3rd Korea-USA NanoForum, Tower Hotel Seoul, April 3-4, 2006 Nano-optoelecrtronics based on III-V Semiconductor Quantum Dots Jungil Lee Nano Device Research Center, KIST [email protected] KIST - Founded 1966, gouv. affilliated - 4 Res. Div.s & 1 Res. HQ(future technol.) Materials, Systems, Environ., Bio-sci - 654 (422(306 Ph.D.)researchers) - 130MU$/yr, ‘04 - Future Technol. HQ Micro Systems Res. Ct. Nano Device Res. Ct. Simulation (supercom., cluster type)team Nano Device Res. Ct. - Mag. Mater. group + Semicon. Group (Spintronics) Semicon. group. Joo Sang Lee, Young Ju Park (MIT lab) Jin Dong Song (MBE) Won Jun Choi (QD LD, QDIP) Ilki Han (Hi pwr LD, SLD, QCL) (NRL) Woon Jo Cho (nc Si) Jung Il Lee (electrical charac.) ~ 20 studs & 1 PD Collaborators- domestic SRC: - QSRC (TWKang, Dongguk U.), GaN - QPSI (YPLee, Hanyang U.), polymer PC NRL: - VCSEL (YHLee, KAIST) - QD Technol (SKNoh, KRISS) - Ultrafast Phenom (DSKim, SNU) - Compound Semi Epi (EJYoon, SNU) - QD Opt Dev (DHLee, CNU)1.5QD, SOA - QD PL (YHCho, Chungbuk NU) Collaborators- international Germany: Wuerzburg UK: Sheffield France: CNRS(IEF, LPN, LSP, LEOM, IMEP, LAAS) China: CAS-SITP, -IoSemi Japan: U.Tokyo, NICT USA: Programs Dual: QCL –’07 Nano R&D (QM D/Wr Technol, 7U+KIST+3Co): - QD(LD, SOA, Mod) - PC(passive, active) -’11 ETRI: 1.55 um QD LD ABITD: QSIP (KIST, KRISS, KAIST) -’04 Frontier(TND): Opt Interconnect (YTLee, GIST) Growth Engin: GaN LED (KOPTI) Contents I. QD vs. QW II. QD growth (ALE) III. QD LD IV. QD SLD V. QD IP VI. Summary VII.Prospects I. QD vs. QW Carrier localization & Discrete DOS: - Low leakage currents of LDs - Small active volume ; low transparent current density of LDs - Large activation (thermalization) energy ; High temperature operation of LDs and IR-PDs Stable operation of high power laser at high temp. - Low refractive index change by injection current ; Small α-parameter -> low chirping (high speed operation) small filamentation (high power LD) Inhomogeneous broadening due to size fluctuation: - Large gain bandwidth ; SOA, ECL, SLD II. QD Growth (ALMBE) ALMBE mode (ALE mode) ALE:Atomic Layer epitaxy n GaAs GaAs As 0.6 0.4 0.2 In DWELL 구조 7.5 nm In0.2Ga0.8As 1.2 nm In0.2Ga0.8As 0.0 900 InAs QD λ= 1250 nm D: 1.02 x 1011 /cm2 In0.5Ga0.5As QD λ= 1150 nm 64 meV T = 300 K 1400 650 mW 1200 400 mW InAs/GaAs ALE QD 14860A RT 1000 34 meV 200 mW 100 mW 50 mW 1000 1100 1200 1300 1400 Wavelength (nm) PL intensity (A.U.) Dots PL Intensity (a.u.) • Wetting layer is ignorable • Relatively large dot size (> ~30 x ~10 nm) • Wavelength ( more than 1500 nm is possible) 800 600 94.3meV 400 200 0 -200 12000 13000 14000 15000 wavelength(A) Bandgap engineering of QD : 1150 ~ 1500 nm Detection wavelength tuning possible 