ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺷﺒﮑﻪﻫﺎﯼ ﺍﺟﺘﻤﺎﻋﯽ ﻣﻬﺮﺩﺍﺩ ﻣﻬﺪﻭﯼ ٨٧٣٠١٤٧٧ [email protected] ﭼﮑﻴﺪﻩ .ﻳﮑﯽ ﺍﺯ ﻣﺴﺎﻳﻞ ﻣﻬﻢ ﺩﺭ ﺗﺤﻠﻴﻞ ﻣﻌﺎﻣﻼﺕ ﺍﻗﺘﺼﺎﺩﯼ ﻭ ﺭﻭﺍﺑﻂ ﺳﻴﺎﺳﯽ ،ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺁﻥ ﻃﺮﻓﻴﻦ ﻣﻌﺎﻣﻠﻪ ﺑﺮ ﺭﻭﯼ ﺍﺭﺯﺷﯽ ﺑﺮ ﺍﺳﺎﺱ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺧﻮﺩ ﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﻣﯽﭘﺮﺩﺍﺯﻧﺪ ﺗﺎ ﺩﺭ ﺗﻘﺴﻴﻢ ﺍﺭﺯﺵ ﺑﻪ ﺗﻮﺍﻓﻖ ﺑﺮﺳﻨﺪ .ﺑﻌﺪ ﺍﺯ ﺭﺍﻩﺣﻞ ﻧﺶ ﺑﺮﺍﯼ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺩﺭ ﺳﺎﻝ ،١٩٥٠ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺑﻴﻦ ﺍﻗﺘﺼﺎﺩﺩﺍﻧﺎﻥ ﻭ ﺟﺎﻣﻌﻪﺷﻨﺎﺳﺎﻥ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺑﻮﺩﻩ ﺍﺳﺖ ﻭ ﺭﺍﻩﺣﻞ ﻫﺎﻳﯽ ﺑﺮﺍﯼ ﺁﻥ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺳﺎﻝﻫﺎﯼ ﺍﺧﻴﺮ ﺑﺎ ﮔﺴﺘﺮﺵ ﺷﺒﮑﻪﻫﺎﯼ ﺍﺟﺘﻤﺎﻋﯽ ،ﺣﻞ ﻣﺴﺌﻠﻪ ﺩﺭ ﺷﺒﮑﻪﺍﯼ ﺍﺯ ﺭﻭﺍﺑﻂ ﺑﻴﻦ ﺍﻓﺮﺍﺩ ﻣﺎﻧﻨﺪ ﺭﻭﺍﺑﻂ ﺩﻭﺳﺘﯽ ،ﺍﻗﺘﺼﺎﺩﯼ ﻭ ﺳﻴﺎﺳﯽ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ ﻭ ﺍﺯ ﺩﻳﺪﮔﺎﻩ ﺗﺌﻮﺭﯼ ﺑﺎﺯﯼﻫﺎ ﻭ ﻋﻠﻢ ﮐﺎﻣﭙﻴﻮﺗﺮ ﺭﺍﻩﺣﻞﻫﺎﻳﯽ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺑﺮﺭﺳﯽ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺷﺒﮑﻪﻫﺎﯼ ﺍﺟﺘﻤﺎﻋﯽ ﻭ ﺗﺤﻠﻴﻞ ﺷﺮﺍﻳﻂ ﻭﺟﻮﺩ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻭ ﺗﺎﺛﻴﺮ ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﻭ ﻧﻮﻉ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺩﺭ ﺭﺍﻩﺣﻞ ﻧﻬﺎﻳﯽ ﻣﺴﺌﻠﻪ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ. .١ﻣﻘﺪﻣﻪ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ١ﻳﮑﯽ ﺍﺯ ﻣﺴﺎﻳﻞ ﻣﻬﻢ ﺩﺭ ﺟﺎﻣﻌﻪﺷﻨﺎﺳﯽ ﻭ ﺍﻗﺘﺼﺎﺩ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺩﻭ ﺳﺎﻝ ﺍﺧﻴﺮ ﺑﺎ ﺭﻭﻳﮑﺮﺩ ﻋﻠﻢ ﮐﺎﻣﭙﻴﻮﺗﺮ ﻭ ﺗﺌﻮﺭﯼ ﺑﺎﺯﯼﻫﺎ ﻣﻮﺭﺩ ﺗﻮﺟﻪ ﺯﻳﺎﺩﯼ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻪ ﺍﺳﺖ .ﻳﮑﯽ ﺍﺯ ﮐﺎﺭﺑﺮﺩﻫﺎﯼ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺩﺭ ﺑﺎﺯﯼﻫﺎﻳﯽ ﺍﺳﺖ ﮐﻪ ﺩﺍﺭﺍﯼ ﭼﻨﺪ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﻧﺶ ﻣﯽﺑﺎﺷﺪ .ﺍﻳﻨﮑﻪ ﺩﺭ ﻧﻬﺎﻳﺖ ﮐﺪﺍﻡ ﻧﻘﻄﻪ ﺗﻌﺎﺩﻝ ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﺘﻴﺠﻪ ﻧﻬﺎﻳﯽ ﺍﻧﺘﺨﺎﺏ ﻣﯽﺷﻮﺩ ﺭﺍ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﻣﺪﻝ ﻧﻤﻮﺩ .ﻫﻤﭽﻨﻴﻦ ﺑﺴﻴﺎﺭﯼ ﺍﺯ ﻣﺴﺎﺋﻞ ﺑﺎﺯﺍﺭ ﺩﺭ ﺍﻗﺘﺼﺎﺩ ﺭﺍ ﻣﯽﺗﻮﺍﻥ ﺑﻪ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺗﺒﺪﻳﻞ ﻧﻤﻮﺩ .ﺩﻭ ﺑﺎﺯﻳﮑﻦ Aﻭ Bﺭﺍ ﺑﺎ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ U Aﻭ U Bﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﮐﻪ ﺑﺮ ﺭﻭﯼ ﻳﮏ ﮐﺎﻻ ﻭ ﻳﺎ ﺗﻘﺴﻴﻢ ﻣﻘﺪﺍﺭﯼ ﺍﺭﺯﺵ ﻣﺎﻧﻨﺪ ﭘﻮﻝ ﭼﺎﻧﻪ ﻣﯽﺯﻧﻨﺪ ﺗﺎ ﺑﻪ ﺗﻮﺍﻓﻖ ﺑﺮﺳﻨﺪ .ﻫﻤﭽﻨﻴﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﻧﺘﺨﺎﺏﻫﺎﯼ ﺩﻳﮕﺮ a Aﻭ a Bﺭﺍ ﻧﻴﺰ ﺩﺍﺭﻧﺪ ﮐﻪ ﺩﺭ ﺻﻮﺭﺕ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﺩﺭﻳﺎﻓﺖ ﻣﯽﮐﻨﻨﺪ .ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﺮ ﺭﻭﯼ ﺍﺭﺯﺵ cﭼﺎﻧﻪ ﻣﯽﺯﻧﻨﺪ ﺗﺎ ﺁﻥ ﺭﺍ ﺑﻴﻦ ﺧﻮﺩ ﺗﻘﺴﻴﻢ ﮐﻨﻨﺪ .ﺩﺭ ﻳﮏ ﻣﻌﺎﻣﻠﻪ cﺭﺍ ﻣﯽﺗﻮﺍﻥ ﺍﺧﺘﻼﻑ ﺑﻴﻦ ﻗﻴﻤﺖ ﻣﻮﺭﺩ ﻧﻈﺮ ﻓﺮﻭﺷﻨﺪﻩ ﻭ ﺍﺭﺯﺵ ﻣﻮﺭﺩ ﻧﻈﺮ ﺧﺮﻳﺪﺍﺭ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ .ﺍﮔﺮ ﭘﻴﺸﻨﻬﺎﺩ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺑﻪ ﺗﺮﺗﻴﺐ ﺑﺮﺍﺑﺮ ﺑﺎ xﻭ yﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ ،ﻫﺮ ﺗﻘﺴﻴﻤﯽ ﮐﻪ ﺑﻪ ﺑﺎﺯﻳﮑﻦ ﺍﻭﻝ ﮐﻤﺘﺮ ﺍﺯ ) U A (a Aﻭ ﺑﻪ ﺑﺎﺯﻳﮑﻦ ﺩﻭﻡ ﮐﻤﺘﺮ ﺍﺯ ) U B (a Bﺍﺧﺘﺼﺎﺹ ﻧﺪﻫﺪ ﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺍﺳﺖ .ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﻣﺸﺨﺺ ﺍﺳﺖ ﻓﻀﺎﯼ ﺣﺎﻟﺖ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺑﯽﻧﻬﺎﻳﺖ ﻣﯽﺑﺎﺷﺪ ) .