Nanoscale Materials: Exploring the Energy Frontier Prashant N. Kumta Department of Materials Science and Engineering, Biomedical Engineering Carnegie Mellon University, Pittsburgh, PA 15213 Need for Energy Storage Systems www.maxwell.com Hybrid Electric Vehicle Backup Power Source Telecommunication www.nissandiesel.co.jp Electronic Devices Laser Nissan Diesel Sizuki Electric Power Systems Military Use Particle Accelerator www.hondacorporate.com www.nissandiesel.co.jp www.maxwell.com Potential Energy Storage Systems Li-ion Batteries* * Super-capacitors * Direct Methanol Fuel Cells Hydrogen Storage *Focus of the current presentation Lithium-Ion Systems: Anodes and Cathodes Comparison of Battery Energy Density (gravimetric and volumetric) Considerable improvement in area of cathodes with identification of new layered compounds, LiFePO4 and LiNi0.5Mn0.5O2, LiMn1/3Ni1/3Co1/3O2. Improvements in the anode area are still warranted. Introduction and Background ° Li-alloy (LixM) : Anodes for Li ion cells - Intermetallic phases containing lithium LixM xLi+ + xe- + M (M = Mg, Ca, Al, Si, Ge, Sn, Sb, Bi, Zn, etc)1 - Higher theoretical capacity than graphite (LiC6 : 372 mAh/g, 832 Ah/L, Li22Sn5 : 990 mAh/g, 14780 Ah/L Li22Si5 : 4000 mAh/g, 10997 Ah/L)1, 2 ° Major problems of Li-alloys for use as anodes - Poor reversibility caused by large volume changes (Sn: 593%, Si: 412% volume change) - Cracking or crumbling during cycling 1. M. Winter & J. O. Besenhard, Electrochimica Acta, 1999, 45, 31. 2. B. A. Boukamp & R. A. Huggins, J. Electrochemical Soc., 1981, 128, 729. 3. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause and J.R. Dahn, Elect. Sol. St. Lett. 2001, A137. 3 Amorphous active phase - No secondary phase observed at the interface Æ Si/Transition metal non-oxide system is stable during HEMM. Nanoscale structure is the key to attaining the high capacity 2 nm 20nm Bright Field 20nm Dark Field Electrochemical Response(Sn:C=1:1) (Tetraethyl tin+Ps-resin powder heat-treated at 600 oC for 5h in UHP-Ar, current rate = 100µA/cm2 ) 800 3000 2500 2000 2000 500 1500 400 1000 300 Graphite 200 500 100 Cycle between 0.02 and 1.2V 0 0 0 5 10 15 20 25 30 1000 d Q /d V ( m A h /g .V ) 600 V o l.C ap acity (A h /l) S p .C ap a city (m A h /g ) 700 0 0 0.5 1 1.5 -1000 -2000 -3000 -4000 -5000 Cycle Number - Theoretical Capacity = 636 mAh/g - Higher capacity than graphite (~480mAh/g or 1450Ah/l) with stability (0.15%loss/cycle). Cell Potential (V) 2 2.5 3 HEMM derived Si-C nanocomposites Nanostructured inactive matrix can endure large volumetric stresses of the active material due to possible superplastic deformation that can provide compressive stresses to accommodate large strains*. • ε = σ n d -p D o exp( −Q/RT ) * M.J. Mayo, Nanostructured Materials, Vol. 9 (1997) 717 XTEM of sputter deposited Si film (250 nm as-deposited film) Si 100 nm Conventional XTEM Cu 2 nm High Resolution XTEM Galvanostatic Cycling of 250 nm Si Thin Film (C/2.5 and 2C rates) High Capacity and Excellent Rate Capability of 250 nm Silicon Thin Film Anode (Area = 1 cm2) Also note low irreversible loss ~14% and 0.1 % loss per cycle. 