Fabrication and Characterization of Bulk FinFETs for Future Nano-Scale CMOS Technology

2nd US-Korea NanoForum, LA
Fabrication and Characterization
of bulk FinFETs for Future NanoScale CMOS Technology
Jong-Ho Lee
[email protected]
School of EECS and National Education Center for Semiconductor Technology
Kyungpook National University, Daegu, 702-701 Korea
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Contents
Introduction
Simulation Study
Fabrication of Bulk FinFETs
by Spacer Technology
by Selective Si3N4 Recess
Device and SRAM Cell Characteristics
Summary
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Introduction: Technology Roadmap Beyond Bulk LDD CMOS
TG
TG
S/D
S/D
Performance
Double/Triple-Gate
G
BG
BG
S/D
Double-Gate CMOS
G
SOI/SiGe
S/D
SOI PD/FD CMOS
Halo
Si
S/D
S/D
Fin Double/Triple-Gate FET
G
SiGe
S/D
SiGe CMOS (high mobility)
G
Bulk
Bulk LDD CMOS (Halo)
2004
2nd US-Korea NanoForum, LA
2006
2008
Jong-Ho Lee
2010
Time
Introduction
‹ Driving Force of CMOS Scaling-down:
Æ High Performance and High Integration Density
‹ A Promising Device Structure
Æ Double/Triple-Gate MOSFETs (or FinFETs)
‹ Why Double/Triple-Gate Transistor?
G
Æ Robustness against SCE
Æ Higher Current Drivability
Æ Good Subthreshold Swing
2nd US-Korea NanoForum, LA
Jong-Ho Lee
D
S
Si film
G
Current- Carrying
Plane
Z
Y
X
Top Gate
Current- Carrying
Plane
Introduction: Types of Double-Gate Transistors
Z
Y
Left Gate
Bottom Gate
(a) Type I
X
current
direction
D
S
D
Right Gate
S
Silicon Wafer
Silicon Wafer
(b) Type II
S current
direction
Right Gate
D
CurrentCarrying
Plane
Left
Gate
Z
Y
X
(c) Type III
Process technology of FinFET is
easy and compatible with
conventional fabrication process
Silicon Wafer
∗ H. P. Wong et al., IBM, vol. 87, no. 4, p.537, 1999, Proceedings of the IEEE
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Types of Double/Triple-Gate Transistors
Type
Type I
(Planar DG
FETs)
Type II
(Vertical DG
FETs)
Type III
(FinFETs)
Gate
Position
Top/Bottom
Left/Right (or
Cylinder)
Left/Right
Left/Right/Top
Body
Shape
Horizontal
Vertical
Vertical
Vertical
Horizontal
Surfaces
Side Surfaces
Side Surfaces
Side Surfaces
Horizontal
Vertical
Horizontal
Horizontal
Key
Geometry
Current
Carrying
Plane
Current
Flow
Direction
2nd US-Korea NanoForum, LA
Jong-Ho Lee
(Triple-Gate
MOSFETs)
Double-Gate Transistor (SOI FinFET)
‹ FinFET
à simple, self-aligned double-gates
à good process compatibility
Ä thickness control of fin body
Ä RIE damage on the channel, high S/D resistance
∗ D. Hisamoto et al., UC Berkeley, p.1032, IEDM 1998
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Body-Tied Double/Triple-Gate MOSFET Using
Bulk Wafer (Bulk FinFET)
S/D
‹ Low wafer cost
te
a
G
0
S/D
Body
Ox
ide
Si
Su
bs
t ra
t
HFin
‹ Low defect density
‹ Less back-bias effect
xj
WFin