16000 QD Growth SK mode dot ALE mode dots • Wetting layer is inevitable • Wetting layer is not necessary • Relatively small dot size • Relatively large dot size (≤ ~30 x ~10 nm) (≤ ~60 x ~10 nm) • Wavelength (1000 ~ 1300 nm + α) • Wavelength ( more than 1500 nm is possible) Dots GaAs Weting layer Dots N periods of layers GaAs GaAs In As AFM images Sample #A(ALE) Sample #B(S-K) Dot density, width and height of the sample #A are ~4.1x1010/cm2, ~40.8 nm, and ~7.2 nm, respectively, In the case of the sample #B, 13.4x1010/cm2, ~31.0 nm, ~2.6 nm, respectively. HR-TEM images (ALE dot) ~32o {136} facet formation 3 nm 3 nm We can observe indium diffusion into GaAs below the QDs Indium can diffuse into GaAs matrix below the QDs during growth interruptions, and this helps the QDs HR-TEM images(SK dot) ~ 23 o The QDs have flat bottom-shape Wetting layer thickness Sample #A(ALE) Thickness of WL : ~ 2.1 nm Sample #B(S-K) Thickness of WL : ~ 4 nm Reduced thickness of wetting layers in the QDs grown by ALMBE was predicted by Guryanov et al. Surf. Sci. 352-354, 651 (1996). Normalized PL intensity (arb. units) PL spectra 1.2 1.0 T = 300 K Sample #B Sample #A Sample #B has only 1 level. 0.8 0.6 0.4 ~64 meV ~29 meV (x ~20) 0.2 0.0 0.9 Sample #A has a 2 peaks. (Ground and 1st excited level) 1.0 1.1 1.2 Wavelength (µm) 1.3 FWHM of sample #A (~29 meV) is ~ half of that of sample #B (~64 meV). This implies that size distribution of sample #A is more uniform Than sample #B. Temp. depen’t PL spectra 1.06 1.04 1.02 1.00 0 50 100 150 200 250 300 Temperature (K) 74 72 70 68 66 64 62 60 58 1.20 1.18 1.16 1.14 1.12 1.10 0 PL peak FWHM (meV) Ground level Sample #B(S-K) 1.22 PL peak energy (eV) 1.08 40 38 36 34 32 30 28 26 24 22 (b) PL peak FWHM (meV) PL peak energy (eV) (a) Sample #A(ALE) 50 100 150 200 250 300 Temperature (K) Temperature dependence of PL peak energy and PL peak linewidth of (a) the sample #A, and (b) the sample #B. In the case of the sample #A, only ground level is considered. It is noteworthy that the PL linewidth of the sample #A is insensitive to cryostat temperature due to lack of wetting effect, that is, reduced thickness of wetting layers and/or uniform formation of QDs in ALMBE APL 88, 133104(2006) Hi quality QD S-K dot vs ALE dot 7 e 1000 ALE(G.S) : 2.2ns 900 15 K 800 GaAs 500 A 3 stack InAs ALE dot 6 e SK(G.S): 800ps 5 e 4 e 3 e PL Intensity (arb. uints) Normalized PL Intensity Wavelength (nm) 1100 SK 1105D00 ST 1080D15 DWELL 1085D15 SK 1095D15 ST 1125D20 DWELL 1150D15 WL (HH, LH) GaAs 2 e 500 1000 1500 2000 Delay Time(ps) TR-PL ALE dot: longer lifetime, thinner wetting layer 1.1 1.2 1.3 1.4 Photon Energy (eV) PLE 1.5 III. QD LD - Modulation doping P+ GaAs 200 nm Contact Layer P- GaAs 200 nm