1 The 4th US-Korea NanoForum Material and Structural Design for High Efficiency Dye-Sensitized Solar Cell HO C O O O C N N Ru N O NCS NCS N C O HO C O Hyungjun Koo, Beomjin Yoo, Kicheon Yoo, Kyungkon Kim and Nam-Gyu Park* Center for Energy Materials Korea Institute of Science and Technology (KIST) 2 DSSC: structure and operation principle TiO2 TCO τinj CB HO C O C N N Ru N O D*/D+ τr NCS O HO C O I3¯/I¯ D/D+ NCS N C Voc surface states O O τcc VB TiO2 Dye 3 issues * efficiency as high as 11% has been achieved. * higher efficiency is required in order to be in competition with Si solar cell Approaches for improving efficiency Efficiency (η) = (JscⅹVocⅹFF)/Pin 13% η (%) Jsc Voc FF Pin cf. 10 → 13 18 → 23.4 0.75 0.74 100 Case1: JSC increased by 30% Efficiency (η) = (JscⅹVocⅹFF)/Pin 13% η (%) Jsc Voc FF Pin cf. 10 → 13 18 0.75 → 0.98 0.74 100 Case2: VOC increased by 30% 4 strategy for improving JSC structural and material design light confinement by scattering: size-dependent scattering efficiency & bi-functional material 5 nanoparticle films for DSSC t = 10-12 µm 9.0 9.0 8.5 8.5 Efficiency (%) Efficiency (%) t = 5-6 µm 8.0 7.5 7.0 180 190 200 210 220 230 240 o Autoclave Temp. ( C) 8.0 7.5 7.0 210 220 230 240 o Autoclave Temp. ( C) Simple increase of nanoparticle film may not improve the efficiency to great extent! 6 size-dependent scattering efficiency (a) G1 (b) G2 20 25 30 35 R(220) R(211) R(210) R(200) R(111) R(101) A * (a) A * (b) * Intensity (a.u.) R(110) SL 40 45 2θ (degree) 50 55 60 7 PV properties Jsc Increasing rate (mA/cm2) Voc (mV) FF (%) Eff. (%) 1L (~7 µm) 12.2 ± 0.1 868 ± 2 71.1 ± 0.1 7.55 ± 0.12 1L+G1 14.9 ± 0.0 852 ± 2 70.4 ± 0.3 8.94 ± 0.08 +18.4% 1L+G2 14.4 ± 0.1 866 ± 1 70.7 ± 0.4 8.78 ± 0.09 +16.3% 80 IPCE 60 40 20 0 400 1L 1 L+G1 1 L+G2 500 600 Wavelength 700 800 8 reflectance spectra Reflectance (%) 100 80 60 nano-TiO2 film 40 G1 film G2 film 20 0 400 500 600 700 800 Wavelength (nm) scattering overlayer nano-TiO2 thin film underlayer 9 bi-functional material * spherical or flat surface large particles are normally used for light scattering * except light scattering, such materials do not contribute to photocurrent generation due to low surface area * motivation: design of bi-functional material exhibiting both light scattering and photocurrent generation efficiently Nano-Embossing Hollow Sphere TiO2 (prepared by Prof. W.-I. Lee) 300 nm 10 IPCE & reflectance comparison 80 NeHS 40 20 0 400 1L 2L 1L-NeHS 1L-CCIC 100 NeHS TiO2 Film 80 500 600 700 Wavelength (nm) (b) CCIC TiO2 Particle Film nanocrystalline TiO2 Film 800 %R IPCE (%) 60 60 40 20 0 400 500 600 700 Wavelength (nm) 800 900 11 2 Photocurrent density (mA/cm ) conversion efficiency without long-term post-treatment of TiCl4 20 15 10 5 0 0.0 2 JSC : 17.8 mA/cm VOC : 0.845 V FF : 0.69 η : 10.34% 0.2 0.4 0.6 Voltage (V) 0.8 12 interfacial nano-engineering 13 locus of recombination bulk recombination near substrate recombination 14 methods for suppression of recombination Mesoporous electrode TiO2 FTO core-shell (to protect bulk recombination) FTO TiO2 blocking layer (to protect recombination at near substrate) 15 FTO/BL/TiO2: SEM Chemically formed from Ti precursor solution Bare FTO TiO2 300nm Blocking layer 0.15 M 0.4 M 300nm 16 8.4 13.2 8.2 13.0 12.8 12.6 0.88 VOC (V) η (%) 13.4 8.0 7.8 7.6 0.0 0.2 0.4 0.6 0.8 0.76 0.86 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.74 0.84 0.72 0.82 0.80 measured under mask with aperture FF 2 JSC (mA/cm ) effect of Ti-precursor concentration on PV property 0.0 0.2 0.4 0.6 0.8 0.70 Ti precursor concentration (M) 17 Bode -10 0 -2 -1 10 10 0 10 1 10 2 10 3 10 Hz Frequency, Hz 5 10 10 6 Cole-Cole 0 Hz 0.8M 0.4M 0.2M 0.15M 0.1M 0.05M bare B A C 0 10 1 10 10 2 10 3 4 10 Frequency, Hz Inverse frequency (1/Hz) A: pt/electrolyte; B: FTO/electrolyte; C: TiO2/dye/electrolyte 10 10 -3 A 10 -4 10 -5 0.0 0.5 1.0 Precursor concentration (M) -2 B 10 -3 10 -4 0.0 0.5 1.0 Precursor concentration (M) Inverse frequency (1/Hz) -5 4 10 Inverse frequency (1/Hz) Theta -20 2nd derivative theta (arbt. unit) EIS (bode plot) 10 -1 10 -2 C 0.0 0.5 1.0 Precursor concentration (M) 18 Surface modification of bulk TiO2 film: fast electron transport, slow recombination photovoltage transient Time (S) 10 -1 10 -2 10 -3 bare TiO2 Photocurrent Photovoltage TiO2 treated with TiCl4(9hr) Photocurrent Photovoltage Transient photocurrent τTiCl4 treatment < τTiO2 ⇒ Enhanced electron transport by TiCl4 treatment photocurrent transient 10 -2 10 -1 10 Transient photovoltage τTiCl4 treatment > τTiO2 0 2 Photocurrent Density(mA/cm ) ⇒ Reduced recombination from TiO2 to electrolyte by TiCl4 treatment 19 DSSC best efficiency Photocurremt density ( mA/cm2) 22 20 18 16 2 14 Jsc = 19.38 mA/cm 12 Voc = 0.877 V 10 Eff. = 11% 8 6 4 2 0 0.0 FF = 0.647 @ AM 1.5G-1 sun Reference cell: NREL-calibrated mono Si with KG-5 filter 0.2 0.4 0.6 0.8 1.0 Voltage (V) close to the world best efficiency of 11.1% from EPFL 20 KIST Activity: Organic Photovoltaics Max. Eff. of 6.1% was obtained from D2 P3HT PCBM Thickness: D1<D2<D3 Kim et. al., APL 90, 163511 (2007) 21 Acknowledgments SY. Bang, MS HJ. Koo NJ. Myung KC. Yoo KT. Lee, staff BJ. Yoo, Ph.D. KW. Lee, MS Dr. K Kim, Senior Scientist MA. Lee, MS TR. Lee KIST Specialists Laboratory for Dye-Sensitized & Organic Solar Cells $$$: KIST, MOST and MOCIE
© Copyright 2026 Paperzz