Photonic Crystal Resonators and Light Emitters Yong H. Lee Department of Physics, KAIST http://pbg.kaist.ac.kr Contents 1. Wavelength-size Laser 2. Electrical Single-cell Photonic Crystal Laser 3. µ-fiber Coupled Photonic Crystal Laser 4. Summary Wavelength-size Laser Strong Photon Confinement in Very Small Volume Æ 2-D Slab Photonic Crystal The Smallest Laser ? λ/2 VCSEL 2D PBG Laser Ultimate Laser - V ~ (λ/2n)3 (λ/2n)3 - High Speed - High Efficiency Monopole Mode H. G. Park, et al., Appl. Phys. Lett. 79, 3032 (2001). 1. λ-scale 2. Low-loss E-4 E-3 0.01 0.1 1.0 3. Nondegenerate 4. Central-zero Introduction of Central Post central node Q = ωτp 2rp A post does not affect Q factor significantly !!! Single-cell Resonator with Post r =0.35a, r’ = 0.25a, a = 540nm t =0.37a, rp= 0.5a, 1.0a dp Experiments: Single-cell Cavity with Central Post • Optical pumping @ ~1% duty cycle • Quadrupole mode Electrically-driven Photonic Crystal Laser Dr. Hong-Gyu Park (Harvard) Current Injection Scheme tip (current injection) n i InGaAsP slab p dielectric material p-InP post p-InP substrate • Highly-doped n-i-p structure: mobility of electron > mobility of hole Fabricated e-PBG Resonator Top view Cross-sectional view H. G. Park et al., Science, vol. 305, 1444 (2004) Design of Single-Cell Resonator Chirped air-holes - Control of position and size of the post in wet etching processes (locating the post at the center) - Increase of Q factor r = 0.28a, 0.35a, 0.385a, 0.40a, 0.41a a = 500 nm Characteristics of Lasing Mode Ith ~ 260 µA Pulse pumping : 6ns / 2.5µs Confirmation: The Monopole Mode <CCD near-field image> <Calculated Poynting vector> <Calculated E-intensity> Experimental measurements agree well with 3D FDTD computations based on structural data taken directly from the SEM picture. H. G. Park et al., Science, vol. 305, 1444 (2004) Spontaneous Emission Factor β • Record-high β value β ~0.25 • • • Effective carrier localization by electrical pumping Nondegenerate monopole mode Small modal volume µ-fiber Coupled Photonic Crystal Laser Prof. In-Gak Hwang (Chun Nam University) Curved µ-fiber Coupling Optical I/O µ-fiber - D ~1.3 µm - Curvature ~ 1/50 µm-1 250 µm Modified PC cavity Æ designed for efficient fiber coupling 1 µm Modified Linear PhC Cavity (a = 430 nm, r=0.35) original cavity + better phase matching (along x) -modified linear cavity + larger mode overlap (along y) −µ-fiber Micro fiber λ /neff Qint ~ Qair = 26000. modified cavity y y x (a = 500 nm, r=0.35:0.30:0.25) z − 0 Ey + PC Laser with Fiber I/O WDM coupler 980 nm pump Pfiber1 Pfiber2 single-mode fiber PC laser Pfiber1 (nW) 15 All-fiber PC laser - Low threshold of 35 µW - High output power of >10 nW 10 30 dB 5 1450 1500 1550 1600 Wavelength (nm) 0 0 50 100 150 200 Peak pump power (µW) 250 300 - Extremely local pumping - Highly efficient out-coupling Computation, as fabricated 100,000 real cavity ideal cavity 0.8 10,000 0.6 Qtotal Coupling efficiency, η 1.0 0.4 1,000 0.2 0.0 1 µm SEM image of real structure 0.0 0.1 0.2 0.3 0.4 air gap(µm) Max. η estimated to be ~70% Æ imperfectly-fabricated cavity structure 9 10 11 To Close Toward the Ultimate Photon Source – (λ/n)3, High-Q Resonator (Q/V) – QD Active Material – Photon Out-coupling – Reliable Current Injection Scheme – Strong Coupling Regime / Cavity QED – On-demand Single Photon Gun ? For more information, visit, http://pbg.kaist.ac.kr The Team KAIST http://pbg.kaist.ac.kr – – – – – – – – – – I. K. Hwang H. G. Park (Harvard) S. H. Kwon K. H. Kim S. H. Kim S. K. Kim J. K. Yang H. J. Chang M. K. Seo F. Huyssen ETRI - J. S. Kim - S. B. Kim NTT Lab - M. Notomi Samsung - I. Kim CEA - J-M Gerard Financial Supporters: 1. National Research Laboratory Project, Korea 2. National R&D Project for Nano Science and Technology, Korea 3. AOARD-05-4-69, USA
© Copyright 2026 Paperzz