Game_Final_85702472.pdf

‫ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‪١‬‬
‫ﺍﺣﺴﺎﻥ ﮐﻮﺭﺵﻓﺮ‬
‫ﭼﮑﻴﺪﻩ‪ .‬ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺍﺯ ﺩﻭ ﺩﻫﻪﻱ ﻗﺒﻞ ﺑﻪ ﻋﻨﻮﺍﻥ ﺍﺑﺰﺍﺭﻱ ﺑﺮﺍﻱ ﭘﻴﺶﺑﻴﻨﻲ ﺭﻭﻳﺪﺍﺩﻫﺎﻱ ﭘﻴﺶﺭﻭ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ‬
‫ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﻧﺪ‪ .‬ﺩﺭ ﻣﻮﺍﺭﺩ ﻣﺨﺘﻠﻔﻲ ﻣﺎﻧﻨﺪ ﺍﻧﺘﺨﺎﺑﺎﺕ‪ ،‬ﻭﺿﻌﻴﺖ ﺑﺎﺯﺍﺭﻫﺎﻱ ﻣﺎﻟﻲ ﻭ ﻧﺘﺎﻳﺞ ﻭﺭﺯﺷﻲ ﺍﻳﻦ ﻣﮑﺎﻧﻴﺰﻡ ﺑﻪ ﮐﺎﺭ‬
‫ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ‪ .‬ﻫﺪﻑ ﺍﺯ ﺍﻳﻦ ﮔﺰﺍﺭﺵ ﺁﺷﻨﺎ ﺷﺪﻥ ﺑﺎ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ‪ ،‬ﭼﮕﻮﻧﮕﻲ ﮐﺎﺭ ﺁﻧﻬﺎ ﻭ ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﻣﻄﺮﺡ ﺷﺪﻩ‬
‫ﺩﺭ ﭼﮕﻮﻧﮕﻲ ﻃﺮﺍﺣﻲ ﺁﻧﻬﺎﺳﺖ‪.‬‬
‫ﮐﻠﻤﺎﺕ ﮐﻠﻴﺪﻱ‪ .‬ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‬
‫‪ ۱‬ﻣﻘﺪﻣﻪ‬
‫ﻳﮑ ﻲ ﺍﺯ ﺭﻭﺵﻫﺎﻳﻲ ﮐﻪ ﻣﻲﺗﻮﺍﻥ ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﺍﻃﻼﻋﺎﺕ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ ﻣﻮﺿﻮﻋﻲ ﺍﺯ ﺁﻥ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ ،‬ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ‬
‫ﺍﺯ ﺍﻓﺮﺍﺩ ﺑﺨﻮﺍﻫﻴﻢ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ ﺁﻥ ﭘﻴﺸﮕﻮﻳﻲ ﮐﻨﻨﺪ‪ .‬ﻳﮏ ﺑﺎﺯﺍﺭ ﭘﻴﺸﮕﻮ ﻣﮑﺎﻧﻲ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺁﻥ ﻧﻈﺮﺍﺕ ﺍﻓﺮﺍﺩ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ‬
‫ﺍﺣﺘﻤﺎﻝ ﺣﺎﺩﺙ ﺷﺪﻥ ﻳﮏ ﻣﻮﺿﻮﻉ ﺗﺠﻤﻴﻊ ﻣﻲﮔﺮﺩﺩ ‪ .‬ﻣﺜﻼ ﺑﺮﺍﻱ ﺍﻳ ﻦ ﮐﻪ ﺑﻔﻬﻤ ﻴﻢ ﮐﻪ ﺳﺎﻝ ﺁﻳ ﻨﺪﻩ ﺑﺎ ﮐﻤﺒﻮﺩ ﺁﺏ ﻣﻮﺍﺟﻪ ﻣﻲ‪-‬‬
‫ﺷﻮﻳﻢ ﻳﺎ ﻧﻪ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺍﻓﺮﺍﺩ ﺧﻮﺍﺳﺖ ﮐﻪ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ ﺁﻥ ﺷﺮﻁﺑﻨﺪﻱ ﮐﻨﻨﺪ‪ .‬ﻗ ﻴﻤﺖ ﺑﺎﺯﺍﺭ ﺑﺮﺍﻱ ﺍﻳ ﻦ ﺷﺮﻁﺑﻨﺪﻱ ﻧﺸﺎﻥ‬
‫ﺩﻫﻨﺪﻩﻱ ﻳﮏ ﺍﺟﻤﺎﻉ ﻋﻤﻮﻣﻲ ﺍﺯ ﻧﻈﺮﺍﺕ ﺍﻓﺮﺍﺩﻱ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺷﺮﻁﺑﻨﺪﻱ ﺷﺮﮐﺖ ﮐﺮﺩﻩﺍﻧﺪ‪ .‬ﺩﺭ ﺣﻘ ﻴﻘﺖ ﺩﺭ ﺍﻳ ﻨﺠﺎ‬
