Development and Applications of Carbon Nanotube Textiles

Development and Applications of
Carbon Nanotube Textiles
Korea-US Forum on Nanotechnology
September 30th 2014
Dr. Philip Bradford, Assistant Professor
Department of Textile Engineering Chemistry and Science
NC State University
How are CNTs Usually Processed?
CNT Powder
Gojny et al., Compos. Sci. Tech.
2005
…liquid based processing creates bundled CNTs whose
fabrics loose functionality
Length/diameter
ratio: 100-1000
How Do We Produce Our MWCNTs?
Length-to-diameter ratio of
~ 100,000
This is same as…
C2H2
750oC
Iron Catalyst
2C + H2
…a human hair that is 30 feet long!
… a pencil that is half a mile long!
Drawable CNT Sheets
Carbon Nanotube Sheet Take-up
CNT Sheet Nonwoven Fabrics
 If mandrel or CNT sheet is traversed during take-up, larger pieces of fabric can be
created
Applications We are Exploring
Aerosol Filtration
High Strength Hybrid Nanofiber Fabrics
1.E+02
1.E+00
60%
CNT
30%
CNT
1.E-01
Control
1 layer
2 layer
3 layer
7 layer
1.E-02
1.E-03
1.E-04
1.E-05
0.01
0.10
Particle Size (µm)
1.00
200
Stress (MPa)
Particle Penetration (%)
1.E+01
150
100
50
0
Yildiz O. and Bradford P. Carbon, 2013, 64:295-304.
0
10
Strain (%)
7
Applications We are Exploring
High Performance Composites
Battery Electrodes
a
b
5μm
2μm
Stano K. et al., ACS Appl. Mater.
& Interfaces, 2013
Fu, K., et al. Advanced
Materials, 2013,
25(36):5109-5114.
Wang X, et al, Mater. Res. Lett.,(1) 2012
Applications We are Exploring
Strain Sensing
Resistance Data - CNTs
Perpendicular to Loading
300
Resistance Data - CNTs
Parallel to Loading
250
15
200
10
150
100
5
50
0
0
2
Specific Compressive Strength (MPa/gcm-3)
2
Strain(%)
0.35
0.25
0.3
0.2
0.25
0.2
0.15
0.15
0.1
0.1
0.05
0.05
0
0
0
50
100
150
Time(s)
200
250
1.6
30 min at 500oC in Air
1.4
1.2
1
0.8
0.6
0.4
50
40
30
20
10
0.2
0
0
0
20
40
60
Compressive Strain (%)
80
PU
)
(0
on .02
7)
e
(0
.2
PU 72
R
)
id
(0
gi
.0
d
PU 38
R
)
id
(0
gi
.0
d
PE 27
)
(0
.0
32
A
)
l(
0.
20
0)
A
l(
0.
21
6)
A
l(
0.
27
C
N
0
T
(0 )
.0
49
A
)
l(
0.
21
6)
A
l(
0.
20
C
N
9)
T
(0
.0
C
79
N
T
)
(0
.1
14
)
0.4
0.3
Resistance Change (%)
0.45
0.35
No anneal
100
lic
0.5
Compressive Stress (MPa)
1.8
Resistance Change (%)
0.4
60
.1
39
Strain (%)
70
Si
1.5
(0
1
Strain (%)
x
0.5
te
0
La
Stress (MPa)
20
Stress vs. Strain
Electrical Resistance Change (%)
350
High Performance Foams
Foam Type (Density g/cm3)
Research Made Possible By:
 Funding agencies
AFOSR
ACS
NC Space Grant
Eastman Chemical
NASA
 My group members:
Kelly Stano
Ozkan Yildiz
James Stahl
Shagheyegh Faraji
Kun Fu
Spencer Barbour
Ang Li
Karim Aly
Jincheng Zhu
Thank you for
your attention!
Contact Information
[email protected]
919-515-1866
www.go.ncsu.edu/Bradford