Laser‐assisted micro/nanoscale material processing and in‐situ diagnostics David J. Jae‐Seok Hwang1, Costas P. Grigoropoulos2 1Department of Mechanical Engineering, State University of New York, Stony Brook, NY, USA 2Department of Mechanical Engineering, University of California, Berkeley, CA, USA Introduction to optical near-field Coupling of laser (light) illumination onto the sharp tip structures for sub-diffraction limit confinement Apertureless NSOM Apertured Fiber Coupled NSOM Quartz Au (100nm thick) 0 0 1.56 m x (nm) 1.56 m D.J. Hwang, S.G. Ryu, N. Misra, H.J. Jeon, and C.P. Grigoropoulos, Applied Physics A (2009). A.Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, J. Appl. Phys. 97, 104319 (2005). A. Chimmalgi, Choi, T.–Y., Grigoropoulos, C.P., and Komvopoulos, K., 2003, Applied Physics Letters, Vol. 82, pp. 1146–1148. D.J. Hwang, Chimmalgi A., Grigoropoulos C. P., J. Appl. Phys. 99(4), 044905, 2006. C.P. Grigoropoulos, and D.J. Hwang, in Nanomanufacturing (Chapter 9), ed. by Chen, American Scientific Publishers, In-press, 2009. C.P. Grigoropoulos, A. Chimmalgi, D.J. Hwang, in Laser ablation and its applications (Chapter 19), Springer Series in optical sciences, New York, 2007. C.P. Grigoropoulos, D.J. Hwang, A. Chimmalgi, MRS Bulletin (32) January Issue. (2007). Scalable Nanomanufacturing by Optical Near-Field Collaboration with Prof. Bauerle, Univ. of Linz, Austria Use of Microsphere Array as Array of NSOM Probe H. Pan, D.J. Hwang, C.P. Grigoropoulos et. al., Small, 2010 D.J. Hwang and C.P. Grigoropoulos, “Arbitrary pattern direct nanostructure fabrication methods and system,” US20110318695 A1 (2011) Laser Based Scalable Nanowire Growth Nanofabrication by Tips coupled with Lasers (Main PI: Prof. Grigoropoulos, UC Berkeley), Funded by Darpa, MTO Demonstrated Localized Si & Ge Nanowire Synthesis Laser CVD Gases Nanoindentation Voltage Bias Tip Height Control (z) -Comb-drive -Piezoelectric Laser Piezo-Scanner Control (x-y) Processing Scheme In-situ SEM & FIB Monitoring Optical lever sensing Piezoresistive sensing -Photoluminescence -Electroluminescence Metal-Organic Gas For catalyst Deposition er Subsequent Nanowire Growth Las g n i s ces P ro -Tunneling Current -Conductance -Electron Emission (Laser Enhanced) In-situ Repair & Sharpening of Worn Tips Written Metal Catalysts or Quantum dots Pr In-situ Monitoring Scheme Heterogeneous growth Single catalyst Selectivity t from m Bea op e hem c S ( f am e B er Las g n i ss oce rom B) me che S ( side Parallel Processing Overall Configuration Parallel Processing Overall Configuration A) In-situ monitoring of laser processing in TEM Optical nearfield Probe Sample 532nm Sintered / crystallized Ni NP’s Optical near-field simulation Achievement of Single Crystal Si by In-situ laser sintering in-situ laser crystallization in TEM process B. Xiang, D. J. Hwang, J. B. In, S.‐G. Ryu, J.‐H. Yoo, O. Dubon, A. M. Minor, and C. P. Grigoropoulos, "In Situ TEM Near‐Field Optical Probing of Nanoscale Silicon Crystallization," Nano Letters, vol. 12, pp. 2524‐2529 (2012). Sub-diffraction limit feature by optical far-field Multi-Photon Absorption Process Selective protein adhesion spot by fs laser peg (cell protecting) film on glass wafer (cell adhesive) Electron avalanche Sub-diffraction limit Feature size MPA process : Ik I Processing threshold 10µm (1/e2) Laser spot Gaussian profile Feature size Sub-diffraction limit sized features AFM images after laser process step Confocal microscope images of adsorbed protein H.J. Jeon, R. Schmidt, J.E. Barton, D.J. Hwang, L.J. Gamble, D.J. Castner, C.P. Grigoropoulos, and K.E. Healy, JACS 133(16), 6138 (2011)
© Copyright 2026 Paperzz