P- Al0.70Ga0.30As 1.5 m P-Al0.15Ga0.85As 40 nm GaAs 50 nm X3 P- GaAs 3 nm GaAs 12 nm InAs DWELL GaAs 65 nm n-Al0.15Ga0.85As 40 nm n- Al0.70Ga0.30As 1.5 m n- GaAs 200 nm n+ GaAs Substrate Cladding Layer Waveguide Layer Al0.7GaAs GaAs N+ Contact Layer InAs QD P+ Hi T. grown spacer layer HGTSL (High Growth Temperature Spacer Layer)1 o o P+ GaAs 200 nm sub Contact Layer P- GaAs 200 nm P- Al0.70Ga0.30As 1.5 m P-Al0.15Ga0.85As 40 nm GaAs 50 nm X3 P- GaAs 3 nm GaAs 12 nm InAs DWELL Cladding Layer Waveguide Layer GaAs 65 nm n-Al0.15Ga0.85As 40 nm n- Al0.70Ga0.30As 1.5 m n- GaAs 200 nm n+ GaAs Substrate Contact Layer 1 H.Y. Liu et al., JAP, 96, 1988, (2004) [Sheffield] QDLD PL Spectrum 0.12 PL Intensity [a. u.] 0.10 G.S. 1302nm (952 meV) QDLD #1612 RT-PL 0.08 FWHM= ~32 meV 0.06 1st E.S. 1206 nm (1028 meV) 0.04 0.02 76 meV 0.00 1000 1050 1100 1150 1200 1250 1300 1350 1400 Wave length [nm] Large Energy separation : 76 meV improvement in the T sensitivity1 Narrow FWHM : 32 meV uniform size distribution of QDs 1 O.B. Shchekin et al., APL, 77, 466, (2000) [Deppe] QDLD lasing cgaract. I QDLD 30 L=1200 µm L=2000 µm W=15 µm, 1.1xIth o @25 C, 0.1% pulse 20 As cleaved Optical Power [mW] Optical Power [mW] 30 10 0 W=50 µm, 1.1xIth o @25 C, 0.1% pulse 20 One-sided HR L=500 µm 100 200 300 Current [mA] <<L-I L-Icharacteristics characteristicsof of L= L=1200 1200µm µm&& L= L=2000 2000µm µmAs-cleaved As-cleaved QDLD> QDLD> L=700 µm 10 L=1000 µm L=1500 µm 0 0 QDLD 0 100 200 Current [mA] <<L-I L-Icharacteristics characteristicsof ofL= L=500 500 ~~1500 µm HR-coated QDLD. 1500 µm HR-coated QDLD.>> AS-cleaved QDLD :Jth= 493, 155 [A/cm2] HR-coated QDLD : Jth= 634, 452, 163, 95 [A/cm2] 30 Lasing wavelength [nm] QDLD lasing charact. II 1300 G.S. ~ 750 µµm m QDLD o @25 C, 0.1% pulse 1.1xIth AS-cleadved HR-coated E.S. 1200 1000 2000 3000 Cavity length [µm] <<Characteristics Characteristicsof oflasing lasingλλvs. vs.cavity cavitylength lengthLL>> QDLD lasing charact. III Optical Power [mW] QDLD W=15 µm, 1.1xIth o @25 C, 0.1% pulse As cleaved 15 10 (ii) 5 0 (i) L=1200 µm 0 100 200 Current [mA] Normalized Intensuty [a. u.] 1.0 300 (i) 0.5 RT-PL 0.0 1.0 1302 nm (952 meV) (ii) 0.5 0.0 1206 nm (1028 meV) 1200 RT-PL 1300 Wavelength [nm] <<L-I L-Icharacteristics characteristicsof ofL= L=2000 2000µm. µm.InInpoint point(i), (i),only onlyshows showsG.S. G.S.lasing lasingbut butinin point point(ii), (ii),lasing lasingspectrum spectrumshows showsboth bothG.S. G.S.