2nd US-Korea NanoForum, LA Fabrication and Characterization of bulk FinFETs for Future NanoScale CMOS Technology Jong-Ho Lee [email protected] School of EECS and National Education Center for Semiconductor Technology Kyungpook National University, Daegu, 702-701 Korea 2nd US-Korea NanoForum, LA Jong-Ho Lee Contents Introduction Simulation Study Fabrication of Bulk FinFETs by Spacer Technology by Selective Si3N4 Recess Device and SRAM Cell Characteristics Summary 2nd US-Korea NanoForum, LA Jong-Ho Lee Introduction: Technology Roadmap Beyond Bulk LDD CMOS TG TG S/D S/D Performance Double/Triple-Gate G BG BG S/D Double-Gate CMOS G SOI/SiGe S/D SOI PD/FD CMOS Halo Si S/D S/D Fin Double/Triple-Gate FET G SiGe S/D SiGe CMOS (high mobility) G Bulk Bulk LDD CMOS (Halo) 2004 2nd US-Korea NanoForum, LA 2006 2008 Jong-Ho Lee 2010 Time Introduction Driving Force of CMOS Scaling-down: Æ High Performance and High Integration Density A Promising Device Structure Æ Double/Triple-Gate MOSFETs (or FinFETs) Why Double/Triple-Gate Transistor? G Æ Robustness against SCE Æ Higher Current Drivability Æ Good Subthreshold Swing 2nd US-Korea NanoForum, LA Jong-Ho Lee D S Si film G Current- Carrying Plane Z Y X Top Gate Current- Carrying Plane Introduction: Types of Double-Gate Transistors Z Y Left Gate Bottom Gate (a) Type I X current direction D S D Right Gate S Silicon Wafer Silicon Wafer (b) Type II S current direction Right Gate D CurrentCarrying Plane Left Gate Z Y X (c) Type III Process technology of FinFET is easy and compatible with conventional fabrication process Silicon Wafer ∗ H. P. Wong et al., IBM, vol. 87, no. 4, p.537, 1999, Proceedings of the IEEE 2nd US-Korea NanoForum, LA Jong-Ho Lee Types of Double/Triple-Gate Transistors Type Type I (Planar DG FETs) Type II (Vertical DG FETs) Type III (FinFETs) Gate Position Top/Bottom Left/Right (or Cylinder) Left/Right Left/Right/Top Body Shape Horizontal Vertical Vertical Vertical Horizontal Surfaces Side Surfaces Side Surfaces Side Surfaces Horizontal Vertical Horizontal Horizontal Key Geometry Current Carrying Plane Current Flow Direction 2nd US-Korea NanoForum, LA Jong-Ho Lee (Triple-Gate MOSFETs) Double-Gate Transistor (SOI FinFET) FinFET à simple, self-aligned double-gates à good process compatibility Ä thickness control of fin body Ä RIE damage on the channel, high S/D resistance ∗ D. Hisamoto et al., UC Berkeley, p.1032, IEDM 1998 2nd US-Korea NanoForum, LA Jong-Ho Lee Body-Tied Double/Triple-Gate MOSFET Using Bulk Wafer (Bulk FinFET) S/D Low wafer cost te a G 0 S/D Body Ox ide Si Su bs t ra t HFin Low defect density Less back-bias effect xj WFin High heat transfer rate to substrate Good process compatibility TFOX e World 1st Cost-Effective Double/Triple-Gate MOSFETs Schematic 3-D View ∗ J.-H. Lee., Korea/Japan/USA patent 2nd US-Korea NanoForum, LA Jong-Ho Lee Cross-Sectional Views (Body Structure) for 3Dimensional Device Simulation Fin body Gate SiO2 SiO2 Si sub Si sub SOI FinFET 2nd US-Korea NanoForum, LA Gate Bulk FinFET Jong-Ho Lee Fin body 3-D Simulation Results 180 LG=25 nm 0.4 150 TOX=1.5 nm VT (V) Bulk SOI 0.3 19 Na=1x10 cm 0.1 60 -3 HFin=70 nm xj,S/D=66 nm 10 20 30 90 30 40 50 0 DIBL (mV/0.9V) 120 0.2 100 Subthreshold Swing (mV/dec) 0.5 95 LG=25 nm TOX=1.5 nm 85 Bulk SOI VDS=0.05 V 80 75 19 Na=1x10 cm 70 10 20 30 HFin=70 nm -3 xj,S/D=66 nm 40 VT and DIBL versus Fin Width Subthreshold Swing versus Fin Width for fully depleted body ∗ J.-H. Lee et al., KNU, p. 102, Si Nanoelectronics Workshop 2003 2nd US-Korea NanoForum, LA 50 Fin Width (nm) Fin Width (nm) qN sub t b V T = Φ MS + 2φ B + 2 C ox VDS=0.9 V 90 Jong-Ho Lee 3-D Simulation Results S/D te a G Ox ide Si Su bs tra te HFin Body S/D 0 xj WFin TFOX Device Temperature (K) 475 450 LG=30 nm 425 TOX=1.5 nm 400 VDS=0.9 V substrate electrode @ temperature=300 K SOI 375 ∆T~130 °C 350 Bulk 325 300 Heat 0.0 0.2 0.4 0.6 0.8 1.0 Gate Voltage (V) 3-D Schematic View of Heat Transfer from Body to Substrate Device Temperature versus Gate Voltage ∗ J.