100 nm TEM image of heteropolyacid-SiO2 nanoparticle (R=2, X=30%, 12hr) R= [H2O]/[AOT] X=[Heteropolyacid] 100nm TEM image of heteropolyacid-SiO2 nanoparticle (R=2, HPA 30%, 24hr) 31P MAS NMR H3PW12O40•6H2O Dehydration of heteropolyacid -15.6ppm Heteropolyacid < nanoparticle < Bulk powder Dehydration Trapping of acidic proton to OH group Heteropolyacid -15.3ppm 100nm -15.1ppm [ PW12O40 ]3− 500nm -15.0ppm H+ OH H+ OH H+ OH Si Si Si Bulk -10 -12 -14 -16 -18 -20 Chemical shift (δ, ppm) Fig. 31P MAS NMR spectra of heteropolyacid and HPA/SiO2 Referenced from - M.Misono et al., J.Phys.Chem.B., 104 (2000) 8108 - F.Lefebvre et al., J.Chem.Soc.Chem.Commun, (1992) 756 13C CP MAS NMR 27.9 ppm (a) 18.2 ppm 11.4 ppm 54.0 ppm (b) 60 50 40 30 20 10 0 Chemical shift (δ, ppm) 13C CP MAS NMR spectra (a) thiol- and (b) sulfonic-functionalized heteropolyacid-SiO2 nanoparticle. Preparation of inorganic particles in microemulsion Aerosol-OT O O O H2O HPA + SO3 Na O Sol-gel process Si(OR)4 + 4H2O → Si(OH)4 + 4ROH Si-OH + HO-Si → Si-O-Si + H2O Cyclohexane TEOS Surface area vs. nano HPA/SiO2 0.05 600 0.9 0.04 400 DV/DR (cm3/g) 2 BET Surface area (m /g) 500 Pore fraction 0.8 300 200 0 Pore ratio R < 1nm 0.6 0.5 0.4 0.3 R > 3nm 0.2 0.03 0.1 1 100nm HPA/SiO2 500nm HPA/SiO2 Bulk HPA/SiO2 0.02 Surface area Bulk 2 3 500nm 100nm Pore size distribution 0.01 100 0.7 0.00 1 HPA 2 Bulk 3 500nm 4 100nm 0 20 40 Pore size (A) 60 80 Application to DMFC Pressure gauge Cell Fuel pump flowmeter 2way valve Needle valve 6 way valve Methanol 2M solution. O2 Tank Fuel heater G.C • Heteropolyacid → Proton conductivity • Silica particle → Methanol blocker Polysulfone/nanoparticle composite membrane 100 (a) 1.4 ×10-3 S/cm 18 6.5×10-5 S/cm (b) 16 80 Heteropolyacid-SiO2 nanoparticle 40 20 Methanol crossover rate (µmol / cm2 min) 14 60 Z''(ohm) Sulfonated polysulfone membrane Composite membrane Heteropolyacid-SiO2 nanoparticle 12 10 8 6 4 2 0 45 50 55 60 65 70 75 80 Z'(ohm) 85 90 95 100 105 110 0 20 40 60 80 100 120 Cell temperature (oC) Complex impedance response(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid – SiO2 nanoparticle composite membrane. 140 Nafion/nanoparticle composite membrane 100 10 Crossover rate (µmol/cm2*min) 2 conductivity x10 (S/cm) 8 6 Nafion membrane Composite membrane (b) (a) A little decrease of proton conductivity 4 2 80 60 40 Reduction of methanol crossover 20 0 0 0 5 10 15 Content of nanoparticles (%) 20 25 0 20 40 60 80 100 120 140 Temperature (oC) Proton conductivity(a) and methanol crossover rate(b) of the sulfonated polysulfone and sulfonated polysulfone / heteropolyacid – SiO2 nanoparticle composite membrane. 160 Nafion-HPA/SiO2 composite membrane (Nafion / sulfonated heteropolyacid-SiO2 nanoparticle composite membrane) H2O H3O+ 80 oC 160 oC 200 oC 50 Cell voltage (V) Sulfonated heteropolyacid - SiO2 nanoparticle 60 40 2 0.6 Heteropolyacid - SiO2 nanoparticle 40 30 0.4 20 0.2 20 0 4000 10 0 0.0 3500 3000 2500 2000 1500 1000 -1 Wavenumber (cm ) FT-IR spectra of sulfonated heteropolyacid-SiO2 nanoparticle Power density (mW/cm ) 80 Transmittance (%) 60 0.8 100 0 50 100 150 200 250 Current density (mA/cm2) DMFC performance of composite membrane Improvement of DMFC performance by increasing the cell temperature 300 Research of carbon material application Caron structure FC application Performance remark Reference Pt/CNT PEMFC 0.7V, 0.7 mA/cm2 (50oC) high electrocatalytic activity