( x > U A (a A ), y > U B (a B ) , x + y = cﺑﺮﺍﯼ ﺩﺍﺷﺘﻦ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻳﮑﺘﺎ ،ﻧﺶ ﺩﺭ ﺳﺎﻝ ١٩٥٠ﺩﺭ ﻣﻘﺎﻟﻪ ][١ ﺭﺍﻩﺣﻠﯽ ﺑﺮﺍﯼ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺍﺭﺍﺋﻪ ﻧﻤﻮﺩ ﮐﻪ ﺑﻪ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ٢ﻣﻌﺮﻭﻑ ﺍﺳﺖ ﻭ ﺩﺍﺭﺍﯼ ﺳﻪ ﻭﻳﮋﮔﯽ (١ﺛﺎﺑﺖ ﺩﺭ ﺑﺮﺍﺑﺮ ﺗﻐﻴﻴﺮﺍﺕ ﺧﻄﯽ (٢ ،ﺑﻬﻴﻨﻪ IIA٣(٣ ،Paretoﻭ ( ٤ﻣﺘﻘﺎﺭﻥ ﺍﺳﺖ ]. [١ ﺩﺭ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ،ﺭﺍﻩ ﺣﻞ ﻧﻬﺎﻳﯽ ﺗﻘﺴﻴﻢ ﺍﺭﺯﺵ ﺍﺿﺎﻓﯽ ﺑﻪ ﺻﻮﺭﺕ ﻋﺎﺩﻻﻧﻪ ﺑﻴﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ ﮐﻪ ﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﭘﺎﻳﺪﺍﺭ ﺍﻳﺠﺎﺩ ﻣﯽﮐﻨﺪ .ﺩﺭ ﻭﺍﻗﻊ ﺭﺍﻩﺣﻞ ﻧﺶ ﺗﻘﺴﻴﻢ ﺍﺭﺯﺵ ﺭﺍ ﺑﻪ ﮔﻮﻧﻪﺍﯼ ﺍﻧﺠﺎﻡ ﻣﯽﺩﻫﺪ ﮐﻪ ﺿﺮﺏ ﺍﺧﺘﻼﻑ ﺳﻮﺩﻣﻨﺪﯼ ﻣﻌﺎﻣﻠﻪ ﺭﺍ ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﻴﺸﻴﻨﻪ ﻣﯽﮐﻨﺪ .ﺍﺧﺘﻼﻑ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺮﺍﯼ ﻋﺎﻣﻞ Aﺍﺧﺘﻼﻑ ﺑﻴﻦ ﺳﻮﺩﯼ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺻﻮﺭﺕ ﺗﻮﺍﻓﻖ ﺩﺭﻳﺎﻓﺖ ﻣﯽﮐﻨﺪ ﺑﺎ ﺳﻮﺩﯼ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺻﻮﺭﺕ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﺩﺭﻳﺎﻓﺖ ﻣﯽﮐﻨﺪ ﮐﻪ ﺑﺮﺍﺑﺮ ﺑﺎ ) U A ( x) - U A (a Aﮐﻪ x ﺳﻬﻢ Aﺍﺯ ﺗﻮﺍﻓﻖ ﺍﺳﺖ .ﺑﻪ ﻫﻤﻴﻦ ﺗﺮﺗﻴﺐ ﺑﺮﺍﯼ Bﺑﺮﺍﺑﺮ ﺑﺎ ) U B (c - x) - U B (a Bﻣﯽﺑﺎﺷﺪ .ﻫﺪﻑ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺑﻴﺸﻴﻨﻪ ﮐﺮﺩﻥ )) (U A ( x) - U A (a A ))(U B (c - x) - U B (a Bﺍﺳﺖ .ﺍﮔﺮ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺗﺎﺑﻊ ﺛﺎﺑﺖ ﺩﺭ ﻧﻈﺮ ﺷﮑﻞ .١ﻳﮏ ﺷﺒﮑﻪ ﺍﺟﺘﻤﺎﻋﯽ ﺑﺎ ٥ﻧﻔﺮ ﮐﻪ ﺑﺎﺯﻳﮑﻦ vﻗﻮﻳﺘﺮﻳﻦ ﻣﻮﻗﻌﻴﺖ ﺭﺍ ﺩﺍﺭﺩ ﺑﮕﻴﺮﻳﻢ ) ( U ( x) = xﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺭﺍﻩﺣﻞ ﻧﺶ ﻣﻘﺎﺩﻳﺮ a A + s / 2ﻭ a B + s / 2ﺑﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺧﺘﺼﺎﺹ ﻣﯽﺩﻫﺪ ﮐﻪ . s = c - a A - a Bﺭﺍﻩﺣﻞ ﺩﻳﮕﺮﯼ ﮐﻪ ﺑﺮﺍﯼ ﻣﺴﺌﻠﻪ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺴﺒﯽ ﺍﺳﺖ ﮐﻪ ﺳﻌﯽ ﺩﺭ ﮐ ﻤﻴﻨ ﻪ ﮐﺮﺩﻥ ﺍﺧﺘﻼﻑ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ ﻳﻌﻨﯽ })) .[٢] min{(U A ( x) - U A (a A )), (U B (c - x) - U B (a B ﻣﺴﺌﻠﻪﺍﯼ ﮐﻪ ﻣﺎ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺁﻥ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ ﺣﺎﻟﺖ ﺗﻌﻤﻴﻢ ﻳﺎﻓﺘﻪ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺩﻭﻃﺮﻓﻪ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻳﮏ ﺳﺮﯼ ﺑﺎﺯﻳﮑﻦ ﺩﺍﺭﻳﻢ ﮐﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻣﯽﺗﻮﺍﻧﺪ ﺑﺎ ﻋﺪﻩﺍﯼ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﺮ ﺭﻭﯼ ﻳﮏ ﺳﺮﯼ ﮐﺎﻻﻫﺎ ﭼﺎﻧﻪﺯﻧﯽ ﮐﻨﺪ .ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﻳﮏ ﮔﺮﺍﻑ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ ﮐﻪ ﺩﺭ ﺁﻥ ﺑﻴﻦ ﻫﺮ ﺩﻭ ﺑﺎﺯﻳﮑﻨﯽ ﮐﻪ ﺍﻣﮑﺎﻥ ﭼﺎﻧﻪﺯﻧﯽ ﺑﻴﻦ ﺁﻧﻬﺎ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻳﺎﻟﯽ ﺑﺎ ﻭﺯﻥ ﺍﺭﺯﺵ ﮐﺎﻻﯼ ﭼﺎﻧﻪﺯﻧﯽ ﻗﺮﺍﺭ ﻣﯽﺩﻫﻴﻢ .ﺩﻭ ﻭﻳﮋﮔﯽ ﻧﻘﺶ ﻣﻬﻢ ﺩﺭ ﺧﺮﻭﺟﯽ ﺍﻳﻦ ﺑﺎﺯﯼ ﺩﺍﺭﺩ :ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﻭ ﻧﻮﻉ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ .ﺗﻔﺎﻭﺗﯽ ﮐﻪ ﺍﻳﻦ ﻣﺴﺌﻠﻪ ﺑﺎ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺩﻭ ﻃﺮﻓﻪ ﺩﺍﺭﺩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﻧﻘﺶ ﺗﻌﻴﻴﻦ ﮐﻨﻨﺪﻩﺍﯼ ﺩﺭ ﺧﺮﻭﺟﯽ ﻧﻬﺎﻳﯽ ﺑﺎﺯﯼ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﮔﺮﺍﻑ ﺷﮑﻞ ١ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﮐﻪ ﻳﮏ ﺷﺒﮑﻪ ﺑﻴﻦ ٥ﻧﻔﺮ ﺑﺎ ﺭﻭﺍﺑﻂ ﺑﻴﻦ ﺁﻧﻬﺎ ﺭﺍ ﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ .ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ ﻭﺯﻥ ﻫﺮ ﻳﺎﻝ )ﺍﺭﺯﺵ ﻫﺮ ﭼﺎﻧﻪﺯﻧﯽ( ﺑﺮﺍﺑﺮ ﺑﺎ ١ﺍﺳﺖ ﻭ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺣﺪﺍﮐﺜﺮ ﺑﺎ ﻳﮏ ﺑﺎﺯﻳﮑﻦ ﻣﯽﺗﻮﺍﻧﺪ ﺑﻪ ﺗﻮﺍﻓﻖ ﺑﺮﺳﺪ ﻭ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺍﮔﺮ ﺑﻪ ﺗﻮﺍﻓﻘﯽ ﺩﺳﺖ ﻧﻴﺎﺑﺪ ﺳﻮﺩ ﺻﻔﺮ ﺩﺭﻳﺎﻓﺖ ﺧﻮﺍﻫﺪ ﮐﺮﺩ .ﺍﺯ ﮔﺮﺍﻑ ﻣﺸﺨﺺ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻧﻬﺎﻳﺖ ﺣﺪﺍﻗﻞ ﻳﮑﯽ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ uﻭ wﻣﻘﺪﺍﺭ ٠ﺩﺭﻳﺎﻓﺖ ﻣﯽﮐﻨﺪ .