‫ﺳﻮﺩﻱ ﮐﻪ ﻧﺼﻴﺐ ﺍﻓﺮﺍﺩ ﻣﻲﺷﻮﺩ ﺑﺎ ﺍﺣﺘﻤﺎﻝ ﺭﺥ ﺩﺍﺩﻥ ﻳﮏ ﭘﻴﺸﺎﻣﺪ ﺩﺭ ﺭﺍﺑﻄﻪ ﺍﺳﺖ‪ .‬ﻣﻌﻤﻮﻻ ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﺳﻪ ﺩﺳﺘﻪ‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﺑﺮﺍﻱ ﺷﺮﮐﺖ ﮐﻨﻨﺪﮔﺎﻥ ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﻧﺪ]‪ . [١‬ﺍﻳﻦ ﺳﻪ ﺩﺳﺘﻪ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺭ ﺟﺪﻭﻝ )‪ (۱‬ﻧﺸﺎﻥ ﺩﺍﺩﻩ ﺷﺪﻩﺍﻧﺪ ‪ .‬ﺩﺭ ﻗﺮﺍﺭﺩﺍﺩ‬
‫ﺍﻭﻝ ﮐﻪ ﺑﻪ "ﻫﻤﻪ ﻳﺎ ﻫﻴﭻ" ﻣﻌﺮﻭﻑ ﺍﺳﺖ‪ ،‬ﻗﺮﺍﺭﺩﺍﺩ ﺑﺎ ﻫﺰﻳﻨﻪﻱ ‪ p‬ﺳﻮﺩﻱ ﺑﺮﺍﺑﺮ ‪ ۱‬ﺭﺍ ﺩﺭ ﺍﺯﺍﻱ ﺍﺗﻔﺎﻕ ﺍﻓﺘﺎﺩﻥ ﻳﮏ ﭘﻴﺸﺎﻣﺪ ﻣﺜﻼ‬
‫ﺑﺮﻧﺪﻩ ﺷﺪﻥ ﺷﺨﺺ ﺧﺎﺻﻲ ﺩﺭ ﺍﻧﺘﺨﺎﺑﺎﺕ ﻣﻲﭘﺮﺩﺍﺯﺩ‪ .‬ﻗﻴﻤﺖ ﺩﺭ ﺍﻳﻨﮕﻮﻧﻪ ﻗﺮﺍﺭﺩﺍﺩ ﻧﺸﺎﻥﺩﻫﻨﺪﻩﻱ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﺍﺭ ﺍﺯ ﺍﺣﺘﻤﺎﻝ ﺭﺥ‬
‫ﺩﺍﺩﻥ ﻳﮏ ﭘﻴﺸﺎﻣﺪ ﺍﺳﺖ ‪ .‬ﺩﺭ ﺩﺳﺘﻪﻱ ﺩﻭﻡ ﻳﺎ "ﻧﺸﺎﻧﻪ ‪ "٢‬ﻣﻘﺪﺍﺭﻱ ﮐﻪ ﻗﺮﺍﺭﺩﺍﺩ ﻣﻲﭘﺮﺩﺍﺯﺩ ﺑﺮ ﺣﺴﺐ ﺍﻓﺰﺍﻳﺶ ﻭ ﻳﺎ ﮐﺎﻫﺶ ﻳﮏ‬
‫ﻋﺪﺩ‪ ،‬ﻣﺜﻼ ﺩﺭﺻﺪ ﺁﺭﺍﻱ ﻳﮏ ﮐﺎﻧﺪﻳﺪﺍ ﺗﻐﻴﻴﺮ ﻣﻲﮐﻨﺪ‪ .‬ﻗﻴﻤﺖ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺑﺮﺍﻱ ﺍﻳﻦ ﻗﺮﺍﺭﺩﺍﺩ ﻧﺸﺎﻥﺩﻫﻨﺪﻩﻱ ﻣﻴﺎﻧﮕﻴﻦ‬
‫ﺍﺭﺯﺷﻲ ﺍﺳﺖ ﮐﻪ ﺑﺎﺯﺍﺭ ﺑﺮﺍﻱ ﻳﮏ ﭘﻴﺸﺎﻣﺪ ﺍﻧﺘﻈﺎﺭ ﺩﺍﺭﺩ‪ .‬ﺩﺭ ﻧﻬﺎﻳﺖ ﺩﺭ ﺷﺮﻁﺑﻨﺪﻱ "ﮔﺴﺘﺮﻩ ‪ "٣‬ﻗﺮﺍﺭﺩﺍﺩ ﺑﺮ ﺭﻭﻱ ﻣﻘﺪﺍﺭﻱ ﺍﺳﺖ‬
‫ﮐﻪ ﻣﺸﺨﺺ ﮐﻨﻨﺪﻩﻱ ﺭﺧﺪﺍﺩ ﻳﮏ ﻭﺍﻗﻌﻪ ﺍﺳﺖ ﻣﺜﻼ ﺩﺭﺻﺪﻱ ﺍﺯ ﺁﺭﺍ ﮐﻪ ﻳﮏ ﮐﺎﻧﺪﻳﺪﺍ ﺑﺪﺳﺖ ﻣﻲﺁﻭﺭﺩ ﻳﺎ ﺩﺭ ﻓﻮﺗﺒﺎﻝ ﺗﻌﺪﺍﺩ‬
‫ﺍﻣﺘﻴﺎﺯﺍﺗ ﻲ ﮐﻪ ﻳﮏ ﺗﻴﻢ ﺩﺭ ﭘﺎﻳﺎﻥ ﻓﺼﻞ ﮐﺴﺐ ﻣﻲﻧﻤﺎﻳﺪ ‪ .‬ﺩﺭ ﺍﻳﻦ ﻧﻮﻉ ﺷﺮﻁﺑﻨﺪﻱ ﻗﻴﻤﺖ ﺛﺎﺑﺖ ﺍﺳﺖ ﻭﻟ ﻲ ﮔﺴﺘﺮﻩ ﻣﻲﺗﻮﺍﻧﺪ‬
‫ﺗﻨﻈﻴﻢ ﺷﻮﺩ‪ .‬ﺍﮔﺮ ﺩﺭ ﺍﻳﻦ ﺷﺮﻁﺑﻨﺪﻱ ﺑﻪ ﺑﺮﻧﺪﻩﻫﺎ ﺩﻭ ﺑﺮﺍﺑﺮ ﻭﺟﻪ ﭘﺮﺩﺍﺧﺘﻲ ﺩﺍﺩﻩ ﺷﺪﻩ ﻭ ﺑﺎﺯﻧﺪﻩﻫﺎ ﺻﻔﺮ ﺩﺭﻳﺎﻓﺖ ﮐﻨﻨﺪ‪ ،‬ﻣﻴﺎﻧﻪﻱ‬
‫‪1‬‬
‫‪Prediction markets‬‬
‫‪Index‬‬
‫‪3‬‬
‫‪Spread‬‬
‫‪2‬‬
‫ﻧﺘﻴﺠﻪ ﺍﺯ ﺩﻳﺪﮔﺎﻩ ﺑﺎﺯﺍﺭ ﻣﺸﺨﺺ ﻣﻲﮔﺮﺩﺩ ﺯﻳﺮﺍ ﺍﻳﻦ ﺷﺮﻁﺑﻨﺪﻱ ﺩﺭ ﺻﻮﺭﺗﻲ ﻣﻨﺼﻔﺎﻧﻪ ﺍﺳﺖ ﮐﻪ ﺍﺣﺘﻤﺎﻝ ﺣﺎﺩﺙ ﺷﺪﻥ ﻭﺍﻗﻌﻪ‬
‫ﺑﺎ ﺭﺥ ﻧﺪﺍﺩﻥ ﺁﻥ ﺑﺮﺍﺑﺮ ﺑﺎﺷﺪ ‪.‬‬
‫ﺍﻳ ﻦ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﺗﻌﺮﻳﻒ ﺷﺪﻩ‪ ،‬ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﺍﺭ ﺍﺯ ﻳﮏ ﭘﺎﺭﺍﻣﺘﺮ ﺧﺎﺹ ﻣﺜﻼ ﺍﺣﺘﻤﺎﻝ‪ ،‬ﻣ ﻴﺎﻧﮕﻴﻦ ﻭ ﻣﻴﺎﻧﻪ ﺭﺍ ﻣﺸﺨﺺ‬