for oxygen reduction 3.6±0.3nm J.of power sources 139(2005) 73 Pt/mesopor ous carbon (SBA-15) DMFC 0.4V, 135 mA/cm2 (65oC) Great potentiality for DMFC support Johnson Mattheyat 0.4V, 135 mA/cm2 (80oC) J.Of power sources 130 (2005) PtSn/ MWNT DEFC 0.4V, 100 mA/cm2 Improvement in liquid mass transfer for catalyst3nm PtSn/XC-72 0.4V, 80 mA/cm2 Carbon 42 (2004) Carbon fiber Mg-H2O2 Semi-fuel cell 1.5V, 300mA/cm2 Similar reference with Pt-Ir on carbon paper Mg: anode Microfiber carbon :cathode cathode side: 0.20M H2O2 J.Of power sources 96 (2001) 240 Carbon nanocoil DMFC 0.4V , 170mA/cm2 (60oC) Great potentiality for DMFC support material Angew. Chem 2003,115, 4488 Carbon nanohorn DMFC 0.4V , 130mA/cm2 NEC I-V curve for electrodes with commercial Pt/C and Pt/C+ Pt/ACF (900℃) 1.1 1.0 Commercial Pt/C Commertial Pt/C (70%)+ Pt/ACF(30%.400oC) Commertial Pt/C (70%)+ Pt/ACF(30%.900oC) 0.9 Voltage ( V ) 0.8 0.7 0.6 0.5 0.4 Performance increasing 0.3 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Current density ( A/cm2 ) Current density ( mA/cm2 ) Commercial Pt/C Pt/C+Pt/ACF (400℃) Pt/C+Pt/ACF (900℃) 710 807 960 Cell Temp. : 80℃, Humidify condition : RH% 100 anode and cathode, Flow rate: Stoichiometry 1.5(Anode):2.0(Cathode) Impedance for the electrodes manufactured with Pt/C, Pt/ACF(900℃) catalysts 0.10 0.30 o Pt/ACF ( 400 C ) Pt/ACF ( 900oC ) 0.08 Pt/ACF ( 400oC ) Pt/ACF ( 900oC ) 0.25 -Z'' / O hm -Z'' / O hm 0.20 0.06 0.04 0.15 0.10 0.02 0.05 0.00 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Z' / Ohm Impedance spectra at 0.7V 0.24 0.26 0.00 0.0 0.1 0.2 0.3 0.4 Z' / Ohm Impedance spectra at 0.8V 0.5 Specific surface area and average pore diameter of the CNF treated by KOH CNF 5H Activation condition Surf. area (m2 /g) Avg. Pore diameter (Å ) No activation 107.60 62.21 750-1h 444.18 46.07 800-1h 509.95 48.80 900-1h 645.53 48.0 900-2h 460.10 44.33 Modified method 375.52 54.41 900-3h 341.87 62.37 950-1h 303.54 58.01 SEM - CNFs named 5H pristine 800-1h 900-2h MDF(900-2h) TEM - 60wt% Pt-Ru/CNF A/(900-2h) (a) B/(900-2h) (b) 50 nm B/MDF(900-2h) (c) 50 nm 50 nm Growth of nanofiber on ACF micropores Surface and Pores of Activated Carbon Fiber H2 C2H4 Impregnation of metal salt solution a c b a, b Reduction in He/H2 Synthesis from C2H4/H2 inactive Preparation of various carbon substrates • CNF/ACF Fig. SEM images of carbon nano fibers grown on ACF Preparation of platinum on ACF-CNFs TEM Image of Pt/ACF-CNFs Fig. TEM images of Platinum oncarbon nanofibers grown on ACF Preparation of platinum on ACF-CNFs XRD patterns of Pt/ACF-CNFs Pt(1 1 1) P t/A C F -C N F s P t/C ( C o m m e r c ia l) Pt(2 0 0) Intensity(a.u.) Pt(2 2 0) 30 40 50 60 2 th e ta Fig. XRD pattern of Pt/ACF-CNFs 70 80 Single cell performance 1.0 Pt/ACF-CNFs 30% Pt/C Pt/ACF-CNFs 20% Pt/ACF-CNFs 100% 0.9 Voltage(V) 0.8 0.7 0.6 0.5 0.4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Current density(A/cm 2 ) Fig. The performance of Pt/ACF-CNFs used in anode catalyst Cell Temp. : 80℃, Humidify condition : RH% 100 anode and cathode, Stoichiometry anode: cathode = 1.5: 2.0 Membrane : nafion 112:, anode : 20%Pt/C, cathode : 20%Pt/C and 20%Pt/ACF-CNFs+20%Pt/C, Back pressure : 1bar Pulse Electrodeposition for Preparing PEM Fuel Cell Electrode • Objectives – Reducing cost of electrode by decreasing Pt loading – Decreasing particle size – localizing Pt on the surface of electrode in contact with membrane and