-H. Lee et al., KNU, p. 102, Si Nanoelectronics Workshop 2003 2nd US-Korea NanoForum, LA Jong-Ho Lee Fabrication Steps by Using Spacer Technology SiN 80 nm SiO2 30 nm SiN 25 nm SiO2 30 nm Si 4 Stack Layer Growth and Deposition Poly-Si Spacer 30 nm SiN Removal Using Phosphoric Acid Poly-Si Spacer Si Photo Lithography, SiN Etching, Poly-Si Depo., and Dry Etching 2nd US-Korea NanoForum, LA Jong-Ho Lee Fabrication Steps Fin Dry Etching SiO2, SiN, and SiO2 Dry Etching Top Si Width 25 nm Bottom Si Width 100 nm Si Fin Height 230 nm Fin body 2nd US-Korea NanoForum, LA Jong-Ho Lee Fabrication Steps SiO2 Wet Etch-back Thin Ox., Filling, and Densification Field Oxide Thickness 80 nm SiO2 Chemical Mechanical Polishing (CMP) 2nd US-Korea NanoForum, LA Jong-Ho Lee / 27 First Body-Tied Triple-Gate MOFET (Bulk FinFET) Gate Poly-Si Etching 40 nm Poly-Si Drain Current (A) As+, 20 keV 3x1015/cm2, 2 Fin 10 -7 V DS = 0.1 V 25 nm 10 -8 50 nm 10 10 -9 Vbs = 0 V Vbs = -1 V Vbs = -2 V 40 nm -10 -0.5 0.0 0.5 1.0 Gate Voltage (V) 1.5 ID-VGS Characteristics of 40 nm bulk NFiNFET ∗ T. Park et al., SNU/KNU, Nanomes03 2003 ∗ T. Park et al., SNU/KNU, Physica E19, p.6, 2003 2nd US-Korea NanoForum, LA Jong-Ho Lee Modified Structure of Bulk FinFET Thick SiN liner formation & SiN liner only recessed CMP and partial etch-back Top Si Width 25 nm Bottom Si Width 100 nm Si Fin Height 230 nm unclear t Ga Oxide lec E e e d o tr SiO Si Fin 2 SiO 2 SiN Clear Sidewall Open S Planarization of the Top Surface of Poly-Si Gate Easy nano-scale patterning of gate poly-Si ∗ E. Yoon, J.-H. Lee, and T. park, Korea/Japan/USA/Germany patent 2nd US-Korea NanoForum, LA Jong-Ho Lee ub S i te a r st Key Process Steps of Modified Bulk FinFET 2nd US-Korea NanoForum, LA Jong-Ho Lee SEM Views of Key Process Steps SiN SiO2 SiN Active Fin Gate Si Substrate Si Substrate SiN Liner Deposition 2nd US-Korea NanoForum, LA SiN Recess Etch Jong-Ho Lee SEM Views of Key Process Steps Gate Etch Profiles Gate Stack SiN SiO2 SiN Poly-Si Gate Stack Mask SiN Width = 70 nm, Poly-Si Neck Width = 47 nm Poly-Si Bottom Width = 64 nm Fins Si Substrate Si Substrate Along Gate Line Across Gate Line ∗ T. Park et al., Samung/SNU/KNU, Symp. on VLSI Tech., 2003 2nd US-Korea NanoForum, LA Jong-Ho Lee SEM and TEM Views of Key Process Steps Si Fin 30 nm SiN Liner Deposition 99 nm 82˚ Gate P oly-Si fin Poly-Si 61 nm SiN 181 nm SiN SiO2 Si Substrate Along Gate Line 12 nm fin body ∗ T. Park et al., Samung/SNU/KNU, IEDM., 2003 2nd US-Korea NanoForum, LA Jong-Ho Lee Bulk FinFET Measurement ID-VGS plot: ID, DIBL, SS, and Isub -4 10 -5 10 -6 10 -4 VBS = 0 V -1 V 1V |ID |, |ISUB| (A) -7 10 -9 10 -10 10 -11 10 -7 -14 10 ID ISUB -8 10 ISUB 10 -11 10 -12 10 -13 0.05 V 10 -0.05 V -14 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Gate Voltage (V) 2nd US-Korea NanoForum, LA 10 TOx,top=1.8 nm -9 10 TOx,top=5.5 nm -10 VDS=1 V VDS=-1 V 10 -13 LG=100 nm W Fin=25 nm HFin=100 nm -12 10 -5 10 VDS=0.05 V 10-6 VDS=-0.05 V 10 -8 10 Jong-Ho Lee 10 2.0 Measured ID-VGS of N and P type bulk FinFETs with drain bias high Ion(~200 µA/µm @ VGS=1.5 V) compared to that of first lot devices low Ioff (<0.2 nA/µm @ VDS=1.0 V) Isub/ID < ~10-7 Static Noise Margin (SNM) Bulk FinFET Planar MOSFET Pass Load Pull-Down 2nd US-Korea NanoForum, LA W/L Load: 35 nm/90 nm Pass: 35 nm/90 nm Pull-Down: 50 nm/90 nm Jong-Ho Lee Summary Briefly introduced key features of double/triple-gate FinFETs Bulk FinFETs were compared with SOI FinFETs Nearly the same device scalability Better wafer quality Better characteristics regarding the body connected to sub. Bulk FinFETs have been demonstrated experimentally First nano-scale bulk FinFET realized by using spacer technology Modified bulk FinFETs realized by adopting selective Si3N4 recess Good device characteristics were achieved and SNM of 280 mV was obtained from SRAM cell at VCC of 1.2 V 2nd US-Korea NanoForum, LA Jong-Ho Lee 3-D Device Structure for Simulation LG=25 nm Gate S/D S/D S/D S/D body SiO2 Si substrate Si substrate body 2nd US-Korea NanoForum, LA TOX=1.5 nm Jong-Ho Lee Key Process Steps for Thinning of the Fin Body 2nd US-Korea NanoForum, LA Jong-Ho Lee
© Copyright 2026 Paperzz