‫ﻣﻲﻧﻤﺎﻳﺪ‪ .‬ﺍﻣﺎ ﺍﺯ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﻣﻲﺗﻮﺍﻥ ﺑﺮﺍﻱ ﺍﺭﺯﻳﺎﺑﻲ ﻋﺪﻡ ﻗﻄﻌﻴﺖ ﺩﺭ ﺭﺍﺑﻄﻪ ﺑﺎ ﺍﻳ ﻦ ﺍﻧﺘﻈﺎﺭﺍﺕ ﻧﻴﺰ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ‪ .‬ﻣﺜﻼ‬
‫ﺧﺎﻧﻮﺍﺩﻩﺍﻱ ﺍﺯ ﻗﺮﺍﺭﺩﺍﺩﻫﺎﻱ "ﻫﻤﻪ ﻳﺎ ﻫﻴ ﭻ" ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﮐﻪ ﺩﺭ ﺻﻮﺭﺗﻲ ﮐﻪ ﻳﮏ ﮐﺎﻧﺪﻳﺪﺍ ‪ ۴۸‬ﺩﺭﺻﺪ‪ ۴۹ ،‬ﺩﺭﺻﺪ‪۵۰ ،‬‬
‫ﺩﺭﺻﺪ ﻭ ‪ ...‬ﺍﺯ ﺁﺭﺍ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩ‪ ،‬ﺳﻮﺩ ﻣﻲ ﭘﺮﺩﺍﺯﺩ‪ .‬ﺍﻳﻦ ﺩﺳﺘﻪ ﺍﺯ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩﻱ ﺗﻮﺯﻳﻊ ﺍﺣﺘﻤﺎﻝ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﺍﺭ‬
‫ﺍﺳﺖ‪ .‬ﺩﺭ ﻣﻮﺭﺩ ﻗﺮﺍﺭﺩﺍﺩﻫﺎﻱ "ﮔﺴﺘﺮﻩ" ﻓﺮﺽ ﮐﻨﻴﺪ ﻳﮏ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺍﺭﺍﻱ ﻫﺰﻳﻨﻪﻱ ‪ ۴‬ﺑﻮﺩﻩ ﻭ ﺳﻮﺩ ‪ ۵‬ﺑﭙﺮﺩﺍﺯﺩ ﺩﺭ ﺻﻮﺭﺗﻲ ﮐﻪ‬
‫∗‬
‫> ‪ .‬ﺍﻳﻦ ﻗﺮﺍﺭﺩﺍﺩ‪ ،‬ﻧﺸﺎﻥﺩﻫﻨﺪﻩﻱ ﺍﺭﺯﺵ‬
‫∗‬
‫ﺍﺳﺖ ﮐﻪ ﺑﺎﺯﺍﺭ ﺍﺣﺘﻤﺎﻝ ‪ ۸۰‬ﺩﺭﺻﺪﻱ ﺭﺍ ﺑﺮﺍﻱ ﺁﻥ ﭘ ﻴﺶﺑﻴﻨﻲ ﻣﻲﮐﻨﺪ ﻭ ﺩﺭ‬
‫ﻭﺍﻗﻊ ﻧﺸﺎﻥﺩﻫﻨﺪﻩﻱ ﻫﺸﺘﺎﺩﻣﻴﻦ ﺩﺭﺻﺪ ﺍﺯ ﺗﻮﺯﻳﻊ ﺍﺳﺖ‪ .‬ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻗﺮﺍﺭﺩﺍﺩﻫﺎﻱ ﻧﺸﺎﻧﻪ ﻫﻢ ﻣﻲﺗﻮﺍﻥ ﺍﻃﻼﻋﺎﺕ ﺑﻴﺸﺘﺮﻱ ﺩﺭ‬
‫ﺭﺍﺑﻄﻪ ﺑﺎ ﺗﻮﺯﻳﻊ ﺑﺪﺳﺖ ﺁﻭﺭﺩ‪ .‬ﻣﺜﻼ ﺑﺎﺯﺍﺭﻱ ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﺪ ﮐﻪ ﺩﻭ ﻗﺮﺍﺭﺩﺍﺩ ﻧﺸﺎﻧﻪ ﻳﮑﻲ ﺑﻪ ﺻﻮﺭﺕ ﺧﻄﻲ ﻭ ﺩﻳﮕﺮﻱ ﺑﺎ‬
‫ﻣﺮﺑﻊ ﻧﺸﺎﻧﻪ‬
‫ﺭﺍ ﺩﺍﺭﺍﺳﺖ‪ .‬ﻗﻴﻤﺖ ﺑﺎﺯﺍﺭ ﺑﺮﺍﻱ ﺍﻳﻦ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﻧﺸﺎﻥﺩﻫﻨﺪﻩﻱ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﺍﺭ ﺍﺯ ) ( ﻭ ) ( ﺍﺳﺖ ﮐﻪ ﺑﺎ‬
‫ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺩﻭ ﻣﻘﺪﺍﺭ ﻣﻲﺗﻮﺍﻥ ﻣﻘﺪﺍﺭ ﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩ‪.‬‬
‫ﺟﺪﻭﻝ )‪ :(۱‬ﺍﻧﻮﺍﻉ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ‬
‫ﻗﺮﺍﺭﺩﺍﺩ‬
‫ﻫﻤﻪ ﻳﺎ ﻫﻴﭻ‬
‫ﻣﺜﺎﻝ‬
‫ﺟﺰﺋﻴﺎﺕ‬
‫ﻧﺸﺎﻥ ﺩﻫﻨﺪﻩﻱ ﺍﻧﺘﻈﺎﺭ ﺑﺎﺯﺍﺭ‬
‫ﺭﺧﺪﺍﺩ ‪ :y‬ﮐﺎﻧﺪﻳﺪ ‪ a‬ﺍﻧﺘﺨﺎﺑﺎﺕ‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﻫﺰﻳﻨﻪﻱ ‪ p‬ﺩﺍﺭﺩ ﻭ ﺍﮔﺮ‬
‫ﺍﺣﺘﻤﺎﻝ ﺍﻳﻨﮑﻪ ‪ y‬ﺭﺥ ﺩﻫﺪ‪،‬‬
‫ﺁﺭﺍﻱ ﮐﺴﺐ ﺷﺪﻩ ﺗﻮﺳﻂ‬
‫ﻣﻲﮐﻨﺪ‪.‬‬
‫ﺭﺍ ﻣﻲﺑﺮﺩ‪.‬‬
‫ﻧﺸﺎﻧﻪ‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﺑﺮﺍﻱ ﻫﺮ ﺩﺭﺻﺪ ﺍﺯ‬