increasing efficiency of Pt • Advantages of pulse electrodeposition – Low cost – Easy of control – Versatility Schematic Diagram of The Electrode Prepared by Pulse Electrodeposition Catalyst particle Reactant gas Ion exchange membrane Carbon clothe Hydrophobic carbon layer Hydrophilic carbon layer Back-Scattered Electron Image and Pt Line Scan of The Cross Section of MEA using EPMA membrane PC layer E-TEK Pt/C layer E-TEK GDL 200.0 GDL Pt membrane ETEK layer GDL 100.0 PC deposition Pt/C layer 0.0 0.0 Distance Microne(µm) 161.0 ESEM Image and Pt Concentration Profile of the Cross Section of MEA Using EDX Spot Analysis 80 E-TEK electrode 60 Membrane Pt wt% PC deposition electrode 40 E-TEK electrode PC deposition electrode 20 0 0 2 4 6 8 10 Distance from membrane (µm) 12 14 Comparison of MEA performance between pulse electrodeposited electrode and TKK 1.0 2 TKK (0.4mg/cm ) 2 PC (0.32mg/cm ) 0.9 Potential (V) 0.8 0.7 0.6 0.5 0.4 0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2 Current density (A/cm ) 2.1 2.4 2.7 High Throughput Screening (HTS) test • Hydrogen release rate of metal catalysts can be measured without catalyst synthesis procedure • To apply metal alloy catalyst, amounts of precursor solutions can be mixed to accurate ratios. Mixed Precursor Solution RuCl3 Co(NO3)2 FeCl2 .. H2 NaBH4 Reduction H2 Coolant Hydrolysis Schematic diagram of simplified HTS test microreactors Coolant -1 -1 ) (Lmin g ation Rate er en G n Hydroge Ru:Co:Fe = 60:20:20 (wt%) 30 30 25 25 Rate Generation Hydrogen -1 -1 ) (Lmin g Hydrogen release test (Ternary alloy) 20 15 10 5 0 20 15 10 5 0 Ru Ru Co Ni Co Fe Hydrogen release rate of (a) Ru-Co-Ni, (b) Ru-Co-Fe from 10 wt% NaBH4 solution with 4 wt% NaOH (Temperature fixed to 25°C) XRD Patterns • Co and Fe were not reduced completely when NaBH4 only was used for reduction. • After the additional reduction by using hydrogen, CoFe alloy were shown CoFe2O4 RuCoFe Intensity (c) (b) (a) 30 40 50 60 70 2 theta XRD Patterns of (a) Ru/ACF; (b) NaBH4-reduced Ru0.6Co0.2Fe0.2/ACF; (c) NaBH4 and H2-reduced Ru0.6Co0.2Fe0.2/ACF catalyst RuCoFe/ACF nanocatalyst 100 (e) 80 3.0 (d) (c) 60 2.5 ln k H2 Release Rate / L min-1gRu-1 3.5 (b) 40 (e) 2.0 (d) (a) (c) 1.5 20 (b) 1.0 (a) 0 10 15 20 25 30 35 40 3.20 3.25 3.30 T / oC 3.35 3.40 3.45 3.50 1000 / T hydrogen release rate at 25 °C (Lmin-1gRu-1) Activation Energy (kJmol-1) H2 14.21 59.23 16 wt% Ru0.6Co0.2Fe0.2/ACF H2 22.63 47.91 16 wt% Ru0.6Co0.2Fe0.2/ACF NaBH4 34.37 50.54 13 wt% Ru0.75Co0.25/ACF NaBH4 + H2 37.12 45.44 16 wt% Ru0.6Co0.2Fe0.2/ACF NaBH4 + H2 41.73 44.01 catalyst Reduction Agent (a ) (b ) (c) 10 wt% Ru/ACF (d ) (e ) Conclusions Nano materials may lead to drastic improvement in fuel cell application 1)Nanohybride electrolyte (HPA-SiO2+Nafion®) was effective for the high temperature operating of DMFC 2)New nano carbons are promising to enhance the catalytic activity in fuel cell 3) Nano alloy will be effective to release control of the H2 from chemical hydride (NaBH4, NH3BH3) 4) Electrodeposition is effective to reduce the amount of Pt loading Acknowledgement Backup slides Impedance spectra 0.10 Pt/ACF-CNFs 30% Pt/C Pt/ACF-CNFs 20% Pt/ACF-CNFs 100% -Z''/Ohm 0.08 Membrane resistance 0.063Ω Interfacial resistance (Mixture ratio 20%Pt/C:20%Pt/ACF-CNFs) 0.06 0.04 0.02 0.00 0.05 0.10 0.15 0.20 Z'/Ohm Fig. Impedance spectra of single cell 0.25 Only 20% Pt/C 0.069Ω Only 20% Pt/ACF-CNFs 0.175Ω 2:8 