ENERGY NANOTECHNOLOGY --- A Few Examples Gang Chen Nanoengineering Group Rohsenow Heat and Mass Transfer Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 Email: [email protected] http://web.mit.edu/nanoengineering NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Thermal-Electrical Energy Conversion Temperature (K) 50 100 150 200 250 300500 REFRIGERATION 8 6 1000 1500 0.8 0.6 Power Plant 0.4 ThermoPV 0.2 Auto 0 Environmentally Benign Refrigeration 6000 1 IMIT L C I M ODYNA M R E H T 4 2 5500 POWER GENERATION Household Refrigerator Thermoelectrics 2000 5000 2500 Energy Efficiency Waste Heat Recovery Solar PV 0 Renewable Energy Grand Challenges: Efficiency and cost effective mass production NanoEngineering Group EFFICIENCY COEFFICIENT OF PERFORMANCE 0 10 WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Nano for Energy • Increased surface area • Interface and size effects Molecules Λ = 1−100 nm λ=1 nm Λ---Mean free path λ---wavelength Electrons Λ=10-100 nm λ=10-50 nm NanoEngineering Group • Thermodynamics • Kinetics Photons Λ > 10 nm λ=0.1-10 µm Phonons Λ=10-100 nm λ=1 nm WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Phonon and Electron Engineering for Thermoelectric Materials NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Thermoelectric Devices COLD SIDE COLD SIDE - I N + P HOT SIDE HOT SIDE Nondimensional Figure of Merit Joule Heating Seebeck Coeff. Electron Cooling σS2T ZT = k GPHS Radioisotope Thermoelectric Generator NanoEngineering Group Reverse Heat Leakage Through Heat Conduction WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY State-of-the-Art in Thermoelectrics 4 3.5 FIG U R E O F M ER IT (ZT)max PbTe/PbSeTe Nano PbSeTe/PbTe Quantum-dot Superlattices (Lincoln Lab) 3 2.5 S2σ (µW/cmK2) k (W/mK) ZT (T=300K) (Michigan State) 1.5 1 Skutterudites (Fleurial) Bi2Te3 alloy PbTe alloy 0.5 0 1940 Si0.8Ge0.2 alloy 1960 NanoEngineering Group 28 2.5 0.3 Harman et al., Science, 2003 Bi2Te3/Sb2Te3 Superlattices (RTI) 2 32 0.6 1.6 Bulk 1980 YEAR Dresselhaus 2000 Bi2Te3/Sb2Te3 Nano Bulk S2σ (µW/cmK2) k (W/mK) ZT (T=300K) 50.9 1.45 1.0 40 0.6 2.4 Venkatasubramanian et al., Nature, 2002. 2020 WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Layer B Layer A Unit Cell of Superlattice Heat Conduction Mechanisms Unit Cell of B Layer A New Crystal? NanoEngineering Group Inhomogeneous Multilayers? WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Heat Conduction Mechanisms in Superlattices LD BULK In-Plane 60 40 In-P lane LD SPECULAR (p=1) Cross-Plane Major Conclusions: p=0.95 T=300K AlAs/GaAs 20 -1 10 Yao 1987 DIFFUSE (p=0) p=0.8 0 1 10 1 10 ne Ideal Superlattices Yu et al. 1995 Capinski et al. 1999 Yao (1987) Capinski et al. 1999 10 2 C ro ssPla Normalized Thermal(W/mK) Conductivity THERMAL CONDUCTIVITY 0 80 10 Yu et al. (1995) 4 2 3 10 3 10 10 10 Period Thickness (Å) • Ideal superlattices do not cut off all phonons due to pass-bands • Individual interface reflection is more effective • Diffuse phonon interface scattering is crucial LAYER THICKNESS (Å) Coherent Structures Are Not Necessary, Nor Optimal! NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Photon Engineering: Thermophovoltaics NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY 4 10 2 EMISSIVE POWER (W/cm µm) Photovoltaic Cells Filter Heat Source Thermophotovoltaics Useful Useless 3 10 2 5600 K 10 2800 K 1 10 1500 K 0 10 800 K 10 -1 0 • • • • • NanoEngineering Group 2 EG 4 6 WAVELENGTH (µm) 8 Frequency Selective Emitter Frequency Selective Filters Photon Recycling Structures Evanescent Wave Structures High Efficiency PV Cells WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY 10 Surface Waves and Near Surface Energy Density Wavelength (µm) 5 5 10 15 20 25 d = 10 nm 3 10 -3 -1 Energy Density (Jm eV ) 10 ω Free Space 1 10 d = 100 nm d = 1 µm -1 10 -3 10 d = 10 mm -5 Surface Modes kx blackbody 10 0.1 0.2 0.3 0.4 0.5 0.6 Energy (eV) Energy density in the vicinity of a half-plane of BN. High Energy Density, Monochromatic EM Fields Exists Near Surfaces When ε is Equal but of Opposite Signs. But They Are Non-Emitting! Surface Plasmons and Surface Phonon Polaritons NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Near Field Energy Conversion 89 1.2 