‫ﮔﺴﺘﺮﻩ‬
‫ﮐﺎﻧﺪ ﻳﺪ ‪ a‬ﺳﻮﺩ ‪ ۱‬ﻣﻲﭘﺮﺩﺍﺯﺩ‪.‬‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﺑﻪ ﻫﻤﺎﻥ ﺍﻧﺪﺍﺯﻩ ﭘﻮﻝ‬
‫ﻣﻲﭘﺮﺩﺍﺯﺩ ﺍﮔﺮ ﮐﺎﻧﺪﻳﺪ ‪a‬‬
‫ﺑﻴﺸﺘﺮ ﺍﺯ‬
‫∗‬
‫ﮐﺴﺐ ﮐﻨﺪ‪.‬‬
‫ﺩﺭﺻﺪ ﺍﺯ ﺁﺭﺍ ﺭﺍ‬
‫‪ y‬ﺭﺥ ﺩﻫﺪ ﺳﻮﺩ ‪ ۱‬ﻣﻲﭘﺮﺩﺍﺯﺩ‪.‬‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﻣﻘﺪﺍﺭ ‪ y‬ﺭﺍ ﭘﺮﺩﺍﺧﺖ‬
‫ﻗﺮﺍﺭﺩﺍﺩ ﻫﺰﻳﻨﻪﻱ ‪ ۱‬ﺩﺍﺭﺩ‪ .‬ﺍﮔﺮ‬
‫∗‬
‫>‬
‫ﺷﻮﺩ ‪ ۲‬ﻣﻲﭘﺮﺩﺍﺯﺩ‬
‫ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻦ ﺻﻮﺭﺕ ﺻﻔﺮ‪.‬‬
‫ﺍﺯ ‪...‬‬
‫) ( ‪.‬‬
‫ﻣﻴﺎﻧﮕﻴﻦ ﺧﺮﻭﺟﻲ ‪. ( ) ، y‬‬
‫ﻣﻴﺎﻧﻪﻱ ﻣﻘﺪﺍﺭ ‪. y‬‬
‫ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺩﺭ ﭘﻴﺶﺑﻴﻨﻲ ﻣﻮﺍﺭﺩ ﻣﺨﺘﻠﻔﻲ ﻣﺎﻧﻨﺪ ﺑﺎﺯﺍﺭﻫﺎﻱ ﻣﺎﻟﻲ‪ ،‬ﺣﻮﺍﺩﺙ ﺳﻴﺎﺳﻲ ﻣﺎﻧﻨﺪ ﺍﻧﺘﺨﺎﺑﺎﺕ ﻭ ﭘﻴﺶﺑﻴﻨﻲ‬
‫ﻣﺴﺎﺑﻘﺎﺕ ﻭﺭﺯﺷﻲ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﺷﻮﻧﺪ ﻭ ﺩﺭ ﻋﻤﻞ ﻧﺘﺎﻳﺞ ﻧﺰﺩﻳﮏ ﺑﻪ ﻭﺍﻗﻌﻴﺘﻲ ﺭﺍ ﻧﻴﺰ ﺑﺪﺳﺖ ﻣﻲﺩﻫﻨﺪ‪ .‬ﺩﺭ ﺍﻳ ﻨﺠﺎ ﺑﻪ ﺑﺮﺭﺳ ﻲ‬
‫ﻧﻘﻄﻪﻱ ﺗﻌﺎﺩﻝ ‪ ٤‬ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ‪.‬‬
‫‪Equilibrium‬‬
‫‪4‬‬
‫‪ ٢‬ﻧﻘﻄﻪﻱ ﺗﻌﺎﺩﻝ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘ ﻴﺸﮕﻮ‬
‫ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﺑﻪ ﺑﺮﺭﺳﻲ ﻧﻘﻄﻪﻱ ﺗﻌﺎﺩﻝ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺧﻮﺍﻫﻴﻢ ﭘﺮﺩﺍﺧﺖ‪ .‬ﻓﺮﺽ ﻣﻲﮐﻨﻴﻢ ﮐﻪ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﺍﺯ ﻧﻮﻉ‬
‫"ﻫﻤﻪ ﻳﺎ ﻫﻴﭻ" ﺑﻮﺩﻩ ﻭ ﺗﻼﺵﻫﺎﻱ ﺍﻧﺠﺎﻡ ﺷﺪﻩ ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﻧﻘﻄﻪﻱ ﺗﻌﺎﺩﻝ ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﺭﺍ ﻣﻮﺭﺩ ﺑﺮﺭﺳﻲ ﻗﺮﺍﺭ‬
‫ﺧﻮﺍﻫ ﻴﻢ ﺩﺍﺩ‪ .‬ﺩﺭ ﺳﺎﻝ ‪ Manski ٢٠٠٤‬ﺗﺤﻠﻴﻠ ﻲ ﺩﺭ ﻣﻮﺭﺩ ﺭﺍﺑﻄﻪﻱ ﺑﻴﻦ ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭ ﺗﺠﺎﺭ ﻭ ﻗ ﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‬
‫ﺍﻧﺠﺎﻡ ﺩﺍﺩ]‪ .[٢‬ﺩﺭ ﺍﻳ ﻦ ﺗﺤﻠﻴﻞ‪ ،‬ﺗﺠﺎﺭ ﺍﻓﺮﺍﺩﻱ ﺑﻲﺗﻔﺎﻭﺕ ﺑﻪ ﺭﻳﺴﮏ ‪ ٥‬ﻭ ﺩﺍﺭﺍﻱ ﺑﺎﻭﺭﻫﺎﻱ ﻧﺎﻫﻤﮕﻮﻥ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻧﺪ ‪ .‬ﺍﻭ‬