&&E.S. E.S.lasing> lasing> QDLD lasing charact. IV 43 40 1325 35 2 As cleaved, LxW= 2000 x 15 µm 2 One-sided HR, LxW= 1500 x 50 µm dλ /dT = 0.53 nm/K 1300 Optical Power [mW] Lasing Wavelength [nm] 1350 #1612 RWG-HR 2 LxW=1500x50um T= var., 0.1 % pulse 37 32 Jth= 89 A/cm 2 o 5 C o 15 C o 25 C o 35 C o 45 C o 55 C o 65 C 29 27 24 21 19 16 13 11 8 5 3 0 0 50 100 150 200 250 300 350 Current [mA] 1275 1250 QDLD 1.1xIth o @25 C, 0.1% pulse 1225 0 10 20 30 40 50 o Temperature [ C] 60 70 T < 50 oC, λ shifted to longer wavelength due to thermally induced band-gap narrowing T > 55 oC, λ switched to E.S. state HR-coated QDLD operated over 65 oC QDLD lasing charart.V 5 2 As cleaved, LxW= 2000 x 15 µm (QDLD-A) 2 One-sided HR, LxW= 1500 x 50 µm (QDLD-B) ln(Ith[mA]) To= 55 K To= 113 K To= 19 K 4 To= 108 K 0 10 20 30 40 50 o Temperature [ C] 60 70 Temperature sensitivity 1. Lower growth T of Al0.7Ga0.3As cladding layer 2. non-optimized p-modulation doping 참고 자료 HGTSL Sheffield G. λ= 1307 nm @RT Jth = 32.5 A/cm2, To= 79 K 3-stack, WxL = 20x5000 µm2 KIST λ= 1310 nm @RT Jth= 155 A/cm2, To= 113 K 3-stack, WxL= 50x1500 µm2 P-doping Deppe G. λ= 1290 nm @RT Jth= 174 A/cm2, To= 200 K 5-stack, WxL= 5x650 µm2 Bhattacharya G. λ= Jth = 180 A/c 2 1240 nm @RT m , To= infin ite 5-stack, WxL = 5x800 µm 2 Bimberg G . λ= Jth = 147 A 12280 nm @RT /c 10-stack, W m , To= 150 K xL = 100x1 500 µm 2 IV. SLD Applications : Low coherent broadband light source for OCT WDM-PON -40 1.0 0.6 Current [A] 6.5 7.0 7.5 8.0 -50 Intensity [dB] Power [W] 0.8 QD-SLD L=2mm W=100 µm o T=5 C Pulse Operation 0.4 0.2 -60 93nm -70 0.0 0 2 4 6 Current [A] Max. Power ~ 0.9 W 8 -80 950 1000 1050 1100 1150 Wavelength [nm] Max. spectral bandwidth ~ 93 nm SLD epi structure Chirped-QD (Quantum Dot) 구조 NSC-1 AlGaAs GaAs AlGaAs NSC-2 GaAs InAs QD (1.3 µm) InAs QD (1.2 µm) AlGaAs NSC-3 PL intensity (arb. unit) InAs QD (1.3 µm) GaAs InAs QD (1.2 µm) InAs QD (1.3 µm)InAs QD (1.25 µm) RT Optical power: 15 mW NSC-3 NSC-2 NSC-1 1000 1100 1200 1300 1400 1500 Wavelength (nm) ※NSC (NL Semiconductor) 국가지정연구실 (NRL) SLD tapered structure Chirped-QD (Quantum Dot) SLD 제작 w R l θ θ R g θ mirror ncore t ncladding Rg = Rg (λ, θ, ∆n) ∆n = ncore-ncladding 국가지정연구실 (NRL) SLD 1 QD (NSC-1) SLD Excited state Ground state 0 1194 NSC-1 J shape SLD CW operating 4 CL:Ridge : 1 mm J : 1.5 mm o T : 20 C 1285 1275 Voltage [V] -20 1000 mA -30 800 mA -40 1204 400 mA 4 2 1 50 mA 0 0 -60 1100 6 3 2 200 mA 100 mA -50 8 Power [mW] Power [dBm] -10 10 5 NSC-1 SLD Ridge : 1mm Benting : 1.5mm T : 20 CW operating 1200 1300 Wavelength [nm] 1400 0 200 400 600 800 1000 Current [mA] 국가지정연구실 (NRL) SLD 2 QD (NSC-2) SLD 1.2QD gr 1.3QD 1st 1.3QD gr -30 Power [dBm] NSC-2 SLD Ridge : 1mm Benting : 1.5mm T : 20 -40 CW operating 12. 1. 50 mA 2. 100 mA 3. 200 mA 4. 300 mA 5. 400 mA 6. 500 mA 7. 600 mA 8. 700 mA 9. 800 mA 10. 900 mA 11. 1000 mA 12. 1100 mA 76 nm 74 nm 11. 10. -50 -60 -70 1000 9. 8. 7. 6. 5. 4. 3 1100 2. 1. 1200 Wavelength [nm] 1300 1400 5 Optical power (mW) 1.2QD 1st Jpn. J. Appl. Phys. 2005. 