4500 4199 mAh/g : Theoretical Capacity of Pure Silicon Anode Material 4000 Increase of capacity with cycle # for the 2C sample may be due to kinetic limitation of the amorphous Si sample decreasing the effective diffusion distance for the lithium ions from the electrolyte. Specific Capacity (mAh/g) in the initial cycles, which is mitigated gradually in later cycles by morphological changes in the electrode, 3500 C/2.5 rate (100uA/cm2) 3000 2C rate (500uA/cm2) 2500 C/2.5 Charge C/2.5 Discharge 2C Charge 2C Discharge 2000 1500 1000 500 372 mAh/g : Theoretical Capacity of Conventional Graphite Anode Material Used in Commercial Lithium-Ion Batteries 0 0 5 10 15 20 25 30 35 Cycle Number 2 µm As-Deposited 2 µm SEM : C/2.5 rate – 30 cycles 2 µm Si EDAX : C/2.5 rate – 30 cycles Multilayer Film Schematic Silicon (250 nm) Carbon (50nm) Copper Foil (25 µm) Note: Drawing not to scale Note: Ecarbon ~ 50 – 500 GPa Cr (10 nm) 5000 Cycling of Multilayer Film, C/2.5 rate 4500 4000 3000 40000 20000 2500 discharge charge 0 0 0.2 0.4 0.6 0.8 1 1.2 -20000 2000 dQ/dV (mAh/gV) Specific Capacity (mAh/g-Si) 3500 1500 -40000 -60000 -80000 -100000 1000 -120000 -140000 500 -160000 Cell Potential (V) 0 0 5 10 15 20 25 30 35 40 45 50 Cycle Number SEM image of a 500°C-4h annealed 250 nm Si/50nm C/10 nm Cr/Cu multilayer thin film cycled at 0.4 C after 75 cycles, 5000x. Interface dynamics control of the nanoscale films is the key to improved electrochemical performance Supercapacitors: Potential Energy Storage Systems Electrochemical Capacitor 10000 4s “Ultracapacitor” “Supercapacitor” 40s Power Density (W/kg) 6 min Primary Battery 1h 1000 Supercapacitor • Leclanche • Primary Li • Alkaline 10 h 100 Zinc-Air Pb/Acid NiMH Secondary Battery 100 h Li-ion Alkaline Ni-Cd 10 Fuel Cell Primary Li 1000 h Leclanche 1 10 100 1000 Energy Density (Wh/kg) Ragone Plot 10000 • • • • • Pb/Acid Zinc-Air Ni-Cd NiMH Li-ion Fuel Cell - + - H2O (Solvent) Gouy-Chapman Diffuse Layer - 1/k + _ Cation 2k B T 1 + γ exp(−κx) ψ = ln ze 1 − γ exp(−κx) zeϕ o 4 k BT Anion γ = tanh Neutral Molecule + - _ - Stern Layer - σ = (8k BTc ε ε ) ∗ 1/ 2 o o r Outer Helmholtz Layer zeϕ o sinh 2 k BT Inner Helmholtz Layer ψ0 ψ d (≈ ζ ) Non-Faradaic : No electron transfer Ex) Dielectric Capacitor Electric Double Layer Capacitor KB : ϕ0 : z : x : T : εo : εr : Co : Boltzmann constant Potential at (x=0) Ion valency Distance from the surface Temperature Permittivity of free space Solvent dielectric constant Electrolyte concentration θB= f (V) θA= f (V) θ2 ∆V0.5 Cφ ∆V0.5 Cφ Ox + ze ↔ Re d Faradaic : electron transfer Ex) Battery, Pseudocapacitor θ : Coverage V : Voltage K : Reaction rate constant g : Adsorption isotherm constant F : Faraday constant θ VF = K exp exp( ± gθ ) 1−θ RT Cφ ≈ VF K exp RT dθ F = ⋅ 2 dV RT VF 1 + K exp RT Cφ (= q·dθ/dV) (g > 0) θ θ1 (g = 0) Competitive Systems Gravimetric Capacitance (F/g) Electrolyte Potential Window (V) Scan rate (mV/s) Reference MultiMulti-walled carbon nanonano-tubes 113 38wt% H2SO4 0 - Niu et al. al. Carbon nanonano-tubes 15 ~ 25 38wt% H2SO4 0 − 0.9 10mA Ma et al. Mesoporous Carbon 95 1M LiPF6 0.75 – 3.75 5 Zhou et al. RuO2 350 0.5M H2SO4 0−1 100 Raistrick et al. RuO2·xH2O 720 ~ 760 250 0.5M H2SO4 0−1 2 50 Zheng et al. al. RuO2 on Carbon Tape 900 0.5M H2SO4 0.2 − 0.7 2 Long et al. Amorphous MnO2⋅H2O 153 1M KCl 0.1 − 0.85 10 Lee et al. al. NiOx 260 1M KOH -0.4 – 0.5 10 Liu et al. al. Co(OH)2 Xerogel 291 1M KOH -1.1 − 0.8 50 Lin et al. Fe3O4 38 1M Na2SO4 -1.2 − 1.2 2 Wu et al. Poly3Poly3(3,5(3,5-difluorophenylthiophene) 23 ~ 30mAh/g Poly(acrylonitrile) -2 − 0 25 Searson et al. Poly(dithienothiophene)Poly(dithienothiophene)-pDTT 15 Poly(ethylene oxide) – PEO 0 − 0.3 50 Arbizzani et al. Polyaniline (PANI) 25 Poly(methylmethacrylate) – PMMA 0 − 1.2 50 Clement et al. Polyaniline (PANI) on Stainless Steel 650~1300 1M LiClO4 in PC 0 − 0.75 200 Prasad et al. Material Carbon Transition