‫ﺷﺮﺍﻳﻄﻲ ﺭﺍ ﺑﺪﺳﺖ ﺁﻭﺭﺩ ﮐﻪ ﻣﻴ ﺎﻧﮕﻴ ﻦ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﻭ ﻗ ﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺩﺍﺭﺍﻱ ﺍﺧﺘﻼﻑ ﭼﺸﻤﮕ ﻴﺮﻱ ﻫﺴﺘﻨﺪ‪ .‬ﺷﺮﺍﻳﻂ ﺑﺎﺯﺍﺭ ﺑﻪ ﺍﻳ ﻦ‬
‫ﺻﻮﺭﺕ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﺪﻩ ﺍﺳﺖ‪ :‬ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﺍﺯ ﻧﻮﻉ ﻫﻤﻪ ﻳﺎ ﻫﻴﭻ ﺑﻮﺩﻩ ﻭ ﻳﮏ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺭ ﺻﻮﺭﺕ ﺍﺗﻔﺎﻕ ﺍﻓﺘﺎﺩﻥ ‪ m‬ﻣﻘﺪﺍﺭ‬
‫‪ ۱‬ﭘﺮﺩﺍﺧﺖ ﻣﻲﮐﻨﺪ ﻭ ﻗﺮﺍﺭﺩﺍﺩ ﺩﻳﮕﺮ ﺩﺭ ﺻﻮﺭﺕ ﺭﺧﺪﺍﺩ ‪) n‬ﻧﻘ ﻴﺾ ‪ ( m‬ﻣﻘﺪﺍﺭ ‪ ۱‬ﭘﺮﺩﺍﺧﺖ ﻣﻲ ﮐﻨﺪ‪ .‬ﻓﺮﺽ ﮐﻨ ﻴﺪ ﻣﻘﺪﺍﺭ ﺍﻳ ﻦ‬
‫ﻭ‬
‫ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﺑﺮﺍﺑﺮ‬
‫ﺑﺎﺷﺪ ﻭ ‪= 1‬‬
‫‪+‬‬
‫ﺍﺳﺖ‪ .‬ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ﺟﻤﻌﻴﺖ ‪ J‬ﺑﺎ ﺑﺎﻭﺭﻫﺎﻱ ﻧﺎﻫﻤﮕﻮﻥ ﺩﺭ ﺍﻳﻦ‬
‫ﺑﺎﺯﺍﺭ ﺷﺮﮐﺖ ﻣﻲﮐﻨﻨﺪ‪ .‬ﻫﺮ ﺑﺎﺯﻳﮑﻦ ‪ j‬ﺩﺍﺭﺍﻱ ﺑﻮﺩﺟﻪﻱ ﺛﺎﺑﺖ‬
‫) ‪,‬‬
‫ﺑﻮﺩﻩ ﻭ ﺍﺣﺘﻤﺎﻝ‬
‫ﺑﺮﺍﻱ ﺭﺥ ﺩﺍﺩﻥ ‪ m‬ﻗﺎﺋﻞ ﺍﺳﺖ ﻭ‬
‫( ﺗﻮﺯﻳﻌ ﻲ ﺍﺯ ﺑﺎﻭﺭﻫﺎ ﻭ ﺑﻮﺩﺟﻪﻫﺎﺳﺖ‪ .‬ﺍﮔﺮ ﺍﻳﻦ ﺗﻮﺯﻳﻊ ﻣﺘﻨﺎﻭﺏ ﻭ ﺑﻮﺩﺟﻪﻫﺎ ﺍﺯ ﻧﻈﺮ ﺍﺣﺘﻤﺎﻟ ﻲ ﻣﺴﺘﻘﻞ ﺍﺯ ﺑﺎﻭﺭﻫﺎ‬
‫ﺑﺎﺷﻨﺪ‪ ،‬ﻣﻘﺪﺍﺭ ﺗﻌﺎﺩﻝ ﺩﺭ ﭼﻨﻴﻦ ﺑﺎﺯﺍﺭﻱ ﺍﺯ ﺣﻞ ﻣﻌﺎﺩﻟﻪﻱ )‬
‫>‬
‫( =‬
‫ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ‪ .‬ﺩﺭ ﺍﻳﻦ ﺷﺮﺍﻳﻂ ﻭﻗﺘﻲ‬
‫ﻗﻴﻤﺖ ﺑﻴﺸﺘﺮ ﺍﺯ ‪ 0.5‬ﺑﺎﺷﺪ‪ ،‬ﺍﻓﺮﺍﺩ ﺑﻴﺸﺘﺮﻱ ﺩﺍﺭﺍﻱ "ﺑﺎﻭﺭﻱ" ﺑﺎﻻﺗﺮ ﺍﺯ ﻗﻴﻤﺖ ﻫﺴﺘﻨﺪ ﻭ ﺑﺮ ﻋﮑﺲ‪ .‬ﺍﺯ ﺍﻳﻦ ﺭﺍﺑﻄﻪ ﻧﺘﻴﺠﻪ ﻣﻲ‪-‬‬
‫ﺷﻮﺩ ﮐﻪ ﻣﻴ ﺎﻧﮕﻴﻦ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ )‬
‫ﻋﺮﺽ )‬
‫( ﺩﺭ ﺑﺎﺯﻩﻱ )‬
‫‪−‬‬
‫‪,2‬‬
‫( ﻗﺮﺍﺭ ﺩﺍﺭﺩ‪ .‬ﺍﻳﻦ ﺑﺎﺯﻩ ﺩﺍﺭﺍﻱ ﻧﻘﻄﻪﻱ ﻣ ﻴﺎﻧﻪﻱ ‪ π‬ﻭ‬
‫(‪ 2‬ﺍﺳﺖ‪ .‬ﺩﺭ ﻧﺘ ﻴﺠﻪ ﻗﻴﻤﺖﻫﺎﻳﻲ ﮐﻪ ﻧﺰﺩﻳﮏ ﺻﻔﺮ ﻭ ﻳﮏ ﻫﺴﺘﻨﺪ‪ ،‬ﺍﻃﻼﻋﺎﺕ ﺧﻮﺑﻲ ﺍﺯ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ‬
‫‪−‬‬
‫ﺩﺍﺭﻧﺪ ﺍﻣﺎ ﻗ ﻴﻤﺖﻫﺎﻱ ﻧﺰﺩﻳﮏ ‪ 0.5‬ﺩﺍﺭﺍﻱ ﺍﻃﻼﻋﺎﺕ ﮐﻤﺘﺮﻱ ﻫﺴﺘﻨﺪ‪ .‬ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺍﻳﻦ ﺷﺮﺍﻳﻂ ﻣﺸﺨﺺ ﻣﻲﺷﻮﺩ ﮐﻪ‬
‫ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺩﻗﻴﻘﺎ ﻣﺸﺨﺺ ﮐﻨﻨﺪﻩﻱ ﻣﻴﺎﻧﮕﻴﻦ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﻧﻴﺴﺖ ﺑﻠﮑﻪ ﺣﺪﻱ ﺭﺍ ﺑﺮﺍﻱ ﻣﻴﺎﻧﮕﻴﻦ ﺑﺎﻭﺭ‬