ﻧﻮﺩ vﺍﺯ ﺍﻳﻦ ﻗﺪﺭﺕ ﺧﻮﺩ ﺑﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ uﻭ w ﻣﯽﺗﻮﺍﻧﺪ ﺑﻪ ﻧﻔﻊ ﺧﻮﺩ ﺍﺳﺘﻔﺎﺩﻩ ﮐﻨﺪ ﻭ ﺗﻔﺮﻳﺒﺎ ﮐﻞ ﺍﺭﺯﺵ ﻳﮑﯽ ﺍﺯ ﻳﺎﻝﻫﺎﯼ ) (u, vﻭ ﻳﺎ ) (v, wﺭﺍ ﺩﺭﻳﺎﻓﺖ ﮐﻨﺪ .ﺍﺯ ﻃﺮﻓﯽ ﻧﻮﺩ xﻣﯽﺗﻮﺍﻧﺪ ﺩﺭﮎ ﮐﻨﺪ ﮐﻪ ﺍﺭﺯﺷﯽ ﺑﺮﺍﯼ ﻧﻮﺩ vﻧﺪﺍﺭﺩ ﻭ ﻫﻤﻪ ﺍﻧﺮﮊﯼ ﺧﻮﺩ ﺭﺍ ﺑﺮﺍﯼ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺎ yﺻﺮﻑ ﮐﻨﺪ ﻭ ﺍﺭﺯﺵ 1 2 ﺩﺭ ﺭﺍﻩﺣﻞ ﻧﺶ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩ. ﺍﺯ ﺩﻳﺪﮔﺎﻩ ﺟﺎﻣﻌﻪﺷﻨﺎﺳﯽ ﻭ ﺍﻗﺘﺼﺎﺩﯼ ﺍﮐﺜﺮ ﮐﺎﺭﻫﺎﯼ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺩﺭ ﺑﺎﺯﯼ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺷﺒﮑﻪﻫﺎﯼ ﺍﺟﺘﻤﺎﻋﯽ ﺑﺮ ﺭﻭﯼ ﺗﺤﻠﻴﻞ ﻧﺘﺎﻳﺞ ﺗﺠﺮﺑﯽ ﺑﺮ ﺭﻭﯼ ﺷﺒﮑﻪﻫﺎﯼ ﺧﺎﺹ ﺑﻮﺩﻩ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻣﺎ ﺑﻪ ﺑﺮﺭﺳﯽ ﮐﺎﺭﻫﺎﯼ ﺗﺌﻮﺭﯼ ﺍﺯ ﺩﻳﺪﮔﺎﻩ ﻋﻠﻢ ﮐﺎﻣﭙﻴﻮﺗﺮ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ .ﺩﺭ ] [٣ﺭﺍﻩﺣﻠﯽ ﺑﺮ ﺍﺳﺎﺱ ﻗﺪﺭﺕ ﭼﺎﻧﻪﺯﻧﯽ ﺍﻓﺮﺍﺩ ﺩﺭ ﺷﺒﮑﻪ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ] [٣ﺑﺮ ﺍﺳﺎﺱ ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﺑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻳﮏ ﻣﻘﺪﺍﺭ ﻗﺪﺭﺕ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺮ ﺍﺳﺎﺱ ﺭﻭﺍﺑﻂ ﻭﯼ ﺑﺎ ﺳﺎﻳﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﺤﺎﺳﺒﻪ ﻣﯽﺷﻮﺩ ﻭ ﺳﭙﺲ ﺑﺮ ﺍﺳﺎﺱ ﺍﻳﻦ ﻗﺪﺭﺕ ﺳﻬﻢ ﺑﺎﺯﻳﮑﻦ ﺍﺯ ﻫﺮ ﭼﺎﻧﻪﺯﻧﯽ ﻣﺤﺎﺳﺒﻪ ﻣﯽﺷﻮﺩ .ﺩﺭ ] [٤ﻣﺴﺌﻠﻪ ﺑﺮﺍﯼ ﮔﺮﺍﻑﻫﺎﯼ ﺩﻭﺑﺨﺸﯽ ﺣﻞ ﺷﺪﻩ ﺍﺳﺖ .ﻣﺤﺪﻭﺩﻳﺘﯽ ﮐﻪ ﺩﺭ ] [٤ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺣﺪﺍﮐﺜﺮ ﺑﺎ ﻳﮏ ﺑﺎﺯﻳﮑﻦ ﻣﯽﺗﻮﺍﻧﺪ ﺑﺎ ﺗﻮﺍﻓﻖ ﺑﺮﺳﺪ .ﺩﺭ ﻫﺮ ﺩﻭ ﻣﻘﺎﻟﻪ ] [٣ﻭ ] [٤ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺧﻄﯽ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ] [٥ﻣﺴﺌﻠﻪ ﺩﺭ ﺣﺎﻟﺖ ﻋﻤﻮﻣﯽ ﺷﺒﮑﻪﻫﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﻭ ﺭﺍﻩﺣﻞﻫﺎﻳﯽ ﺑﺮﺍﯼ ﻣﺤﺎﺳﺒﻪ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ.ﺩﺭ ] [٥ﻣﺴﺌﻠﻪ ﺩﺭ ﺣﺎﻟﺖ ﮐﻠﯽ ﺣﻞ ﺷﺪﻩ ﻭ ﺭﺍﻩﺣﻞﻫﺎﻳﯽ ﺑﺮﺍﯼ ﮔﺮﺍﻑﻫﺎﯼ ﺧﺎﺹ ﻭ ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻣﺘﻔﺎﻭﺕ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺍﺳﺖ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺑﻌﺪ ﺍﺯ ﺍﺭﺍﺋﻪ ﺑﺮﺧﯽ ﻣﻘﺪﻣﺎﺕ ﺑﻪ ﺑﺮﺭﺳﯽ ﮐﺎﺭﻫﺎﯼ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ. .٢ﺗﻌﺎﺭﻳﻒ ﺍﻭﻟﻴﻪ ﻭﺭﻭﺩﯼ ﺑﺎﺯﯼ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺷﺒﮑﻪ ﻳﮏ ﮔﺮﺍﻑ ) G (V , Eﺍﺳﺖ ﮐﻪ | V |= nﻭ . | E |= mﻳﺎﻝﻫﺎ ﻭﺯﻥ ﺩﺍﺭ ﺑﻮﺩﻩ ﻭ ﻭﺯﻥ ﻫﺮ ﻳﺎﻝ ﺑﺮﺍﺑﺮ ﺑﺎ ) c(eﻣﯽﺑﺎﺷﺪ .ﺩﺭ ﺍﻳﻦ ﮔﺮﺍﻑ ﺭﺍﺱﻫﺎ ﻣﻌﺎﺩﻝ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻭ ﻫﺮ ﻳﺎﻝ ﺑﺎ ﻭﺯﻧﺶ ﺍﺭﺯﺷﯽ ﺍﺳﺖ ﮐﻪ ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﻣﺠﺎﻭﺭ ﺁﻥ ﻳﺎﻝ ﻣﯽﺗﻮﺍﻧﺪ ﺑﺮ ﺭﻭﯼ ﺁﻥ ﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺑﭙﺮﺩﺍﺯﻧﺪ .ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﯼ ،ﺣﺎﻟﺖ ﻣﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺗﻮﺍﻓﻘﺎﺕ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺑﻪ ﺍﺯﺍﯼ ﻫﻤﻪ ﻳﺎﻟﻬﺎ ﺭﺍ ﺑﺎ s = ( s1 , s2 ,, sm ) ÎÂmﻧﺸﺎﻥ ﻣﯽﺩﻫﻴﻢ .ﺍﮔﺮ ﺑﺮﺍﯼ ﻫﺮ ﻳﺎﻝ ) ei = (u , vﻳﮏ ﺟﻬﺖ ﻓﺮﺿﯽ ﺍﺯ uﺑﻪ vﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ si ،ﺳﻬﻢ ﺑﺎﺯﻳﮑﻦ uﺭﺍ ﺍﺯ ﺍﺭﺯﺵ ) c(eiﻧﺸﺎﻥ ﻣﯽﺩﻫﺪ ﻭ ﺑﺮﺍﺑﺮ ﺑﺎ ) x(u , eiﺍﺳﺖ .ﺑﺪﻳﻬﯽ ﺍﺳﺖ ﮐﻪ ) . x(v, ei ) = c(ei ) - x(u , eiﻫﺮ ﭼﺎﻧﻪﺯﻧﯽ ﺑﻴﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﯽﺗﻮﺍﻧﺪ ﺑﺮ ﺍﺳﺎﺱ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭ ﻳﺎ ﻧﺴﺒﯽ ﺻﻮﺭﺕ ﮔﻴﺮﺩ ﮐﻪ ﺗﻮﺍﻓﻖ ﺩﺭ ﻧﻬﺎﻳﺖ ﺑﺮ ﺍﺳﺎﺱ ﻧﻮﻉ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻣﺘﻔﺎﻭﺕ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﺣﺎﻝ ﺑﻪ ﺗﻌﺎﺭﻳﻒ ﺯﻳﺮ ﺩﺭ ﺑﺎﺯﯼ ﭼﺎﻧﻪﺯﻧﯽ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ. ﺗﻌﺮﻳﻒ .١ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ s Î Âmﺣﺎﻟﺘﯽ ﺍﺯ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﮔﺮﺍﻑ Gﺑﺎﺷﺪ .ﺑﺮﺍﯼ ﻫﺮ ﺭﺍﺱ g s (u ) ، uﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﮐﻞ ﺳﻮﺩﯼ ﮐﻪ ﺭﺍﺱ uﺍﺯ ﺗﻮﺍﻓﻖ ﺑﺎ ﻫﻤﺴﺎﻳﻪ ﻫﺎﻳﺶ ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩﻩ ﺍﺳﺖ ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ .ﻫﻤﭽﻨﻴﻦ ) xs (u, eﺑﺮﺍﺑﺮ ﺑﺎ ﺳﻮﺩﯼ ﺍﺳﺖ ﮐﻪ uﺍﺯ ﺗﻮﺍﻓﻖ ﺭﻭﯼ ﻳﺎﻝ eﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩﻩ ﺍﺳﺖ a s (u, e) = g s (u ) - xs (u, e) .ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﺳﻮﺩ ﺑﺎﺯﻳﮑﻦ uﺑﻪ ﺟﺰ ﻳﺎﻝ e ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ. ﺩﺭ ﻭﺍﻗﻊ ) a s (u , eﻭ ) a s (v, eﺑﻪ ﻋﻨﻮﺍﻥ ﮔﺰﻳﻨﻪﻫﺎﯼ ﺩﻳﮕﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ uﻭ vﺩﺭ ﺣﺎﻟﺘﯽ ﺍﺳﺖ ﮐﻪ ﺭﻭﯼ ﻳﺎﻝ ) e = (u, vﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﻣﯽﭘﺮﺩﺍﺯﻧﺪ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺩﻳﮕﺮ ) a s (u , eﻭ ) a s (v, eﺳﻮﺩ ﺑﺎﺯﻳﮑﻨﺎﻥ uﻭ vﺑﻪ ﺍﺯﺍﯼ ﺣﺎﻟﺘﯽ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻳﺎﻝ eﺑﻪ ﺗﻮﺍﻓﻖ ﻧﺮﺳﻨﺪ. ﺗﻌﺮﻳﻒ .٢ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ s Î Âmﺣﺎﻟﺘﯽ ﺍﺯ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﮔﺮﺍﻑ Gﺑﺎﺷﺪ x .ﺭﺍ ﺳﻮﺩﯼ ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ ﮐﻪ ﺑﺎﺯﻳﮑﻦ uﺍﺯ ﺗﻮﺍﻓﻖ ﺭﻭﯼ ﻳﺎﻝ ) e = (u , vﺑﻪ ﺩﺳﺖ ﻣﯽﺁﻭﺭﺩ .ﺍﺧﺘﻼﻑ ﺳﻮﺩ ﺑﺎﺯﻳﮑﻦ ))as (u ) =U u (a s (u, e) + x) -U u (a s (u , e ﻭ ﺍﺧﺘﻼﻑ ﺳﻮﺩ uﺍﺯ ﺍﻳﻦ ﺗﻮﺍﻓﻖ ﺑﺮﺍﺑﺮ ﺑﺎ ﺑﺎﺯﻳﮑﻦ v ﺑﺮﺍﺑﺮ ﺑﺎ )) bs (v) = U v (a s (v, e) + c( x) - x) - U v (a s (v, eﺍﺳﺖ .ﺩﺭ ﺭﺍﻩ ﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺑﺎﻳﺪ ) as (u ) as (vﺑﻴﺸﻴﻨﻪ ﺷﻮﺩ. ﺗﻌﺮﻳﻒ .٣ﻓﺮﺽ ﮐﻨﻴﻢ ﺩﺭ ﺣﺎﻟﺖ s Î Âmﺑﺎﺯﻳﮑﻦ uﺗﻤﺎﻳﻞ ﺩﺍﺭﺩ ﺑﺮ ﺭﻭﯼ ﻳﺎﻝ ) e = (u , vﺩﻭﺑﺎﺭﻩ ﺑﻪ ﭼﺎﻧﻪﺭﻧﯽ ﺑﭙﺮﺩﺍﺯﺩ ﺑﻪ ﻧﺤﻮﯼ ﮐﻪ ﺗﻮﺍﻓﻖﻫﺎﯼ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺑﺮ ﺭﻭﯼ ﺳﺎﻳﺮ ﻳﺎﻟﻬﺎ ﺛﺎﺑﺖ ﺑﻤﺎﻧﺪ .ﺩﺭ ﻭﺍﻗﻊ ﺍﻳﻦ ﻣﻌﺎﺩﻝ ﺗﻐﻴﻴﺮ ﺍﺳﺘﺮﺍﺗﮋﯼ ﻳﮏ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ﺑﺎﺯﯼﻫﺎﯼ ﻣﻌﻤﻮﻟﯽ ﺍﺳﺖ ys (u , e) .ﺭﺍ ﺑﺮﺍﺑﺮ ﺑﺎ ﮐﻞ ﺳﻮﺩ ﺑﺎﺯﻳﮑﻦ ﺑﻌﺪ ﺍﺯ ﺍﻧﺠﺎﻡ ﭼﺎﻧﻪﺯﻧﯽ ﺩﻭﺑﺎﺭﻩ ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ .ﺩﺭ ﺍﻳﻦ ﺣﺎﻟﺖ ﺗﻐﻴﻴﺮ ﺳﻮﺩ ﺑﺎﺯﻳﮑﻦ ﺑﺮﺍﺑﺮ ﺑﺎ | ) update( s, e) =| xs (u , e) - ys (u , eﺧﻮﺍﻫﺪ ﺑﻮﺩ. ﺗﻌﺮﻳﻒ .٤ﺗﻮﺍﻓﻖ ﺑﺮ ﺭﻭﯼ ﻳﺎﻝ ) e = (u , vﭘﺎﻳﺪﺍﺭ ﺍﺳﺖ ﺍﮔﺮ ﺗﻘﺴﻴﻢ ﺍﺭﺯﺵ ﻳﺎﻝ ﺑﺮﺍﯼ ﻫﺮ ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﺭﺍﺿﯽ ﮐﻨﻨﺪﻩ ﺑﺎﺷﺪ .ﺩﻭ ﺑﺎﺯﻳﮑﻦ ﺯﻣﺎﻧﯽ ﺭﺍﺿﯽ ﻣﯽﺷﻮﻧﺪ ﮐﻪ ﺗﻘﺴﻴﻢ ﺳﻮﺩ ﺑﺮ ﺍﺳﺎﺱ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭ ﻳﺎ ﻧﺴﺒﯽ ﺻﻮﺭﺕ ﮔﻴﺮﺩ .ﺣﺎﻟﺖ s Î Âmﺭﺍ ﻳﮏ ﺣﺎﻟﺖ ﺗﻌﺎﺩﻝ ﻣﯽﻧﺎﻣﻴﻢ ﺍﮔﺮ ﻫﻤﻪ ﻳﺎﻝﻫﺎﯼ ﺁﻥ ﭘﺎﻳﺪﺍﺭ ﺑﺎﺷﻨﺪ ) .( update( s, e) = 0ﺑﺪﻳﻬﯽ ﺍﺳﺖ ﮐﻪ ﺍﮔﺮ ﺣﺎﻟﺘﯽ ﺗﻌﺎﺩﻝ ﻧﺒﺎﺷﺪ ،ﺑﻌﻀﯽ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺗﻤﺎﻳﻞ ﺩﺍﺭﻧﺪ ﺗﺎ ﺑﺮ ﺭﻭﯼ ﺑﺮﺧﯽ ﻳﺎﻟﻬﺎ ﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺑﭙﺮﺩﺍﺯﻧﺪ. ﻟﻢ .١ﻓﺮﺽ ﮐﻨﻴﻢ ﺗﺎﺑﻊ ﺳﻮﻣﻨﺪﯼ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ،ﭘﻴﻮﺳﺘﻪ ،ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ .ﻫﻤﭽﻨﻴﻦ ﻗﺮﺍﺭ )a s ( x = ) q s ( xﻭ ) bs ( x = ) . rs ( xﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺷﺮﻁ ﺗﻌﺎﺩﻝ ﻧﺶ ﺑﺎ )q s ( x) = rs ( x ﻣﯽﺩﻫﻴﻢ )b s ( x )a ' s ( x ﻣﻌﺎﺩﻝ ﺍﺳﺖ ﻭ xﻳﮑﺘﺎﻳﯽ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺷﺮﻁ ﺻﺪﻕ ﮐﻨﺪ. ' .٤ﭼﺎﻧﻪﺯﻧﯽ ﺑﺎ ﻣﺤﺪﻭﺩﻳﺖ ﺣﺪﺍﮐﺜﺮ ﻳﮏ ﺗﻮﺍﻓﻖ ﺩﺭ ] [٤ﻣﺴﺌﻠﻪ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺩﺭ ﮔﺮﺍﻑﻫﺎﯼ ﺩﻭ ﺑﺨﺸﯽ ﺑﺮﺭﺳﯽ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻫﺮ ﮔﺮﺍﻑ ﺩﻭ ﺑﺨﺸﯽ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﺍﻟﺒﺘﻪ ﺍﻳﻦ ﺍﻣﺮ ﺑﺮﺍﯼ ﺣﺎﻟﺘﯽ ﮐﻪ ﻓﺮﺽ ﺷﺪﻩ ﺍﺳﺖ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺧﻄﯽ ﺍﺳﺖ ﻭ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺣﺪﺍﮐﺜﺮ ﻣﯽﺗﻮﺍﻧﺪ ﺑﺎ ﻳﮏ ﺑﺎﺯﻳﮑﻦ ﺑﻪ ﺗﻮﺍﻓﻖ ﺑﺮﺳﺪ ﺻﺎﺩﻕ ﺍﺳﺖ .