Metal Oxide Polymer Transition Metal Nitrides: Novel Capacitor Materials Good Electrical Conductivity • High rate electrochemical response of the capacitor depends on electrical conductivity of the electrode and the ionic conductivity of the electrolyte Chemical Stability • The electrolyte widely used are corrosive (H2SO4 or KOH) Cost High Mass Density (g/cm3) • To increase volumetric capacitance (F/cc) High Specific Surface Area (m2/g ) • To increase the electrode-electrolyte interface area for charge storage Density Electronic Conductivity (g/cm3) σ×10-2Ω-1m-1 Tetragonal (P42/mnm) 6.97 2×106 133.07 Carbon - <1 < 4×104 12.00 TiN Cubic (Fm3m) 5.43 2.5×104 61.91 VN Cubic (Fm3m) 6.04 1.67×104 64.95 ZrN Cubic (Fm3m) 7.09 5.55×104 105.23 NbN Cubic (Fm3m) 8.3 1.28×104 106.91 Mo2N Cubic (Pm3m) 8.4 5.05×104 205.88 TaN Cubic (Fm3m) 14.1 5.55×104 194.96 Ta3N5 Orthorhombic (Cmcm) < 10-4 612.87 WN Cubic (Pn3m) 12.12 197.89 Material Structure RuO2 M.W. Ref: 1) J. P. Zheng, P. J. Cygan, and T. R. Jow, J. Electrochem. Soc., 142(8), (1995) p.2699 2) M. Wixom, L. Owens, J. Parker, J. Lee, I. Song, and L. Thompson, Electrochem. Soc. Proc., 96 (25) (1999) p. 63 3) P. T. Shaffer, Handbook of High-Temperature Materials, Vol.1, pp.292-92. Plenum Press, New York, (1964) TEM Analysis: Morphology of the Nanocrystalline Nitirdes VN500o C VN-400oC 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 100mV/s 1400 50mV/s Gravimetric Capacitance (F/g) Gravimetric Current (I/g) Electrochemical Response of the Nanocrystalline Nitrides 25mV/s 10mV/s 2mV/s 3 0.25mg/cm 3 0.28mg/cm 1200 3 0.44mg/cm 1000 3 0.67mg/cm 3 0.99mg/cm 800 600 400 200 0 -1.2 -1.0 -0.8 -0.6 -0.4 Potential V (vs. Hg/HgO) -0.2 0.0 1 10 100 Scan Rate (mV/s) Figure 2 The (a) cyclic voltammogram of nanocrystallites synthesized at 400oC and (b) gravimetric capacitance (F/g) versus VN nanocrystallites loading scanned at various rates (2~100mV/s) in 1M KOH electrolyte. x 10 3 x 10 3 22 O 1s 1 O 1s 20 1 25 18 20 V 2p3 V 2p3 16 Counts V 2p1 V 2p1 12 10 10 8 6 (a) 5 540 535 (b) 4 530 525 520 Binding Ene rgy (e V) 515 510 540 505 XPS: Presence of V2O5 before cycling (a) 535 530 525 520 Binding Ene rgy (e V) 510 505 The FTIR spectra of (a) VN powder, immersed in 1M KOH solution for 24h and cycled 200 times and XPS spectra of VN powder (b) before and (c) after electrochemically cycled for 200 times. o o VN 400 C in 1M KOH for 24h (c) Controlled oxidation is the key minimal reduction in electronic conductivity o 970 3047 3535 798 VN 400 C cycled 10times at 2mV/s 3423 4000 515 XPS: Formation of V2O3 after 200 cycles VN 400 C (b) Transmittance (%) Counts 14 15 3500 V-O V=O -OH stretching 3000 2500 2000 1500 -1 Wavenumber (cm ) 1000 500 Major Benefits of Direct Methanol Fuel Cells High Efficiency of Energy Conversion • Enhanced utilization of fuel • Lower carbon dioxide emissions Direct Generation of Electrical Energy • Losses in mechanical to electrical energy conversion is avoided Low temperature operation • Low emissions of nitrogen oxides, carbon monoxide and particulates Potential solution for portable applications Near Ambient temperature operation High energy density required Easy to handle fuel 2W 20W 50-100W DIRECT METHANOL FUEL CELL SYSTEM METHANOL FUEL CELL 500W 1-5kW CO2 Emissions and Efficiency for Traditional ICE and methanol or hydrogen fed Fuel Cells G. Cacciola et al. J. Power Sources 100 (2001) 67-79 Drawbacks Expensive materials • Platinum catalysts, fluoropolymers Components that are expensive to manufacture Lack