‫ﻣﺸﺨﺺ ﻣﻲﻧﻤﺎﻳﺪ‪ .‬ﻧﺘﺎﻳﺠﻲ ﮐﻪ ‪ Manski‬ﺑﻪ ﺩﺳﺖ ﺁﻭﺭﺩ ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﺪ ﮐﻪ ﻣﻤﮑﻦ ﺍﺳﺖ ﮐﻪ ﺑﻴﻦ ﻣﻴﺎﻧﮕﻴﻦ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﻭ‬
‫ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺍﺧﺘﻼﻑ ﻗﺎﺑﻞ ﺗﻮﺟﻬﻲ ﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ .‬ﺍﻣﺎ ﺍﺯ ﺁﻧﺠﺎﺋﻴﮑﻪ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﻣﻌﻤﻮﻻ ﭘﻴﺶﺑﻴﻨﻲ ﺩﻗﻴﻘﻲ ﺭﺍ ﺍﻧﺠﺎﻡ‬
‫ﻣﻲﺩﻫﻨﺪ ﺍﻳﻦ ﻧﺘﻴﺠﻪﮔﻴﺮﻱ ﻋﺠﻴﺐ ﺑﻪ ﻧﻈﺮ ﻣﻲﺭﺳﺪ‪.‬‬
‫ﺩﺭ ﺳﺎﻝ ‪ Gjerstad ۲۰۰۵‬ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﻋﺎﻣﻞ ﺭﻳﺴﮏﻧﺎﭘﺬﻳﺮﻱ ‪ ٦‬ﻭ ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭﻫﺎﻱ ﺍﻓﺮﺍﺩ ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺭﺍ ﺑﻪ ﻣﻴﺰﺍﻥ ﻗﺎﺑﻞ‬
‫ﺗﻮﺟﻬﻲ ﺗﺤﺖ ﺗﺎﺛﻴﺮ ﻗﺮﺍﺭ ﻣﻲﺩﻫﻨﺪ]‪ . [٣‬ﺍﻭ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺍﮔﺮ ﺍﻓﺮﺍﺩ ﺩﺍﺭﺍﻱ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﻱ ‪ ٧ CRRA‬ﺑﺎﺷﻨﺪ‪ ،‬ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ‬
‫ﺑﺎﺯﺍﺭ ﺑﺮﺍﺑﺮ ﻣ ﻴﺎﻧﮕ ﻴﻦ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﺧﻮﺍﻫﺪ ﺑﻮﺩ ‪ .‬ﻓﺮﺽ ﮐﻨ ﻴﺪ ﻳﮏ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺍﺭﺍﻱ ﺩﻭ ﺣﺎﻟﺖ ‪ A‬ﻭ ‪ B‬ﺑﺎﺷﺪ‪ .‬ﮐﺎﻻﻱ ‪ A‬ﺩﺍﺭﺍﻱ‬
‫ﺍﺭﺯﺵ ‪ ۱‬ﺩﺭ‬
‫ﺍﻭﻟ ﻴﻪﻱ‬
‫ﻭ ﺍﺭﺯﺵ ﺻﻔﺮ ﺩﺭ‬
‫‪ ،‬ﺍﮔﺮ ﺍﻭ‬
‫ﻭﺍﺣﺪ ﺍﺯ ‪ A‬ﻭ‬
‫‪+ m (1 − p ) − n p‬‬
‫ﺑﻮﺩﻩ ﻭ ﺑﺮﺍﻱ ﮐﺎﻻﻱ ‪ B‬ﺍﻳ ﻦ ﻣﻘﺎﺩﻳﺮ ﻣﻌﮑﻮﺱ ﺍﺳﺖ‪ .‬ﺑﺮﺍﻱ ﻋﺎﻣﻞ ‪ i‬ﺑﺎ ﻣﻮﺟﻮﺩﻱ‬
‫ﻭﺍﺣﺪ ﺍﺯ ‪ B‬ﺭﺍ ﺩﺭ ﺍﺧﺘﻴﺎﺭ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ ،‬ﺩﺍﺭﺍﻳﻲ ﻧﻬﺎﻳﻲ ﺁﻥ ﺩﺭ‬
‫ﻭ ‪+ n (1 − p ) − m p‬‬
‫ﺑﺎﺷﺪ‪ ،‬ﻣﻲﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺍﻳﻦ ﺩﺍﺭﺍﻳﻲ ﺑﺮﺍﺑﺮ ﺩﺍﺷﺘﻦ ‪− n‬‬
‫ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﺑﺮﺍﻱ ﻫﺮ ﻋﺎﻣﻞ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﻣﺘﻐ ﻴﺮ‬
‫‪−‬‬
‫=‬
‫ﺩﺭ‬
‫ﺑﺮﺍﺑﺮ ﺑﺎ‬