8 4 NSC-2 QD-SLD(J-shape) 0 - Temp : 20 C, CW - length : 2mm 3 2 1 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Current (A) 국가지정연구실 (NRL) SLD 3 QD (NSC-3) SLD Appl. Phys Lett : submitted 1.25Q-1st 0 3.0 -20 1.2Q-1st -30 1.2Q-gr -40 Voltage [V] 98 nm NSC-3 J shape SLD CW operating 2.5 CL:Ridge : 1 mm J : 1.5mm o T : 20 C 2.0 -60 1000 1100 1.3Q-1st 1.3Q-gr 1200 1300 Wavelength (nm) 30 20 1.5 1.0 10 1.25Q-gr -50 40 Power [mW] Power (dB) -10 NSC-3 J-shape SLD - temp : 25 C - length : 2mm - current 200 mA 400 mA 600 mA 800 mA 0.5 0 0.0 1400 -100 0 100 200 300 400 500 600 700 800 Current [mA] 국가지정연구실 (NRL) V. QDIP - IR PD Applications Introduction (Types of IR detector) Thermal detector Type Disadv Adv Photon detector Interband - Bolometer type - MCT(HgCdTe) -Ferroelectric type - InSb - PN junction - low D* - very slow - R.T. operation Intersubband - Si Schottky - Si QWIP / QDIP - GaAs QWIP / QDIP - low T opeation ( <77K) - High T. opeation(>77K) - non uniform process - low D* - high D* - fast response - uniform and reliable - 2D FPA (easy fab) - fast response Quantum Dot for IR detector Co n hν Bound-to-Quasibound Bound-to-Continuum DOS Bound-to-Bound tin u um ba nd ∆E ~ 100 meV ~ hν > kT ∆E WL Energy Bound-to-Continuum Intersubband Transition Quantum Dot instead of Quantum Well Normal incidence operation - Pyramidal shape of QD Room-temp. operation - Strong confinement by 3-D QDs Small thermionic dark current - Atomic discrete energy level Large photoconductive gain - Lack of optical phonon scattering Issues in QDIPs 1. Operation Wavelength (3-5um, 8-12 um, > 12um) : Bandgap engineering by precise growth, post-growth technique 2. Device performance : Operation T, Responsitivity, Detectivity R = (e/hc)ηλG ; Responsitivity D* = A½ R/in ; Detectivity, in ; Noise current For high D* and high temperature operation Low noise(dark) current, high gain are required QD : 3-dimensional confinement of electrons -> promising for high temperature operation of IR detector But grown at low temperature under strained material condition -> defects and/or misfit dislocation is generated -> control of defects is crucial for high quality QDIP For low dark current; High quality material (growth) Post-growth treatment (Thermal treatment, H-passivation) QDIP의 제작 cleaning Mesa etching Metallization Packaging (1) Mesa etching 2 mm Metal pattern (0.5 mm) (2) Metallization and RTA Metal pattern (0.5 mm) 2 mm (3) Fabricated QDIP (4) Packaging QD IP Quantum Dot instead of Quantum Well 2 mm Metal pattern (0.5 mm) 2 mm Metal pattern (0.5 mm) Photocurrent (Arb. Units) Normal incidence operation - Pyramidal shape of QD Room-temp. operation - Strong confinement by 3-D QDs 18 60 140 