ﻫﻤﭽﻨﻴﻦ ﻓﺮﺽ ﺷﺪﻩ ﺍﺳﺖ ﮐﻪ ﻭﺯﻥ ﻫﺮ ﻳﺎﻝ ﻳﮏ ﺍﺳﺖ .ﺩﺭ ﺍﺩﺍﻣﻪ ﺍﺑﺘﺪﺍ ﺑﻪ ﺣﻞ ﻣﺴﺌﻠﻪ ﺩﺭ ﮔﺮﺍﻑﻫﺎﯼ ﺩﻭﺑﺨﺸﯽ ﺑﺎ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﻳﮑﺘﺎ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ ﻭ ﺳﭙﺲ ﻧﺘﺎﻳﺞ ﺭﺍ ﺑﻪ ﺣﺎﻟﺖ ﻋﻤﻮﻣﯽ ﺩﺭ ﮔﺮﺍﻑﻫﺎﯼ ﺩﻭﺑﺨﺸﯽ ﺗﻌﻤﻴﻢ ﻣﯽﺩﻫﻴﻢ .ﺩﺭ ﺣﺎﻟﺘﻴﮑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻣﺠﺎﺯ ﺑﻪ ﺣﺪﺍﮐﺜﺮ ﻳﮏ ﺗﻮﺍﻓﻖ ﺑﺎﺷﺪ ﺧﺮﻭﺟﯽ ﺑﺎﺯﯼ ﭼﺎﻧﻪﺯﻧﯽ ﻳﮏ ﺗﻄﺎﺑﻖ ﺩﺭ ﮔﺮﺍﻑ ﺩﻭﺑﺨﺸﯽ ﺑﺎﺯﯼ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺑﻪ ﺍﺯﺍﯼ ﻫﺮ ﻳﺎﻝ ) (u , wﺩﺭ ﺗﻄﺎﺑﻖ ،ﻧﻮﺩ uﻣﻘﺪﺍﺭ g uﻭ ﻧﻮﺩ w ﻣﻘﺪﺍﺭ g wﺩﺭﻳﺎﻓﺖ ﻣﯽﮐﻨﺪ ﮐﻪ . g u + g w = 1ﺑﺮﺍﯼ ﻫﺮ ﺑﺎﺯﻳﮑﻦ uﮔﺰﻳﻨﻪ ﺩﻳﮕﺮ ﺁﻥ ﺩﺭ ﺑﺎﺯﯼ ﺑﻪ ﺍﺯﺍﯼ ﺗﻮﺍﻓﻖ ) (u , wﺑﺮﺍﺑﺮ ﺑﺎ a uﺍﺳﺖ ﮐﻪ ﺑﺮﺍﺑﺮ ﺑﺎ ﻣﻘﺪﺍﺭﯼ ﺍﺳﺖ ﮐﻪ ﻣﯽﺗﻮﺍﻧﺪ ﺍﺯ ﺗﻮﺍﻓﻖ ﺑﺎ ﺳﺎﻳﺮ ﻧﻮﺩﻫﺎﯼ ﻫﻤﺴﺎﻳﻪ ﺑﻪ ﺟﺰ ﻧﻮﺩ wﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩ .ﺍﮔﺮ a u £ g uﺑﺎﺷﺪ ،ﺗﻮﺍﻓﻖ ﭘﺎﻳﺪﺍﺭ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺧﺮﻭﺟﯽ ﺑﺎﺯﯼ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺻﻮﺭﺗﯽ ﭘﺎﻳﺪﺍﺭ ﺍﺳﺖ ﮐﻪ ﻫﻤﻪ ﺗﻮﺍﻓﻖﻫﺎ ﭘﺎﻳﺪﺍﺭ ﺑﺎﺷﺪ. ﺧﺮﻭﺟﯽ ﭘﺎﻳﺪﺍﺭ ﺭﺍ ﻳﮏ ﺧﺮﻭﺟﯽ ﻣﺘﻮﺍﺯﻥ ﻣﯽﻧﺎﻣﻴﻢ ﺍﮔﺮ ﺗﻮﺍﻓﻖﻫﺎ ﺑﺮ ﺍﺳﺎﺱ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺻﻮﺭﺕ ﮔﻴﺮﺩ. .١ .٤ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﮔﺮﺍﻑ ﺩﻭﺑﺨﺸﯽ ﺑﺎ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﻳﮑﺘﺎ ﺩﺭ ﭼﻨﻴﻦ ﮔﺮﺍﻓﻬﺎﻳﯽ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻭ ﻣﯽﺗﻮﺍﻧﺪ ﭼﻨﻴﻦ ﺗﻌﺎﺩﻟﯽ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺗﮑﺮﺍﺭﯼ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﭘﻴﺪﺍ ﮐﺮﺩ .ﺍﻳﺪﻩ ﺍﺻﻠﯽ ﺍﺛﺒﺎﺕ ﺑﻪ ﺍﻳﻦ ﺻﻮﺭﺕ ﺍﺳﺖ .ﮔﺮﺍﻑ ﺩﻭ ﺑﺨﺸﯽ ) G (V , Eﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﮐﻪ ﻧﻮﺩﻫﺎﯼ ﺑﺨﺶ ﺍﻭﻝ ﺭﺍ ﺑﺎ Xﻭ ﻧﻮﺩﻫﺎﯼ ﺑﺨﺶ ﺩﻭﻡ ﺭﺍ ﺑﺎ Yﻧﻤﺎﻳﺶ ﻣﯽﺩﻫﻴﻢ .ﻓﺮﺽ ﮐﻨﻴﻢ Mﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﻳﮑﺘﺎ ﺩﺭ ﮔﺮﺍﻑ ﺑﺎﺷﺪ .ﺍﺯ ﮔﺮﺍﻑ Gﻳﮏ ﮔﺮﺍﻑ ﺟﻬﺖﺩﺍﺭ ﺍﻳﺠﺎﺩ ﻣﯽﮐﻨﻴﻢ .ﺑﻪ ﺍﺯﺍﯼ ﻳﺎﻟﻬﺎﻳﯽ ﮐﻪ ﺩﺭ Mﻗﺮﺍﺭ ﺩﺍﺭﻧﺪ ﺟﻬﺖ ﻳﺎﻝ ﺭﺍ ﺍﺯ Xﺑﻪ Yﻭ ﺑﺮﺍﯼ ﺳﺎﻳﺮ ﻳﺎﻟﻬﺎ ﺍﺯ Yﺑﻪ Xﻗﺮﺍﺭ ﻣﯽﺩﻫﻴﻢ .ﭼﻮﻥ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﻳﮑﺘﺎﺳﺖ ﮔﺮﺍﻑ ﺟﻬﺖﺩﺍﺭ ﺑﺪﻭﻥ ﺩﻭﺭ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺭﺍﺑﻄﻪ ﺗﺮﺗﻴﺐ ﺟﺰﻳﯽ ﺭﺍ ﺭﻭﯼ ﻣﺠﻤﻮﻋﻪ } X + = X È {^, ^¢ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ .ﺩﺭ ﺭﺍﺑﻄﻪ v w ، ﺑﻪ ﺍﻳﻦ ﻣﻌﻨﯽ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﮔﺮﺍﻑ ﺟﻬﺖ ﺩﺍﺭ ﺍﺯ ﻣﺴﻴﺮﯼ ﺑﻪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ^ .ﻋﻨﺼﺮ ﮐﻤﻴﻨﻪ ﻣﺠﻤﻮﻋﻪ ﺑﻮﺩﻩ ﻭ ﺑﻪ ﺍﺯﺍﯼ ﻫﺮ ﻋﻨﺼﺮ ﺩﺭ x Î X +ﺩﺍﺭﻳﻢ . ^ x ^¢ﻋﻨﺼﺮ ﺑﻴﺸﻴﻨﻪ ﻣﺠﻤﻮﻋﻪ ﺑﻮﺩﻩ ﻭ ﺑﻪ ﺍﺯﺍﯼ ﻫﺮ ﻋﻨﺼﺮ ﺩﺭ x Î X +ﺩﺍﺭﻳﻢ . x ^¢ﻳﮏ ﺑﺮﭼﺴﺐﮔﺬﺍﺭﯼ ﺳﺎﺯﮔﺎﺭ ﺩﺭ X + ﺍﻧﺘﺴﺎﺏ ﻣﻘﺎﺩﻳﺮ ] g a Î [0,1ﺑﻪ ﻫﺮ ﻋﻨﺼﺮ X +ﺍﺳﺖ ﺑﻪ ﮔﻮﻧﻪﺍﯼ ﮐﻪ g ^¢ = 1 ، g ^ = 0و g a £ g bﺍﮔﺮ a bﺩﺭ ﺗﺮﺗﻴﺐ ﺟﺰﻳﯽ ﺑﺎﺷﺪ. ﻟﻢ .١ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ ) G (V , Eﻳﮏ ﮔﺮﺍﻑ ﺩﻭﺑﺨﺸﯽ ﮐﺎﻣﻞ ﺑﺎ ﺑﺨﺶﻫﺎﯼ Xﻭ Yﺑﺎﺷﺪ .ﻫﻤﭽﻨﻴﻦ Gﺷﺎﻣﻞ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﻳﮑﺘﺎﯼ Mﺑﺎﺷﺪ .ﺭﺍﺑﻄﻪ ﺗﺮﺗﻴﺐ ﺟﺰﻳﯽ ﺭﺍ ﺩﺭ X +ﺩﺭ ﻧﻈﺮ ﻣﯽﮔﻴﺮﻳﻢ .ﺧﺮﻭﺟﯽ ﭼﺎﻧﻪﺯﻧﯽ } {g v :v Î Vﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﮔﺮﺍﻑ ﺍﺳﺖ ﺍﮔﺮ } {g v : v Î X +ﻳﮏ ﺑﺮﭼﺴﺐ ﮔﺬﺍﺭﯼ ﺳﺎﺯﮔﺎﺭ ﺑﺎﺷﺪ. ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻟﻢ ١ﻣﯽﺗﻮﺍﻥ ﺑﺎ ﻣﺤﺎﺳﺒﻪ ﻳﮏ ﺑﺮﭼﺴﺐ ﮔﺬﺍﺭﯼ ﺳﺎﺯﮔﺎﺭ ﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺮﺍﯼ ﮔﺮﺍﻑ ﻣﺤﺎﺳﺒﻪ ﻧﻤﻮﺩ .ﻻﺯﻡ ﺑﻪ ﺫﮐﺮ ﺍﺳﺖ ﮐﻪ ﻣﺤﺎﺳﺒﻪ ﺑﺮﭼﺴﺐﮔﺬﺍﺭﯼ ﺳﺎﺯﮔﺎﺭ ﺩﺭ ﺯﻣﺎﻥ ﭼﻨﺪﺟﻤﻠﻪﺍﯼ ﻭ ﺑﻪ ﺻﻮﺭﺕ ﺗﮑﺮﺍﺭﯼ ﺍﻓﺰﺍﻳﺸﯽ ﺑﺎ ﺷﺮﻭﻉ ﺍﺯ g ^ = 0و g ^¢ = 1ﻗﺎﺑﻞ ﺣﻞ ﺍﺳﺖ ].[٤ .٢ .