0.096Ω 3:7 0.065Ω Cyclic voltammogram 0 .4 0 .2 0 .0 i/A -0 .2 -0 .4 -0 .6 P t/C P t/A C F -C N T s 3 0 % -0 .8 -1 .0 -0 .2 0 .0 0 .2 0 .4 0 .6 0 .8 1 .0 1 .2 E /V Fig. Cyclic voltammograms of Pt/ACF-CNFs used oxygen Technical Barriers of Electrodes for PEM Fuel Cells ¾ Electrode performance • 400 mA/cm2 at 0.8V with H2/Air and 1atm • Novel method of pulse electrodeposition • Pt-X alloy ¾ Material Cost • 0.2 g (Pt loading)/peak kW • Non-precious catalyst (Pt-free) ¾ Durability • 40,000 hours operation with <10% performance degradation in stationary applications. Why Pulse Electrodeposition (Dependence of Nucleation Rate on Overpotential) Rate of 2D-nucleation * Tafel expression for overpotential η = α + β log i −bsε 2 J = K1 exp zekTη • • • • • Pulse electrodeposition •Off time •Concentration of electrolyte is recovered •Electrodeposition at high current density Current density θ θ2 θ1 ip ia time t1 t2 t3 t4 t5 • • • • • • • • • • K1 - rate constant S - surface area occupied by one atom on the surface of the nucleus e - the charge of the electron z - the electronic charge of the ion k - the Boltzmann constant T - the temperature b=P2/4S, where P is the perimeter and S is the surface area i – current applied α, β – Tafel constants η – Overpotential θ1: on time θ2: off time Ip: peak current density Ia: average current density Duty cycle: θ1/ θ Comparison of the Limiting Current Density between Pulse and Direct Electrodeposition diffusion model by H. Y. Cheh, θ1 = 0.2 θ (i ) p l (idc )l 0.4 0.6 0.8 1.0 (i ) p l ( idc )l = aθ aθ 1 exp ( 2 j − 1) aθ − 1) ( 8 1 1− ⋅ ∑ π ( 2 j − 1) ( exp ( 2 j − 1) aθ − 1) 2 ∞ 2 j =1 2 2 2 a = π 2 D / 4δ 2 (sec −1 ) TEM and SEM image of Pt electrodeposited electrodes Pulse DC Polarization Curves of MEAs Prepared by Direct Current and Pulse Electrodeposition 1.0 0.9 2 50mA/cm DC 200mA/cm2 PC 0.8 Potential (V) 0.7 0.6 0.5 0.4 Nafion 112 Cell Temperature: 75 oC H2/O2 (flow rate: 1.5/2 stoichiometric) Pressure: 1atm 0.3 0.2 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2 Current density (A/cm ) The conditions of pulse electrodeposition: 200mA/cm2 of peak current density, 5.2ms on time and 70ms off time. Total charge is fixed at 6C/cm2 on both cases. SEM Images of Pt Electrodeposited Electrodes by D.C or P.C mode. (Total charge is fixed at 6C/cm2 on both cases) 50mA/cm2 of D.C. electrodeposition 200mA/cm2 of peak current density, 5.2ms on time and 70ms off time Effect of the peak current density of pulse electrodeposition on the performance of the PEM fuel cell 1.0 10 mA/cm2 DC 30 mA/cm2 PC 100 mA/cm2 PC 200 mA/cm2 PC 400 mA/cm2 PC 2 600 mA/cm PC 0.9 0.8 Potential (V) 0.7 0.6 0.5 0.4 0.3 0.2 0.0 0.3 0.6 0.9 1.2 1.5 1.8 Current density (A/cm2) 2.1 2.4 2.7 Cyclic Voltammograms of the Electrodes Prepared at Different Peak Current Densities in Pulse Electrodeposition 1.0 2 Current density (mA/cm ) 0.5 0.0 600mA/cm2 -0.5 30mA/cm2 400mA/cm2 200mA/cm2 -1.0 100mA/cm2 -1.5 -0.8 -0.6 -0.4 -0.2 0.0 0.2 Potential (V. Hg/Hg2SO4) 0.4 0.6 0.8 Effect of Charge Density on the Performance of PEM Fuel Cell 1.0 2 6C/cm 2 8C/cm 2 13C/cm 16C/cm2 0.9 0.8 Potential (V) 0.7 0.6 0.5 0.4 0.3 0.2 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2 Current density (A/cm ) 2.4 2.7 3.0 Comparison of Pt line scan image in the cross section of the MEA (A) 8C/cm2 and (B) 20C/cm2 Cps Cps 300 300 (A) (B) 0 0 40 0 Microns (μm) 40 0 Microns (μm)
© Copyright 2026 Paperzz