190 1E-3 1E-4 1E-5 2000 4000 6000 8000 10000 Wavelength (nm) K K K K Photo-Voltaic QDIP n+ GaAs (140 nm) 22.5 QDs GaAs (18 nm) GaAs (18 nm) GaAs (18 nm) Photocurrent (a.u.) GaAs (18 nm) Vb= 0 V T=10 K T=20 K T=30 K T=40 K T=50 K 0.15 n+ GaAs (350 nm) SI (100) GaAs substrate 0.10 0.05 0.00 0 100 200 300 400 Photon energy (meV) Direct Si doping ~ 2.0x1018 500 600 T=10 K 17.5 15.0 12.5 10.0 -40 -20 0 20 40 Bias voltage (mV) cm-3 e Bottom contact 20.0 Responsivity (mA/W) Al0.3Ga0.7As (28 nm) 3 stacked-In 0.5 G a 0.5 As/G aAs Q D structure Al 0.3 Ga 0.7 As Blocking layer Top contact • Photo-voltaic effect due to asymmetric band structure induced by direct Si doping, AlGaAs barrier and asymmetric QD shape • R = 21 mA/W at zero bias at λ∼ 6.2 µm (200 meV) • Signal detected up to 50 K • No bias -> small dark current -> high detectivity responsivity is 70 times larger than reported value (MNE2004, Microelectron. Eng., accepted, 2005) Post-growth treatment(Thermal annealing) •Purpose - detection wavelength tuning with post-growth technique • 300 nm SiO2 capping and annealing (T=700 0C , 1 min ) as-grown sample thermally treated sample T = 30 K PL Intensity (a. u.) 0.3 n+ GaAs (140 nm) Al0.3Ga0.7As (28 nm) GaAs (18 nm) QDs GaAs (18 nm) 1.109 eV 1.157 eV 0.2 0.1 GaAs (18 nm) GaAs (18 nm) 0.0 n+ GaAs (350 nm) SI (100) GaAs substrate Direct Si doping ~ 2.0x1018 0.9 1.0 1.1 1.2 1.3 1.4 Photon energy (eV) cm-3 - PL peak position : blue-shifted by 48 meV. (due to intermixing of In/Ga composition) - PL FWHM : 60 Æ110 meV - PL intensity : decreased Post-growth treatment(Thermal annealing) Dark current Photo-current 0.10 0.01 Photo current (a. u.) Dark current (A) 0.08 1E-3 1E-4 T = 10 K as-grown sample thermally treated sample 1E-5 -0.4 -0.2 0.0 0.2 0.4 Bias Voltage (V) 178 meV 0.06 Vb=-20 mV, T=10 K 200 meV as-grown QDIP thermally treated QDIP x 10 0.04 0.02 0.00 0 100 200 300 400 500 Photon energy (meV) -Peak position(λ∼ 6.9 µm) : red-shifted by 22 meV. - Dark current level : 2 times larger. ⇒ due to intermixing In/Ga composition. (due to defects generation ) - Relatively small increase than reported data*. ( might be due to SiO2 dielectric capping layer) -Responsivity : decreased (13.2 Æ 6.2 mA/W). ⇒ due to increase of defects. 1st demonstration of detection wavelength tuning !! *K. Stewart, et al, J. Appl. Phys. 94, 5283 (2003). (JJAP, accepted, 2005) VI. Summary - QD growth (ALE) more uniform and thinner wetting layer QD LD, Ith, T0 QD SLD, wide bandwidth w/ chirping structure QD IP, hi T operation, photovotaic structure, post growth treatment VII. Prospects Future Collaboration in: - Optical Commun devices - Intersubband devices, far-IR, THz - Sensors - LED - Bio-photonics
© Copyright 2026 Paperzz