٤ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﮔﺮﺍﻑ ﺩﻭﺑﺨﺸﯽ ﻋﻤﻮﻣﯽ ﻗﻀﻴﻪ .١ﺑﺮﺍﯼ ﻫﺮ ﮔﺮﺍﻑ ﺩﻭﺑﺨﺸﯽ Gﻭ ﻫﺮ ﺗﻄﺎﺑﻖ Mﺩﺭ ﺁﻥ ،ﻳﮏ ﺧﺮﻭﺟﯽ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ Mﻳﮏ ﺗﻄﺎﺑﻖ ﺑﻴﺸﻴﻨﻪ ﺑﺎﺷﺪ. ﺷﻬﻮﺩ ﺍﺛﺒﺎﺕ ﺍﻳﻦ ﻗﻀﻴﻪ ﺑﻪ ﺍﻳﻦ ﺻﻮﺭﺕ ﺍﺳﺖ .ﻃﺒﻖ ﺍﻓﺮﺍﺯ [٦] Edmonds-Galliﻣﯽﺗﻮﺍﻥ ﻫﺮ ﮔﺮﺍﻑ ﺭﺍ ﺑﻪ ٣ﺑﺨﺶ ﺍﻓﺮﺍﺯ ﻧﻤﻮﺩ .ﺑﺨﺶ ﺍﻭﻝ Dﺑﺨﺸﯽ ﺍﺳﺖ ﮐﻪ ﻫﺮ ﻧﻮﺩ v Î Dﺩﺭ ﻫﺮ ﺗﻄﺎﺑﻖ ﺑﻴﺸﻴﻨﻪ ﺍﺯ ﮔﺮﺍﻑ ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ .ﺑﺨﺶ ﺩﻭﻡ Aﺷﺎﻣﻞ ﻫﻤﻪ ﻧﻮﺩﻫﺎﻳﯽ ﺍﺳﺖ ﮐﻪ ﻳﮏ ﻫﻤﺴﺎﻳﻪ ﺩﺭ ﻣﺠﻤﻮﻋﻪ Dﺩﺍﺭﻧﺪ ﻭ C = V - A - Dﻣﺠﻤﻮﻋﻪﺍﯼ ﺍﺯ ﺭﺍﺱﻫﺎﺳﺖ ﮐﻪ ﻳﮏ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﺑﺮﺍﯼ ﺁﻧﻬﺎ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺩﺭ ﮔﺮﺍﻑ ﺷﮑﻞ A = {v} ، D = {u,w} ، ١ﻭ } . C = {x, yﭼﻮﻥ ﻣﺠﻤﻮﻋﻪ Dﺩﺭ ﮔﺮﺍﻑﻫﺎﯼ ﺩﻭ ﺑﺨﺸﯽ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﻣﺴﺘﻘﻞ ﺍﻳﺠﺎﺩ ﻣﯽﮐﻨﺪ ﺩﺭ ﺍﻳﻨﺼﻮﺭﺕ ﺑﻪ ﺍﺯﺍﯼ ﻫﺮ g v » 0 ، v Î Dﻭ ﺑﺮﺍﯼ ﻫﺮ g v » 1 ، v Î Aﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﻣﺠﻤﻮﻋﻪ Cﭼﻮﻥ ﻳﮏ ﺗﻄﺎﺑﻖ ﮐﺎﻣﻞ ﺩﺍﺭﺩ ﻣﯽﺗﻮﺍﻥ ﻳﮏ ﺧﺮﻭﺟﯽ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺮ ﺍﺳﺎﺱ ﻟﻢ ١ﻣﺤﺎﺳﺒﻪ ﻧﻤﻮﺩ. .٥ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺷﺒﮑﻪﻫﺎﯼ ﻋﻤﻮﻣﯽ .١ .٥ﺗﺎﺛﻴﺮ ﻧﻮﻉ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺑﺮ ﺍﺳﺎﺱ ﻧﻮﻉ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﻪ ﺑﺮﺭﺳﯽ ﺷﺮﺍﻳﻂ ﻭﺟﻮﺩ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺩﺭ ﮔﺮﺍﻑﻫﺎﯼ ﻋﻤﻮﻣﯽ ﻣﯽﭘﺮﺩﺍﺯﻳﻢ]. [٥ ﻗﻀﻴﻪ .١ﺍﮔﺮ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺧﻄﯽ ﺍﻓﺰﺍﻳﺸﯽ ﺑﺎﺷﺪ ،ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻳﮑﺘﺎ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺩﺭ ﺁﻥ ﺳﻮﺩ ﻫﺮ ﻳﺎﻝ ﺑﻪ ﻃﻮﺭ ﻣﺴﺎﻭﯼ ﺑﻴﻦ ﻫﺮ ﺩﻭ ﻧﻮﺩ ﻣﺠﺎﻭﺭ ﺁﻥ ﺗﻘﺴﻴﻢ ﻣﯽﺷﻮﺩ. ١ ﺍﺛﺒﺎﺕ .ﻓﺮﺽ ﮐﻨﻴﻢ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺮﺍﯼ ﺑﺎﺯﻳﮑﻦ uﺑﺮﺍﺑﺮ ﺑﺎ U u ( x) = ax + bﻭ ﺑﺎﺯﻳﮑﻦ U v ( x) = a¢x + b¢ vﺑﺎﺷﺪ. ﺑﺎ ﺟﺎﻳﮕﺬﺍﺭﯼ ﺭﻭﺍﺑﻂ ﺍﺯ ﺗﻌﺮﻳﻒ ٢ﻭ ﻣﺸﺘﻖ ﮔﻴﺮﯼ ﺩﺍﺭﻳﻢ: ))as (u ) = U u (a s (u , e) + x) - U u (a s (u, e ))bs (v) = U v (a s (v, e) + c( x) - x) -U v (a s (v, e = a(a s (u, e) + x) + c - a (a s (u, e)) - c = a¢(a s (v, e) + c( x) - x) + c¢ - a¢a s (v, e) - c¢ = ax = a¢c( x) - a¢x )f = as (u ) bs (v 2 = ax(a¢c( x) - a¢x) = aa¢c( x) x - aa¢x 2 f ¢ = aa¢c( x) - 2aa¢x )f ¢ = 0 Þ aa¢c( x) - 2aa¢x = 0 Þ x = c( x ﻗﻀﻴﻪ ﺯﻳﺮ ﺑﻪ ﻭﺟﻮﺩ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺑﺎ ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻋﻤﻮﻣﯽ ﻣﯽﭘﺮﺩﺍﺯﺩ. ١ ٢ ﺍﺛﺒﺎﺕ ﺍﻳﻦ ﻗﻀﻴﻪ ﺩﺭ ﻣﻘﺎﻟﻪ ﺍﺻﻠﯽ ﺁﻭﺭﺩﻩ ﻧﺸﺪﻩ ﺍﺳﺖ. ٢ﺩﺭ ﻣﻘﺎﻟﻪ ﺍﺻﻠﯽ ﺍﻳﻦ ﻭﻳﮋﮔﻴﻬﺎ ﺑﺮﺍﯼ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺴﺒﯽ ﺑﺮﺭﺳﯽ ﺷﺪﻩ ﺍﺳﺖ ﻭ ﻣﺎ ﺩﺭ ﺍﻳﻦ ﺟﺎ ﻫﻤﺎﻥ ﺭﻭﺵ ﺭﺍ ﺑﺮﺍﯼ ﺣﺎﻟﺖ ﻧﺶ ﺗﻌﻤﻴﻢ ﺩﺍﺩﻩﺍﻳﻢ n ﻗﻀﻴﻪ .٢ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺩﺭ ﻫﺮ ﺷﺒﮑﻪ ﺍﺟﺘﻤﺎﻋﯽ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻫﺮﮔﺎﻩ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ. ﺩﺭ ﻭﺍﻗﻊ ﺷﺮﻁ ﮐﺎﻓﯽ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻫﻤﻪ ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﺭ ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ﺯﻳﺮ ﺻﺪﻕ ﮐﻨﻨﺪ: ﺷﺮﻁ .١ﻓﺮﺽ ﮐﻨﻴﻢ s Î Âmﺣﺎﻟﺖ ﻣﺪﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺎﺷﺪ ﻭ ) e = (u , vﻳﺎﻟﯽ ﺩﺭ ﮔﺮﺍﻑ ﺑﺎﺷﺪ .ﺑﻪ ﺍﺯﺍﯼ ﻫﺮ e > 0ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ d > 0ﺑﻪ ﻃﻮﺭﻳﮑﻪ ﺑﺮﺍﯼ ﻫﺮ ﺣﺎﻟﺖ ﭼﺎﻧﻪﺯﻧﯽ t ﮐﻪ | a t (u, e) - a s (u, e) | < dﻭ | a t (v, e) - a s (v, e) | < dﺑﺮﻗﺮﺍﺭ ﺑﺎﺷﺪ ،ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ . | yt (u, e) - ys (u , e) | < e ﺭﻭﻧﺪ ﺍﺛﺒﺎﺕ ﺑﻪ ﺍﻳﻦ ﺻﻮﺭﺕ ﺍﺳﺖ ﮐﻪ ﺛﺎﺑﺖ ﻣﯽﮐﻨﻴﻢ ﺍﮔﺮ ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ١ﺻﺎﺩﻕ ﺑﺎﺷﺪ ،ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭﺟﻮﺩ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ .ﺳﭙﺲ ﺛﺎﺑﺖ ﻣﯽﮐﻨﻴﻢ ﮐﻪ ﻫﺮ ﺗﺎﺑﻊ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﮐﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺮ ﺍﺳﺎﺱ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺻﻮﺭﺕ ﮔﻴﺮﺩ ﺩﺭ ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ١ﺻﺪﻕ ﻣﯽﮐﻨﺪ .ﺑﺎ ﺍﺛﺒﺎﺕ ﺍﻳﻦ ﺩﻭ ﻟﻢ ﻗﻀﻴﻪ ٢ﺛﺎﺑﺖ ﻣﯽﺷﻮﺩ. ﻟﻢ .١ﺍﮔﺮ ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ١ﺑﺮﺍﯼ ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻧﯽ ﮐﻪ ﺩﺭ ﻳﮏ ﺷﺒﮑﻪ ﺍﺟﺘﻤﺎﻋﯽ ﺑﻪ ﺭﻭﺵ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﻣﯽﭘﺮﺩﺍﺯﻧﺪ ﺻﺎﺩﻕ ﺑﺎﺷﺪ ﺩﺭ ﺍﻳﻨﺼﻮﺭﺕ ﻳﮏ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭﺟﻮﺩ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ. ﺍﺛﺒﺎﺕ .ﺗﺎﺑﻊ f : [0,1]m ® [0,1]mﺭﺍ ﮐﻪ ﻫﺮ ﺣﺎﻟﺖ ﭼﺎﻧﻪﺯﻧﯽ sﺭﺍ ﺣﺎﻟﺖ ﺩﻳﮕﺮ ) f (sﻧﮕﺎﺷﺖ ﻣﯽﮐﻨﺪ ﺗﻌﺮﻳﻒ ﻣﯽﮐﻨﻴﻢ. ﺑﺎ ﺩﺍﺷﺘﻦ ) ، e = (u , vﻣﯽﺗﻮﺍﻧﻴﻢ ﺣﺎﻟﺖ ﻳﮑﺘﺎﯼ tﺭﺍ ﺑﻪ ﮔﻮﻧﻪﺍﯼ ﺍﻳﺠﺎﺩ ﮐﻨﻴﻢ ﮐﻪ ﺩﺭ ﺁﻥ ﺍﺭﺯﺵ ﻫﺮ ﻳﺎﻝ ) e = (u, vﺩﺭ ﺣﺎﻟﺖ tﻣﻘﺪﺍﺭﯼ ﺍﺳﺖ ﮐﻪ ﺍﮔﺮ ﺩﻭ ﺑﺎﺯﻳﮑﻦ uﻭ vﺩﺭ ﺣﺎﻟﺖ sﺑﺮ ﺭﻭﯼ ﻳﺎﻝ ﻧﺎﭘﺎﻳﺪﺍﺭ ) e = (u, vﺩﻭﺑﺎﺭﻩ ﺑﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺑﭙﺮﺩﺍﺯﻧﺪ ﺑﻪ ﺩﺳﺖ ﻣﯽﺁﻭﺭﻧﺪ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺑﻪ ) f (s ) . xt (u , e) = ys (u , eﺭﺍ tﻗﺮﺍﺭ ﻣﯽﺩﻫﻴﻢ .ﺑﺎ ﺍﻳﻦ ﺗﻌﺮﻳﻒ ﻣﺸﺨﺺ ﺍﺳﺖ ﮐﻪ ) » f (sﺑﻬﺘﺮﻳﻦ ﭘﺎﺳﺦ« ﺑﺮﺍﯼ sﻣﯽﺑﺎﺷﺪ .ﻣﺠﻤﻮﻋﻪ [0,1]mﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺑﺴﺘﻪ ،ﻣﺤﺪﻭﺩ ﻭ ﻣﺤﺪﺏ ﺍﺳﺖ .ﺍﮔﺮ ﺛﺎﺑﺖ ﮐﻨﻴﻢ ﮐﻪ fﻳﮏ ﺗﺎﺑﻊ ﭘﻴﻮﺳﺘﻪ ﺍﺳﺖ ،ﻃﺒﻖ ﻗﻀﻴﻪ ﻧﻘﻄﻪ ﺛﺎﺑﺖ Brouwerﺣﺎﻟﺖ ﭼﺎﻧﻪﺯﻧﯽ sﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ f ( s) = sﻭ ﺍﻳﻦ ﺣﺎﻟﺖ ،ﺣﺎﻟﺖ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺍﺳﺖ .ﻟﺬﺍ ﻟﻢ ٢ﺍﺛﺒﺎﺕ ﻗﻀﻴﻪ ﺭﺍ ﮐﺎﻣﻞ ﻣﯽﮐﻨﺪ. n ﻟﻢ .٢ﺗﺎﺑﻊ fﻣﻌﺮﻓﯽ ﺷﺪﻩ ﺩﺭ ﻟﻢ ١ﭘﻴﻮﺳﺘﻪ ﺍﺳﺖ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ fﺩﺭ ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ١ﺻﺪﻕ ﮐﻨﺪ. ﻟﻢ .٣ﺷﺮﻁ ﭘﻴﻮﺳﺘﮕﯽ ١ﺑﺮﺍﯼ ﻫﻤﻪ ﺗﻮﺍﺑﻊ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﻭﻗﺘﯽ ﭼﺎﻧﻪﺯﻧﯽ ﺍﺯ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﭘﻴﺮﻭﯼ ﻣﯽﮐﻨﻨﺪ ﺻﺎﺩﻕ ﺍﺳﺖ. ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻟﻢﻫﺎﯼ ١ﻭ ٣ﻗﻀﻴﻪ ٢ﺍﺛﺒﺎﺕ ﻣﯽﺷﻮﺩ. .٢ .٥ﺗﺎﺛﻴﺮﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻫﻤﺎﻧﻄﻮﺭ ﮐﻪ ﺩﺭ ﺷﺒﮑﻪ ﺷﮑﻞ ١ﺑﺮﺭﺳﯽ ﺷﺪ ،ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﻧﻘﺶ ﻣﻬﻤﯽ ﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺍﺭﺩ .ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﻣﯽﺷﻮﺩ ﮐﻪ ﺑﺎ ﺩﺍﺷﺘﻦ ﻓﺮﺿﻴﺎﺗﯽ ،ﺗﻮﭘﻮﻟﻮﮊﯼ ﺷﺒﮑﻪ ﺗﺎﺛﻴﺮﯼ ﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻧﺪﺍﺭﺩ .ﺩﺭ ﺍﺩﺍﻣﻪ ﻓﺮﺽ ﻣﯽﮐﻨﻴﻢ ﮐﻪ ﻫﻤﻪ ﺭﺍﺱﻫﺎ ﺩﺍﺭﺍﯼ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻳﮑﺴﺎﻥ ) U (xﺑﻮﺩﻩ ﻭ ﺍﺭﺯﺵ ﻫﺮ ﻳﺎﻝ ﺑﺮﺍﺑﺮ ﺑﺎ ﻳﮏ ﻣﯽﺑﺎﺷﺪ. ﻗﻀﻴﻪ .٣ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ ) U (xﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ .ﻫﻤﭽﻨﻴﻦ ﺑﻪ ﺍﺯﺍﯼ ﻋﺪﺩ ﺛﺎﺑﺖ Kﺩﺍﺷﺘﻪ )U ( x) - U (0 ﺑﺎﺷﻴﻢ ]< Kx, x Î [0,1 )U ¢( x .ﻫﻤﭽﻨﻴﻦ ) U ¢¢( x) £ e ( x)U ¢( xﺑﺮﺍﯼ ﺗﺎﺑﻊ ﮐﺎﻫﺸﯽ ) e (xﺑﺮﻗﺮﺍﺭ ﺑﺎﺷﺪ. ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ sﻳﮏ ﺣﺎﻟﺖ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺑﺎﺯﯼ ﺑﺎﺷﺪ ﻭ ) e = (u , vﻳﺎﻟﯽ ﺑﺎﺷﺪ ﮐﻪ ﺩﺭ ﺁﻥ ﺩﺭﺟﻪ ﻧﻮﺩﻫﺎﯼ uﻭ vﺑﻪ ﺍﺯﺍﯼ 1 ﻋﺪﺩ ﻣﺜﺒﺖ dﺍﺯ ( K + 1)d + 1ﺑﺰﺭﮔﺘﺮ ﺑﺎﺷﺪ .