‹ High heat transfer rate
to substrate
‹ Good process compatibility
TFOX
e
World 1st Cost-Effective
Double/Triple-Gate MOSFETs
Schematic 3-D View
∗ J.-H. Lee., Korea/Japan/USA patent
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Cross-Sectional Views (Body Structure) for 3Dimensional Device Simulation
Fin body
Gate
SiO2
SiO2
Si sub
Si sub
SOI FinFET
2nd US-Korea NanoForum, LA
Gate
Bulk FinFET
Jong-Ho Lee
Fin body
3-D Simulation Results
180
LG=25 nm
0.4
150
TOX=1.5 nm
VT (V)
Bulk
SOI
0.3
19
Na=1x10 cm
0.1
60
-3
HFin=70 nm
xj,S/D=66 nm
10
20
30
90
30
40
50
0
DIBL (mV/0.9V)
120
0.2
100
Subthreshold Swing (mV/dec)
0.5
95
LG=25 nm
TOX=1.5 nm
85
Bulk
SOI
VDS=0.05 V
80
75
19
Na=1x10 cm
70
10
20
30
HFin=70 nm
-3
xj,S/D=66 nm
40
VT and DIBL versus Fin Width
Subthreshold Swing versus Fin Width
for fully depleted body
∗ J.-H. Lee et al., KNU, p. 102, Si Nanoelectronics Workshop 2003
2nd US-Korea NanoForum, LA
50
Fin Width (nm)
Fin Width (nm)
qN sub t b
V T = Φ MS + 2φ B +
2 C ox
VDS=0.9 V
90
Jong-Ho Lee
3-D Simulation Results
S/D
te
a
G
Ox
ide
Si
Su
bs
tra
te
HFin
Body
S/D
0
xj
WFin
TFOX
Device Temperature (K)
475
450
LG=30 nm
425
TOX=1.5 nm
400
VDS=0.9 V
substrate electrode
@ temperature=300 K
SOI
375
∆T~130 °C
350
Bulk
325
300
Heat
0.0
0.2
0.4
0.6
0.8
1.0
Gate Voltage (V)
3-D Schematic View of Heat
Transfer from Body to Substrate
Device Temperature versus Gate
Voltage
∗ J.-H. Lee et al., KNU, p. 102, Si Nanoelectronics Workshop 2003
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Fabrication Steps by Using Spacer Technology
SiN 80 nm
SiO2 30 nm
SiN 25 nm
SiO2 30 nm
Si
4 Stack Layer Growth and Deposition
Poly-Si Spacer
30 nm
SiN Removal Using Phosphoric Acid
Poly-Si Spacer
Si
Photo Lithography, SiN Etching,
Poly-Si Depo., and Dry Etching
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Fabrication Steps
Fin Dry Etching
SiO2, SiN, and SiO2 Dry Etching
Top Si Width 25 nm
Bottom Si Width 100 nm
Si Fin Height 230 nm
Fin body
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Fabrication Steps
SiO2
Wet Etch-back
Thin Ox., Filling, and Densification
Field Oxide Thickness 80 nm
SiO2
Chemical Mechanical Polishing (CMP)
2nd US-Korea NanoForum, LA
Jong-Ho Lee
/ 27
First Body-Tied Triple-Gate MOFET (Bulk
FinFET)
Gate Poly-Si Etching
40 nm
Poly-Si
Drain Current (A)
As+, 20 keV 3x1015/cm2, 2 Fin
10
-7
V DS = 0.1 V
25 nm
10
-8
50 nm
10
10
-9
Vbs = 0 V
Vbs = -1 V
Vbs = -2 V
40 nm
-10
-0.5
0.0
0.5
1.0
Gate Voltage (V)
1.5
ID-VGS Characteristics of 40 nm bulk NFiNFET
∗ T. Park et al., SNU/KNU, Nanomes03 2003
∗ T. Park et al., SNU/KNU, Physica E19, p.6, 2003
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Modified Structure of Bulk FinFET
Thick SiN liner formation &
SiN liner only recessed
CMP and
partial etch-back
Top Si Width 25 nm
Bottom Si Width 100 nm
