Laser-Assisted Micro/Nanoscale Material Processing and in-situ Diagnostics

Laser‐assisted micro/nanoscale material processing and in‐situ diagnostics David J. Jae‐Seok Hwang1, Costas P. Grigoropoulos2 1Department of Mechanical Engineering, State University of New York, Stony Brook, NY, USA 2Department of Mechanical Engineering, University of California, Berkeley, CA, USA Introduction to optical near-field
Coupling of laser (light) illumination onto the sharp tip structures for sub-diffraction limit confinement
Apertureless NSOM
Apertured Fiber Coupled NSOM
Quartz
Au (100nm thick)
0
0
1.56 m
x (nm)
1.56 m
D.J. Hwang, S.G. Ryu, N. Misra, H.J. Jeon, and C.P. Grigoropoulos, Applied Physics A (2009).
A.Chimmalgi, C. P. Grigoropoulos, and K. Komvopoulos, J. Appl. Phys. 97, 104319 (2005).
A. Chimmalgi, Choi, T.–Y., Grigoropoulos, C.P., and Komvopoulos, K., 2003, Applied Physics Letters, Vol. 82, pp. 1146–1148.
D.J. Hwang, Chimmalgi A., Grigoropoulos C. P., J. Appl. Phys. 99(4), 044905, 2006.
C.P. Grigoropoulos, and D.J. Hwang, in Nanomanufacturing (Chapter 9), ed. by Chen, American Scientific Publishers, In-press, 2009.
C.P. Grigoropoulos, A. Chimmalgi, D.J. Hwang, in Laser ablation and its applications (Chapter 19), Springer Series in optical sciences, New York, 2007.
C.P. Grigoropoulos, D.J. Hwang, A. Chimmalgi, MRS Bulletin (32) January Issue. (2007).
Scalable Nanomanufacturing by Optical Near-Field
Collaboration with Prof. Bauerle, Univ. of Linz, Austria Use of Microsphere Array as Array of NSOM Probe  H. Pan, D.J. Hwang, C.P. Grigoropoulos et. al., Small, 2010  D.J. Hwang and C.P. Grigoropoulos, “Arbitrary pattern direct nanostructure fabrication methods and system,” US20110318695 A1 (2011) Laser Based Scalable Nanowire Growth
Nanofabrication by Tips coupled with Lasers
(Main PI: Prof. Grigoropoulos, UC Berkeley), Funded by Darpa, MTO
Demonstrated Localized Si & Ge Nanowire Synthesis
Laser
CVD Gases
Nanoindentation
Voltage
Bias
Tip Height
Control (z)
-Comb-drive
-Piezoelectric
Laser
Piezo-Scanner
Control (x-y)
Processing Scheme
In-situ SEM & FIB Monitoring
Optical lever sensing
Piezoresistive
sensing
-Photoluminescence
-Electroluminescence
Metal-Organic Gas
For catalyst Deposition
er
Subsequent Nanowire Growth
Las
g
n
i
s
ces
P ro
-Tunneling Current
-Conductance
-Electron Emission
(Laser Enhanced)
In-situ Repair & Sharpening of Worn Tips
Written Metal Catalysts
or Quantum dots
Pr
In-situ Monitoring Scheme
Heterogeneous growth
Single catalyst Selectivity
t
from
m
Bea
op
e
hem
c
S
(
f
am
e
B
er
Las
g
n
i
ss
oce
rom
B)
me
che
S
(
side
Parallel Processing Overall Configuration
Parallel Processing Overall Configuration
A)
In-situ monitoring of laser processing in TEM
Optical nearfield Probe
Sample
532nm
Sintered / crystallized Ni NP’s Optical near-field
simulation
Achievement of Single Crystal Si by In-situ laser sintering
in-situ laser crystallization in TEM
process
B. Xiang, D. J. Hwang, J. B. In, S.‐G. Ryu, J.‐H. Yoo, O. Dubon, A. M. Minor, and C. P. Grigoropoulos, "In Situ TEM Near‐Field Optical Probing of Nanoscale Silicon Crystallization," Nano Letters, vol. 12, pp. 2524‐2529 (2012). Sub-diffraction limit feature by optical far-field
Multi-Photon Absorption Process
Selective protein adhesion spot by fs laser
peg (cell protecting) film on glass wafer (cell adhesive)
Electron avalanche
Sub-diffraction limit Feature size
MPA process : Ik
I
Processing
threshold
10µm
(1/e2)
Laser spot
Gaussian profile
Feature size
 Sub-diffraction limit sized features
AFM images after
laser process step
Confocal microscope images
of adsorbed protein
H.J. Jeon, R. Schmidt, J.E. Barton, D.J. Hwang, L.J. Gamble, D.J. Castner, C.P.
Grigoropoulos, and K.E. Healy, JACS 133(16), 6138 (2011)