Electronic Transport in Molecular Scale Devices Takhee Lee, Tae-Wook Kim, Hyunwook Song, Gunuk Wang Department of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST), Korea 1 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory I. Electronic Transport of Micro & Nano Via-hole Structures for Molecular Electronic Devices Tae-Wook Kim, Gunuk Wang, Hyunwook Song 2 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Formation of Alkanethiol Self-Assembled Monolayers Standard alkanethiol molecule • Octanethiol (C8) - CH3(CH2)7SH / length = 13.3Å • Dodecanethiol (C12) - CH3(CH2)11SH / length = 18.2Å C8 C12 C16 S C H • Hexadecanethiol (C16) - CH3(CH2)15SH / length = 23.2Å Conjugated molecule: Oligo(phenylene ethynylene) (OPE) Self-assembled monolayer (SAM) OPE provided by Dr. Changjin Lee (KRICT) • A spontaneous chemisorption process RS-H + Au → RS-Au + 0.5 H2 • Chemical bond formation of functional end groups of molecules with the substrate surface • Intermolecular interactions between the backbones Reed & Tour, Am. Sci. June 2000 3 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Fabrication of Planar-type Via-Hole Molecular Devices Design and Fabrication of molecular electronic devices Mask pattern Unit Die Devices Optical lithography: ~ 2 µm Plan: E-beam lithography: ~ 50 nm Schematic of device Au SiO Ti/Au Silicon wafer 190 µm 2.5 mm 1 cm One unit Contain 16 dies Each die contains 20 devices Total devices are 320 in a unit SEM / AFM / Optical images 2 µm 4” wafer (Collaboration with ETRI, Dr. Hyoyoung Lee) 1 cm piece Die Devices AFM image of a device TW Kim, HW Song, GW Wang After Top electrode 4 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Yield of Microscale Via-Hole Molecular Devices -2 10 1. Yield of molecular devices ? 2. How to define working molecular devices ? -3 10 C8 Device yield (micro-via hole molecular devices) # of fabricated device Fab. failure Working short 13440 392 11744 1103 100% 2.9% 87.4% 8.2% Open C8 C12 C16 84 57 60 Current [ A ] -4 10 -5 10 C12 -6 10 C16 -7 10 201 1.5% -8 10 Simmons tunneling fitting results for all working devices -1.0 -0.5 0.0 0.5 1.0 Voltage [ V ] Alkanethiol J at 1 V (A/cm2) C8 78000±46000 C12 2000±400 C16 5.2±4.7 ФB (eV) 1.29±0.49 1.26±0.08 2.67±0.28 α 0.76±0.09 0.72±0.04 0.52±0.04 β (Å-1) 0.87±0.16 0.83±0.04 0.87±0.05 Representative devices determined by Gaussian fitting of J ! 5 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Determination of Working Molecular Devices Log (J) for C8 Log (J) for C12 Log (J) for C16 16 <x> = 4.92 σ = 0.30 28 3σ 24 20 16 12 10 8 6 4 4 2 -2 -1 0 1 2 3 4 5 6 7 0 2.0 8 2.5 3.0 3.5 4.0 4.5 y = f (x) 8 6 4 5.0 0 2 -1 0 1 2 3 Log10 (Current Density @ 1 V (A/cm2)) 35 ( x −< x > ) 2 30 2σ 2 # of Device 1 f ( x) = ⋅e 2πσ 10 Summary of Log(J) Gaussian fitting ( 3σ: 99.7 % ) − 12 2 Log10 (Current Density @ 1 V (A/cm )) Log10 (Current Density @ 1 V (A/cm )) 2 <x> = 0.56 σ = 1.21 14 12 8 0 <x> = 3.06 σ = 0.35 14 # of Device # of Device 16 # of Device 32 C8 C12 C16 C8 25 20 15 C12 C16 10 5 m − 3σ m 99.7% m + 3σ 0 -1 0 1 2 3 4 5 6 Log10 (Current Density @ 1 V (A/cm )) 2 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 6 Molecular NanoE anoElectronics