10 Wavelength (µm) 8.75 8.5 8.25 8 SiC Source (BN, SiC) PV material 3 Power absorbed (Wcm-2) 10 2 10 Power absorbed 7 8 10 d = 1 nm d = 0 nm d = 10 nm 4 107 Blackbody 101 0 0.14 100 10-1 0 Flux (Wm-2eV-1) d = 5 nm 100 200 Vacuum gap (nm) NanoEngineering Group 0.145 0.15 0.155 Frequency (eV) 0.16 300 WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Coupled Conduction and Radiation Nonequilibrium Thermoelectric Devices NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Nonequilibrium Transport Conventional TE Cooler Conventional Micro TE Cooler Electron Temperature T2 T1 Cooling Target T1 Cooling Target Thermoelectric Element Phonon Temperature T2 Thermoelectric Element Battery Battery Proposed Nonequilibrium Thermoelectric Devices ¾ Explore nonequilibrium between electrons and phonons ¾ couple the cooling target with thermoelectric element without direct lattice contact ZT = NanoEngineering Group σS 2T ke +X kp Vacuum Gap Electron Temperature, Te Phonon Temperature, Tp T2 T1 Cooling Target Battery WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Surface Plasmon Coupling of Electrons Model Based on Fluctuation-Dissipation Theorem d d=10 nm Macroscale gap T1 Far-Field Nanoscale gap T1 Surface Waves NanoEngineering Group Three orders of magnitude increase in energy transfer flux due to surface plasmon resonance WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Surface-Plasmon Enabled Nonequilibrium Thermoelectric Refrigerators 260 1 Cooling Load q = 50 W/cm2 240 10 0.8 220 G 200 180 160 0.6 InSb ke/k=0.1 Z=0.002K-1 TH=300K 8 3 140 3 G = 10 W/(m K) 12 3 G = 10 W/(m K) Conventional ke/k = 0.1 Z = 0.002K-1 TH = 300K 0.4 3 G=10 W/(m K) 10 COP COLD END TEMPERATURE (K) 8 G = 10 W/(m K) 3 G=10 W/(m K) 12 3 G=10 W/(m K) Conventional 120 0 1 2 3 4 10 10 10 10 10 THERMOELECTRIC ELEMENT LENGTH (µm) 0.2 0 1 10 100 THERMOELECTRIC ELEMENT LENGTH (µm) • Performance is determined by the doping concentration and operation temperature. • Principle works for both refrigerators and power generators. NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY Key Points • Nanoscale effects are enabling breakthroughs in energy technologies. • Need cost-effective and mass producible nanotechnology for energy applications. • Fundamental understanding leads to new manufacturing paradigms. • Fundamental research problems exist in both individual nanostructures and mesoscopic nanostructures. • Multidisciplinary research and interdisciplinary researchers are needed. NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY ACKNOWLEDGMENTS • Current Members • Collaborators H. Asegun (Molecular Dynamics) M.S. & G. Dresselhaus (MIT, NW&CNT, Theory) V. Berube (hydrogen storage) J.-P. Fleurial (JPL, Thermoelectric Devices) Z. Chen (Metamaterials, TPV) J. Joannopoulos (MIT, Photonic Crystals) S. Goh (polymers) Z.F. Ren (BC, Thermoelectric Materials, CNT) T. Harris (Thermoelectrics&Nanomaterials) X. Zhang (Berkeley, Metamaterials) Q. Hao (Thermoelectrics) D. Kramer (Solar thermoelectrics) • Past Members (Partial List) H. Lee (Thermoelectric Materials) Prof. C. Dames (Nanowires, UC Riverside) H. Lu (TPV and PV) Prof. D. Borca-Tasciuc (Nanowires, RPI) A. Minnich (thermoelectrics) Prof. T. Borca-Tasciuc (Thermoelectrics,RPI) A. Muto (nanowires and thermoelectrics) Dr. F. Hashemi (Nano-Device Fabrication) S. Nakamura (nanowires and thermoelectrics) Dr. A. Jacquot (TE Device Fabrication) A. Narayanaswamy (Metamaterials, TPV) Dr. M.S. Jeng (Nanocomposites, ITRI) G. Radtke (hydrogen storage) Dr. R. Kumar (Thermoelectric Device Modeling) A. Schmidt (ps pump-and-probe) Dr. W.L. Liu (superlattice) E. Skow (polymers) Dr. D. Song (TE and Monte Carlo, Intel) S. Shen (lubrication, rarefied gas dynamics) Dr. S.G. Volz (MD, Ecole Centrale de Paris) Dr. M. Chieso (nanofluids) Prof. B. Yang (TE and Phonons, U. Maryland) Dr. X. Chen (thermoelectrics, Pump-and-Probe) Prof. R.G. Yang (Nanocomposites, U. Colorado) Dr. D. Vashee (thermoelectrics) Prof. D.-J. Yao (TE Devices, Tsinghua Univ.) Prof. Y.T. Kang (nanofluids) Prof. T. Zeng (Thermionics, NCSU) Sponsors: ARO, DOE, NASA, NSF, ONR, Industries NanoEngineering Group WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY
© Copyright 2026 Paperzz