of fuel flexibility Requires clean fuel; e.g. sulfur free Electrochemical reactions are sensitive to poisons in the environment Direct Methanol Fuel Cell Concept Anode (Pt-Ru) CH3OH + H2O CO2 + 6H+ + 6e- - LOAD + 6eCO2 H+ H+ + H+ H+ 6H+ H+ H+ H+ H+ H+ H+ H+ H+ CO2 <3% Methanol / water FUEL 6e- H2O + CH3OH 3% Methanol / water - Electrode (Anode) 3H2O 6H+ + 3/2 O2 H20, N2, O2 OXIDANT Air (O2) + Electrode (Cathode) Cathode (Pt) PROTON EXCHANGE MEMBRANE (PEM) 6H+ + 1.5 O2 + 6e- 3H2O Synthesis of Catalysts • Most synthetic approaches in the literature are based on the reduction of Halide precursors of Pt and Ru • Limitations: —Need for several washing steps to eliminate unwanted by-products —Tedious process leading to loss of active material — Poisoning of the catalyst • Need for improved catalyst using non-halogen containing precursors • Objective: Develop novel sol-gel based methods using non-halogen precursors for generating Pt-Ru catalysts — High surface area — Pt to Ru ratio close to unity — High electrochemical activity — (low polarization of the electrode) Morphology Characterization Transmission Electron Microscopy (TEM) •TEM micrographs of the powder possessing the highest surface area (120-160 m2/g) with the best electrochemical activity (optimized sample) —Diffraction pattern indicates single phase Pt-Ru composition —HRTEM images show 2-4 nm sized crystallites Electrochemical Characterization Anode polarization data •Results of electrochemical tests conducted on the powders derived using a large excess of tetramethylammonium hydroxide [TMAH : (Pt-acac+Ru-acac) = 1.75:1 and Pt:Ru = 1:1] SSA = 97.9 m2/g 0.8 0.8 o E (25C, measured) E' (25oC, corrected) 0.7 E' (60oC, corrected) 0.6 0.5 y = 0.28913 + 0.014178x R= 0.95483 0.4 o E (25C, measured) E' (25oC, corrected) 0.7 o E (60C, measured) Potential vs H2/H+ Potential vs H2/H+ SSA = 139.6 m2/g 1214.10 0.3 y = 0.19655 + 0.01602x R= 0.95062 0.2 o E (60C, measured) E' (60oC, corrected) 0.6 0.5 0.4 y = 0.26396 + 0.014772x R= 0.97508 0.3 y = 0.18419 + 0.013872x R= 0.95196 0.2 0.1 0.1 0 0 0 (a) 2 4 6 Ln(mA/g) 8 Two step heat treatment of 10 0 2 4 6 Ln(mA/g) 8 (b) Two step heat treatment of 400/3h/1%O2 (3 g) Æ (0.5g)300/3h/1%O2 300/2h/1%O2 (3 g) Æ (0/5g)300/4h/1%O2 IV-1-1 IV-1-2 10 Comparison of catalytic activity Specific Intercept on y axis surface area in polarization curve (m2 /g) 25°C 60°C JPL 49.5 0.305 0.182 Giner 94.2 0.269 0.177 Johnson71.3 0.298 0.173 Matthey 1208.12 94.2 0.214 0.155 Sample Slope in Cell potential (V) polarization at ln(mA/g)=8 curve (60°C) 25°C 60°C 0.0216 0.0193 0.336 0.0273 0.0306 0.422 0.0127 0.0163 0.304 0.0284 0.0231 0.340 1212.03 95.9 0.322 0.217 0.0169 0.0194 0.372 1214.03 97.9 0.289 0.197 0.0142 0.0160 0.325 1214.10 139.6 0.264 0.184 0.0148 0.0139 0.295 TM AH:acac=1.25:1 Pt:Ru = 1:1 TM AH:acac=1.25:1 Pt:Ru = 1:1.25 TM AH:acac=1.25:1 Pt:Ru = 1:1.5 TMAH:acac=1.75:1 Pt:Ru = 1:1 Sample identification Surface area(m2/g) Phase/phases present Lattice parameter (nm) Carbon content (%) JM catalyst 70 Pt(Ru) 0.3866 0 JM catalyst(600oC/6h in Ar) - Pt(Ru) +Ru 0.3858 0 Sample A (5000C/6h in Ar) 1 Pt(Ru) + C 0.3861 63 Sample B (Sample A: 3000C/2h in Ar1% O2) 158 Pt(Ru) + C 0.3859 3 Sample C (Sample B: 3000C/2h in Ar1% O2) 120 Pt(Ru) 0.3859 0 Prospects for Future Nanomaterials show potential for energy storage Nanoscale phenomena in batteries, fuel cells and supercapacitors still need to be studied Considerable potential for integration, theoretical and experimental studies
© Copyright 2026 Paperzz