ﺩﺭ ﺍﻳﻨﺼﻮﺭﺕ ) . | xs (u, e) - |< e (d 2 -1 ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﺗﺎﺑﻊ U ( x) = x pﺑﺮﺍﯼ 0 < p < 1ﺩﺭ ﺷﺮﺍﻳﻂ ﻗﻀﻴﻪ ٣ﺻﺪﻕ ﻣﯽﮐﻨﺪ ﮐﻪ ﺩﺭ ﺁﻥ K = pﻭ . e ( x) = (1 - p ) / xﺗﺎﺑﻊ ) U ( x) = log(1 + xﺑﺎ K = 2ﻭ e ( x) = 1 / 1 + xﺩﺭ ﺷﺮﺍﻳﻂ ﻗﻀﻴﻪ ﺻﺪﻕ ﻣﯽﮐﻨﺪ. ﻻﺯﻡ ﺑﻪ ﺩﮐﺮ ﺍﺳﺖ ﮐﻪ ﺷﺮﺍﻳﻂ ﻗﻀﻴﻪ ﻣﻄﺎﺑﻖ ﺑﺎ ﻗﻀﻴﻪ ٢ﺑﻮﺩﻩ ﻭ ﻭﺟﻮﺩ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺑﺪﻳﻬﯽ ﺍﺳﺖ. ﺩﻭ ﻟﻢ ﺯﻳﺮ ﻭﻳﮋﮔﯽﻫﺎﯼ ﻣﻬﻢ ﺩﻳﮕﺮﯼ ﺭﺍ ﻧﻴﺰ ﻧﺸﺎﻥ ﻣﯽﺩﻫﻨﺪ ﮐﻪ ﺩﺭ ﺍﺛﺒﺎﺕ ﻗﻀﻴﻪ ٣ﻣﻔﻴﺪ ﻫﺴﺘﻨﺪ. ﻟﻢ .٤ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ ) U (xﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ .ﻫﻤﭽﻨﻴﻦ ﺑﻪ ﺍﺯﺍﯼ ﻋﺪﺩ ﺛﺎﺑﺖ Kﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ )U ( x) - U (0 ]< Kx, x Î [0,1 )U ¢( x 1 1 . xs (v , e ) ³ xs (u , e) ³ﻭ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: K +1 K +1 ﻟﻢ .٥ﻓﺮﺽ ﮐﻨﻴﻢ ﮐﻪ ) U (xﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ s .ﻳﮏ ﺣﺎﻟﺖ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺭ ﺑﺎﺯﯼ ﺑﺎﺷﺪ ﻭ ) e = (u , vﻳﮏ ﻳﺎﻝ ﺩﺭ ﺷﺒﮑﻪ ﻭ eﻋﺪﺩﯼ ﻣﺜﺒﺖ ﺑﺎﺷﺪ .ﻫﻤﭽﻨﻴﻦ )) U ¢¢(a s (u, e)) £ eU ¢(a s (u , eﻭ )) . U ¢¢(a s (v, e)) £ eU ¢(a s (v, eﺩﺭ ﺍﻳﻨﺼﻮﺭﺕ ﺍﮔﺮ uﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻣﻘﺪﺍﺭ xﺩﺭﻳﺎﻓﺖ ﮐﻨﺪ ) vﻣﻘﺪﺍﺭ ( 1 - x .ﺩﺭ ﺍﻳﻨﺼﻮﺭﺕ ﺩﺭ ﺣﺎﻟﺖ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ، sﺑﻪ ﺍﺯﺍﯼ ﻫﺮ ﻳﺎﻝ )e = (u, v 1 ﺍﻧﮕﺎﻩ |< e 2 |x- .٦ﻧﺘﻴﺠﻪﮔﻴﺮﯼ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺗﻌﺮﻳﻒ ﻣﺴﺌﻠﻪ ﭼﺎﻧﻪﺯﻧﯽ ﺩﻭ ﻃﺮﻓﻪ ﻭ ﺗﻌﻤﻴﻢ ﺁﻥ ﺑﻪ ﺷﺒﮑﻪﺍﯼ ﺍﺯ ﺍﻓﺮﺍﺩ ﭘﺮﺩﺍﺧﺘﻴﻢ .ﺩﻭ ﺭﺍﻩﺣﻞ ﺍﺻﻠﯽ ﺍﺭﺍﺋﻪ ﺷﺪﻩ ﺑﺮﺍﯼ ﭼﺎﻧﻪﺯﻧﯽ ﺩﻭ ﻃﺮﻓﻪ ﻳﻌﻨﯽ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻭ ﺭﺍﻩﺣﻞ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺴﺒﯽ ﻗﺎﺑﻞ ﺑﺮﺭﺳﯽ ﺩﺭ ﺷﺒﮑﻪﺍﯼ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻫﺴﺘﻨﺪ .ﻧﮑﺘﻪﺍﯼ ﮐﻪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺳﺎﺧﺘﺎﺭ ﺷﺒﮑﻪ ﻭ ﻧﻮﻉ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻧﻘﺶ ﺗﻌﻴﻴﻦ ﮐﻨﻨﺪﻩﺍﯼ ﺩﺭ ﻭﺟﻮﺩ ﻭ ﻋﺪﻡ ﻭﺟﻮﺩ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﺩﺍﺭﻧﺪ .ﻧﺘﺎﻳﺞ ﺍﺻﻠﯽ ﺑﺮﺭﺳﯽ ﺷﺪﻩ ﺭﺍ ﻣﯽﺗﻮﺍﻥ ﺩﺭ ﻣﻮﺍﺭﺩ ﺯﻳﺮ ﺧﻼﺻﻪ ﻧﻤﻮﺩ: · · · · ﺑﺮﺍﯼ ﺗﻮﺍﺑﻊ ﺳﻮﻣﻨﺪﯼ ﺧﻄﯽ ،ﻣﯽﺗﻮﺍﻥ ﺑﺎ ﻣﺤﺎﺳﺒﻪ ﻗﺪﺭﺕ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﺮ ﺍﺳﺎﺱ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﺠﺎﻭﺭ ﺁﻥ ﺩﺭ ﺷﺒﮑﻪ ﺁﺟﺘﻤﺎﻋﯽ ،ﺳﻬﻢ ﺑﺎﺯﻳﮑﻦ ﺭﺍ ﺍﺯ ﻫﻢ ﻣﻌﺎﻣﻠﻪ ﺩﺭ ﺷﺒﮑﻪ ﻣﺤﺎﺳﺒﻪ ﻧﻤﻮﺩ. ﺑﺮﺍﯼ ﺗﻮﺍﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺧﻄﯽ ﻳﮑﺘﺎ ،ﺑﺮﺍﯼ ﻫﺮ ﺷﺒﮑﻪ ﺍﺟﺘﻤﺎﻋﯽ ﻳﮑﺘﺎ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ) ﻧﺶ ﻭ ﻧﺴﺒﯽ( ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﻭ ﺗﻮﭘﻮﻟﻮﮊﯼ ﺷﺒﮑﻪ ﻧﻘﺸﯽ ﺩﺭ ﺗﻌﺎﺩﻝ ﻧﻬﺎﻳﯽ ﻧﺪﺍﺭﺩ. ﻫﺮﮔﺎﻩ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﺑﺎﺷﺪ ،ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﺩﺭ ﻫﺮ ﺷﺒﮑﻪ ﺍﺟﺘﻤﺎﻋﯽ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺑﺎ ﻓﺮﺽ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﯼ ﺍﻓﺰﺍﻳﺸﯽ ،ﻣﺤﺪﺏ ﻭ ﺩﻭ ﺑﺎﺭ ﻣﺸﺘﻖ ﭘﺬﻳﺮ ﻳﮑﺴﺎﻥ ﺑﺮﺍﯼ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ،ﺗﻮﭘﻮﻟﻮﮊﯼ ﺷﺒﮑﻪ ﺗﺎﺛﻴﺮﯼ ﺩﺭ ﺗﻌﺎﺩﻝ ﭼﺎﻧﻪﺯﻧﯽ ﻧﺶ ﻧﺪﺍﺭﺩ. ﻣﺮﺍﺟﻊ.٧ [١] John Forbes Nash. The bargaining problem. Econometrica, ١٨(٢):١٥٥-١٦٢, ١٩٥٠ [٢] M.J. Osborne. “An introduction to game theory”, Oxford University Press New York, ٢٠٠٤ (Chapter ١٥) [٣] N. Braun, T. Gautschi, A nash bargaining model for simple exchange networks. Social Networks ٢٨(١) (٢٠٠٦) ١–٢٣ [٤] J. Kleinberg, E. Tardos, Balanced outcomes in social exchange networks. STOC ٢٠٠٨ [٥] T. Chakraborty , M. Kearns , Bargaining Solutions in a Social Network. T. Chakraborty. WINE ٢٠٠٨. [٦] L. Lov´asz and M. Plummer. Matching Theory. North-Holland, ١٩٨٦. ١ Bargaining Problem Nash Bargaining Solution ٣ Independence from Irrelevant Alternatives ٢
© Copyright 2025 Paperzz