Si Fin Height 230 nm
unclear
t
Ga
Oxide
lec
E
e
e
d
o
tr
SiO
Si
Fin
2
SiO
2
SiN
‹ Clear Sidewall Open
S
‹ Planarization of the Top Surface of Poly-Si Gate
ƒ Easy nano-scale patterning of gate poly-Si
∗ E. Yoon, J.-H. Lee, and T. park, Korea/Japan/USA/Germany patent
2nd US-Korea NanoForum, LA
Jong-Ho Lee
ub
S
i
te
a
r
st
Key Process Steps of Modified Bulk FinFET
2nd US-Korea NanoForum, LA
Jong-Ho Lee
SEM Views of Key Process Steps
SiN
SiO2
SiN
Active Fin
Gate
Si Substrate
Si Substrate
SiN Liner Deposition
2nd US-Korea NanoForum, LA
SiN Recess Etch
Jong-Ho Lee
SEM Views of Key Process Steps
Gate Etch Profiles
Gate Stack
SiN
SiO2
SiN
Poly-Si
Gate Stack
Mask SiN Width = 70 nm, Poly-Si Neck Width = 47 nm
Poly-Si Bottom Width = 64 nm
Fins
Si Substrate
Si Substrate
Along Gate Line
Across Gate Line
∗ T. Park et al., Samung/SNU/KNU, Symp. on VLSI Tech., 2003
2nd US-Korea NanoForum, LA
Jong-Ho Lee
SEM and TEM Views of Key Process Steps
Si Fin
30 nm
SiN Liner Deposition
99 nm
82˚
Gate P
oly-Si
fin
Poly-Si
61 nm
SiN
181 nm
SiN
SiO2
Si Substrate
Along Gate Line
12 nm fin body
∗ T. Park et al., Samung/SNU/KNU, IEDM., 2003
2nd US-Korea NanoForum, LA
Jong-Ho Lee
Bulk FinFET Measurement
ID-VGS plot: ID, DIBL, SS, and Isub
-4
10
-5
10
-6
10
-4
VBS = 0 V
-1 V
1V
|ID |, |ISUB| (A)
-7
10
-9
10
-10
10
-11
10
-7
-14
10
ID
ISUB
-8
10
ISUB
10
-11
10
-12
10
-13
0.05 V 10
-0.05 V
-14
-2.0 -1.5 -1.0 -0.5
0.0
0.5
1.0
1.5
Gate Voltage (V)
2nd US-Korea NanoForum, LA
10
TOx,top=1.8 nm
-9
10
TOx,top=5.5 nm
-10
VDS=1 V
VDS=-1 V
10
-13
LG=100 nm
W Fin=25 nm
HFin=100 nm
-12
10
-5
10
VDS=0.05 V 10-6
VDS=-0.05 V
10
-8
10
Jong-Ho Lee
10
2.0
‹ Measured ID-VGS of N
and P type bulk FinFETs
with drain bias
ƒ high Ion(~200 µA/µm
@ VGS=1.5 V) compared
to that of first lot devices
ƒ low Ioff (<0.2 nA/µm
@ VDS=1.0 V)
ƒ Isub/ID < ~10-7
Static Noise Margin (SNM)
Bulk FinFET
Planar MOSFET
Pass
Load
Pull-Down
2nd US-Korea NanoForum, LA
W/L
Load: 35 nm/90 nm
Pass: 35 nm/90 nm
Pull-Down: 50 nm/90 nm
Jong-Ho Lee
Summary
™ Briefly introduced key features of double/triple-gate
FinFETs
™ Bulk FinFETs were compared with SOI FinFETs
ƒ Nearly the same device scalability
ƒ Better wafer quality
ƒ Better characteristics regarding the body connected to sub.
™ Bulk FinFETs have been demonstrated experimentally
ƒ First nano-scale bulk FinFET realized by using spacer technology
ƒ Modified bulk FinFETs realized by adopting selective Si3N4 recess
™ Good device characteristics were achieved and SNM of
280 mV was obtained from SRAM cell at VCC of 1.2 V
2nd US-Korea NanoForum, LA
Jong-Ho Lee
3-D Device Structure for Simulation
LG=25 nm
Gate
S/D
S/D
S/D
S/D
body
SiO2
Si substrate
Si substrate
body
2nd US-Korea NanoForum, LA
TOX=1.5 nm
Jong-Ho Lee
Key Process Steps for Thinning of the Fin Body
2nd US-Korea NanoForum, LA
Jong-Ho Lee