Laboratory II. Molecular Electronic Junctions Studied by Conducting Atomic Force Microscopy Hyunwook Song 7 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Charge Transport Study by CAFM Au(20nm)/Cr(20nm) coated AFM Probe I HP 4145B Au Physical contact area probe C8 OPE Chemisorbed Au PSIA, XE-100 model ambient AFM The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 8 Molecular NanoE anoElectronics Laboratory Force-and Length-Dependent Tunneling J @ 1 V (1 to 30 nN) I (nA) 1 0.1 0.01 1 nN 5 nN 10 nN 20 nN 30 nN 1E-3 1E-4 -1.0 -0.5 0.0 0.5 1.0 Current density (A/cm2) I(V) for C12 (1 to 30 nN) 10 5 10 4 10 3 10 2 10 1 10 0 10 -1 12 C12 C16 C8 2 nN 5 nN 10 nN 15 nN 20 nN 25 nN 30 nN 14 1.11×10 8 8 1.37×10 8 1.45×10 8 1.30×10 7 8.03×10 7.63×10 7 1.25×10 8 16 18 20 22 24 Length (Å) V (V) • Larger current with larger loading force • J: C8 > C12 > C16 • Error bar: sample-to-sample variation 30 nN 25 nN 20 nN 15 nN 10 nN 5 nN 2 nN 1 nN Loading force Jo (A/cm2) 8 1 nN 1.25×10 Exponential dependence R ∝ exp (βd) 9 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Through-bond vs. Through-space Tunneling distance in “through space” = d – dcctanθ + dcc dcc dcctanθ θ CAFM Tip (dt- δ) Au d JACS, 119, 11910 (1997) I t = I 0 exp(− β tb LM ) + I0 LM cosθ dcc ∑ N =1 ns ! exp( − β tb ( LM − Nd cc tan θ )) × exp(− β ts Nd cc ) (ns − N )! N ! J. Phys. Chem. B, 106, 7469 (2002) The dominant transport mechanism of alkanethiol SAM: “through-bond” tunneling When tilted considerably, chain-to-chain coupling: “through-space tunneling” appears 10 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory C8: Thru-bond + Thru-space (Single hopping: N = 1) -6 -8 70 Tilt angle (degree) ln (J/Jo) -4 45 94 1.2 1.0 60 0.8 50 0 -10 Net force (nN) 62 78 10 20 30 Applied loading force (nN) 0.6 Separation between contacts (nm) -2 N=2 N=1 Experiment -12 -14 20 C8 30 40 50 60 70 Tilt angle θ (degree) N~1 (N ≤ LMcos θ/dcc) 11 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory C12: Thru-bond + Thru-space (Double hopping: N = 2) -4 -10 -12 Tilt angle (degree) ln (J/Jo) -8 60 Net force (nN) 83 66 99 1.6 1.4 50 40 0 1.2 10 20 30 Applied loading force (nN) N=2 Separation between contacts (nm) -6 50 N=1 -14 -16 -18 20 30 40 50 60 70 Tilt angle θ (degree) N~2 (N ≤ LMcos θ/dcc) 12 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory C16: Thru-bond + Thru-space (Triple hopping: N = 3) -4 -12 Tilt angle (degree) ln (J/Jo) -8 55 2.1 2.0 1.9 50 1.8 45 0 -16 105 1.7 10 20 30 Applied loading force (nN) 1.6 N=3 Separation between contacts (nm) Net force (nN) 73 89 56 N=2 N=1 -20 C16 -24 20 30 40 50 60 70 Tilt angle θ (degree) N~3 (N ≤ LMcos θ/dcc) 13 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory Conclusions • Electronic transport study by CAFM - Tip-loading force effects on molecular structural properties - Thru-bond vs. thru-space transport • Fabrication and characterization of micro-via hole molecular devices - Detail yield study ~ 1.5 % (out of > 13,000 devices measured) • Electronic properties of various nanoscale building blocks 14 The 3rd Korea-US Nano Forum, Seoul, April 3-4, 2006 Molecular NanoE anoElectronics Laboratory
© Copyright 2026 Paperzz