‫ﺧﻮﺍﻫﺪ ﺑﻮﺩ‪ .‬ﺩﺭ ﺻﻮﺭﺗ ﻲ ﮐﻪ ‪> n‬‬
‫ﺍﺯ ‪ A‬ﻭ ﺻﻔﺮ ﻭﺍﺣﺪ ﺍﺯ ‪ B‬ﺍﺳﺖ ‪ .‬ﺩﺭ ﻧﺘﻴﺠﻪ ﻣﺴﺌﻠﻪﻱ‬
‫ﻭ ﺩﺍﺭﺍﻳﻲ ﻧﻬﺎﻳﻲ )‬
‫‪(1 −‬‬
‫‪+‬‬
‫ﺩﺭ‬
‫ﻭ‬
‫‪5‬‬
‫‪Risk Neutral‬‬
‫‪Risk Aversion‬‬
‫‪7‬‬
‫‪Constant Relative Risk Aversion‬‬
‫‪6‬‬
‫‪−q p‬‬
‫ﺩﺭ‬
‫ﺻﻮﺭﺕ ﺯﻳﺮ ﺑﺎﺷﺪ‪.‬‬
‫ﻣﺪﻝ ﮐﺮﺩ‪ .‬ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ﺑﺮﺍﻱ )∞ ‪ θ ∈ (−∞,‬ﻋﺎﻣﻞ ‪ i‬ﺩﺍﺭﺍﻱ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﻱ ‪ CRRA‬ﺑﻪ‬
‫ﺍﮔﺮ ﻋﺎﻣﻞ ‪ i‬ﺩﺍﺭﺍﻱ ﺑﺎﻭﺭ‬
‫ﺍﻧﺘﺨﺎﺏ‬
‫‪≠1‬‬
‫‪=1‬‬
‫‪if θ ≠ 1‬‬
‫‪if θ = 1‬‬
‫ﺑﺮﺍﻱ ﺣﺎﺩﺙ ﺷﺪﻥ‬
‫‪ln w‬‬
‫ﻭ ﺑﺎﻭﺭ‬
‫ﺍﺳﺖ ﮐﻪ ﻋﺒﺎﺭﺕ ﺯﻳﺮ ﺩﺍﺭﺍﻱ ﺑﻴﺸﺘﺮﻳﻦ ﻣﻘﺪﺍﺭ ﮔﺮﺩﺩ‪.‬‬
‫‪) ,‬‬
‫‪(1 −‬‬
‫‪),‬‬
‫)‬
‫‪−‬‬
‫‪)(1 −‬‬
‫(‪+‬‬
‫‪−‬‬
‫(‬
‫)‬
‫= ) ‪(w‬‬
‫‪ 1 −‬ﺑﺮﺍﻱ ﺭﺥ ﺩﺍﺩﻥ‬
‫‪) +‬‬
‫‪(1 −‬‬
‫ﺑﺎ ﺣﻞ ﺍﻳﻦ ﻣﻌﺎﺩﻟﻪ ﺩﺭ ]‪ [٣‬ﻧﺘﺎﻳﺞ ﺯﻳﺮ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ‪ (۱ :‬ﺩﺭ ﺣﺎﻟﺘﻲ ﮐﻪ‬
‫‪(1 −‬‬
‫‪+‬‬
‫‪+‬‬
‫ﺑﺎﺷﺪ‪ ،‬ﺁﻧﮕﺎﻩ ﻣﺴﺌﻠﻪﻱ ﻋﺎﻣﻞ ‪i‬‬
‫= ]) ‪,‬‬
‫( [‬
‫ﺑﺮﺍﺑﺮ ‪ ۱‬ﺑﺎﺷﺪ‪ ،‬ﻳﻌﻨﻲ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﻱ ﺑﻪ ﺻﻮﺭﺕ‬
‫ﻟﮕﺎﺭﻳﺘﻤﻲ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﻮﺩ‪ ،‬ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺑﺮﺍﺑﺮ ﻣﻴﺎﻧﮕﻴﻦ ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﺍﺳﺖ ﻳﻌﻨﻲ ] [ =‬
‫∗‬
‫ﺑﻮﺩﻩ ﻭ‬
‫∗‬
‫ﺑﺮﺍﺑﺮ‬
‫‪ µ‬ﻣﻴﺎﻧﮕﻴﻦ ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭ ﺍﻓﺮﺍﺩ ﺍﺳﺖ ‪ (۲ .‬ﺩﺭ ﺻﻮﺭﺗﻲ ﮐﻪ ﻫﻤﻪﻱ ﻋﺎﻣﻞﻫﺎ ﺩﺍﺭﺍﻱ ﺗﺎﺑﻊ ﺳﻮﺩﻣﻨﺪﻱ ‪ CRRA‬ﻳﮑﺴﺎﻧﻲ ﺑﺎﺷﻨﺪ‪،‬‬
‫ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭﻫﺎ ﻭ ﺳﺮﻣﺎﻳﻪﻫﺎ ﺍﺯ ﻳﮑﺪﻳﮕﺮ ﻣﺴﺘﻘﻞ ﺑﺎﺷﺪ ﻭ ﺗﻮﺯﻳﻊ ﺑﺎﻭﺭ ﻋﺎﻣﻞﻫﺎ ﺣﻮﻝ ﻣﻴ ﺎﻧﮕﻴﻦ ﺁﻥ ‪ µ‬ﻣﺘﻘﺎﺭﻥ ﺑﺎﺷﺪ‪ ،‬ﻣﻲﺗﻮﺍﻥ‬
‫ﺛﺎﺑﺖ ﮐﺮﺩ‪ :‬ﺑﺮﺍﻱ )‪∈ (−∞, 0] ∪ (1 2 , 1‬‬
‫( ‪ .‬ﺑﺮﺍﻱ ‪ θ > 1‬ﻗ ﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺩﺭ ﺑﺎﺯﻩﻱ ) ‪ (0,‬ﻗﺮﺍﺭ ﺩﺍﺭﺩ ﺩﺭ ﺻﻮﺭﺗ ﻴﮑﻪ ‪< 1 2‬‬
‫‪,1 2 ,‬‬
‫) ‪,1 2‬‬
‫ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟ ﻲ‬
‫ﻭ ﺩﺭ ﺑﺎﺯﻩﻱ )‪ ( , 1‬ﻗﺮﺍﺭ ﺩﺍﺭﺩ ﺍﮔﺮ ‪. > 1 2‬‬
‫∗‬
‫ﺑ ﻴﻦ ‪ µ‬ﻭ ‪ 1 2‬ﻗﺮﺍﺭ ﺩﺍﺭﺩ ‪ .‬ﻳﻌﻨﻲ ∈‬
‫∗‬
‫‪ ٣‬ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﺷﺮﻁﺑﻨﺪﻱ‪٨‬‬
‫ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﺷﺮﻁﺑﻨﺪﻱ ﺑﺮﺍﻱ ﺭﻓﻊ ﻣﺸﮑﻼﺕ ﻣﻄﺮﺡ ﺩﺭ ﺯﻣﻴﻨﻪ ﺗﺤﻠﻴﻞ ﭘﻴﭽﻴﺪﮔﻲ ﺗﻌﺎﺩﻝ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﻃﺮﺍﺣﻲ‬
‫ﺷﺪﻩﺍﻧﺪ ‪ .‬ﺍﻳﻦ ﻣﮑﺎﻧﻴﺰﻡﻫﺎ ﺑﻪ ﺳﻪ ﺩﺳﺘﻪ ﮐﻠﻲ ﺷﺮﻁﺑﻨﺪﻱ ﺯﻳﺮﻣﺠﻤﻮﻋﻪﺍﻱ ‪ ،٩‬ﺷﺮﻁﺑﻨﺪﻱ ﺩﻭﺗﺎﻳﻲ ‪ ١٠‬ﻭ ﺷﺮﻁﺑﻨﺪﻱ ﺻﻔﺮﻭﻳﮏ ‪١١‬‬
‫ﺗﻘﺴﻴﻢ ﻣﻲﺷﻮﻧﺪ‪.‬‬
‫ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻧﻮﻉ ﺧﺎﺻﻲ ﺍﺯ ﺗﺮﮐﻴﺐﺷﻨﺎﺳﻲ ‪ ١٢‬ﺭﻗ ﺒﺎﻱ ﻣﻮﺟﻮﺩ ﺩﺭ ﺑﺎﺯﺍﺭ ﮐﻪ ﺧﺮﻭﺟﻲ ﺁﻥ ﺭﺩﻩﺑﻨﺪﻱ ‪ n‬ﺭﻏﻴﺐ‬
‫ﮐﺎﻧﺪﻳﺪ ﻣﻲﺑﺎﺷﺪ‪ ،‬ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﮐﺎﻧﺪﻳﺪﻫﺎ ﺑﻪ ﺻﻮﺭﺕ } ‪= {1, … ,‬‬
‫ﺗﻌﺮﻳﻒ ﺷﺪﻩ ﺍﺳﺖ‪ .‬ﺍﺯ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﻣﻲﺗﻮﺍﻥ‬
‫ﺑﻪ ﻣﻨﻈﻮﺭ ﻧﻤﺎﻳﺶ ﻣﺠﻤﻮﻋﻪ ﻣﮑﺎﻥﻫﺎ ﻧﻴﺰ ﺍﺳﺘﻔﺎﺩﻩ ﮐﺮﺩ ‪ .‬ﻫﻤﭽﻨﻴﻦ ﻓﺮﺽ ﻣﻲﮐﻨﻴﻢ ‪ Ω‬ﻣﺠﻤﻮﻋﻪ ﺗﻤﺎﻡ ﺟﺎﻳﮕﺸﺖﻫﺎ ﺑﺮ ﺭﻭﻱ‬
‫ﺍﺳﺖ ‪ .‬ﺧﺮﻭﺟﻲ ‪ σ ∈ Ω‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﮏ ﺳﻨﺎﺭﻳﻮ ﺗﻔﺴﻴﺮ ﻣﻲﺷﻮﺩ ﮐﻪ ﺩﺭ ﺁﻥ ﻫﺮ ﮐﺎﻧﺪﻳﺪ ﺩﺭ ﻣﮑﺎﻥ ) (‪ σ‬ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﺩ‪.‬‬
‫ﺍﺯ ﺯﺑﺎﻥﻫﺎﻱ ﺷﺮﻁﺑﻨﺪﻱ ﭘﻴﺸﻨﻬﺎﺩ ﺷﺪﻩ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺷﺮﻁﺑﻨﺪﻱ ﺯﻳﺮﻣﺠﻤﻮﻋﻪﺍﻱ ﻭ ﺷﺮﻁﺑﻨﺪﻱ ﺩﻭﺗﺎﻳﻲ ﺍﺷﺎﺭﻩ ﮐﺮﺩ‪ .‬ﻣﺴﺌﻠﻪﺍ ﻱ‬
‫ﮐﻪ ﺩﺭ ﺍﻳ ﻨﺠﺎ ﺑﺮﺍﻱ ﺻﺎﺣﺐ ﺑﺎﺯﺍﺭ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺑﻴﻦ ﭘﻴﺸﻨﻬﺎﺩﻫﺎﻳﻲ ﮐﻪ ﺑﺎ ﻗﻴﻤﺖﻫﺎﻱ ﻣﺘﻔﺎﻭﺕ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺍﻭ‬
‫‪8‬‬
‫‪Betting‬‬
‫‪Subset betting‬‬
‫‪10‬‬
‫‪Pair betting‬‬
‫‪11‬‬
‫‪Boolean‬‬
‫‪12‬‬
‫‪Combinatorics‬‬
‫‪9‬‬
‫ﺑﻪ ﭼﻪ ﻧﺤﻮﻱ ﺁﻧﻬﺎ ﺭﺍ ﻗﺒﻮﻝ ﻳﺎ ﺭﺩ ﮐﻨﺪ ﺗﺎ ﺑﺎ ﺍﻳﻦ ﺍﻧﺘﺨﺎﺏﻫﺎ ﺭﻳﺴﮑﻲ ﻣﺘﻘﺒﻞ ﻧﺸﺪﻩ ﺑﺎﺷﺪ‪ .‬ﺗﺤﻠﻴﻞ ﭘﻴﭽﻴﺪﮔﻲ ﻣﺴﺌﻠﻪ ﺗﻄﺎﺑﻖ‬
‫ﺍﻭﻟﻮﻳﺖ ‪ ١٣‬ﺑﺮﺍﻱ ﺻﺎﺣﺒﺎﻥ ﺑﺎﺯﺍﺭﻫﺎ ﻭ ﺁﻧﺎﻟﻴﺰﻫﺎﻱ ﻣﺮﺑﻮﻃﻪ ﺩﺭ ]‪ [٤‬ﺁﻣﺪﻩ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﺑﻪ ﻃﻮﺭ ﻣﺨﺘﺼﺮ ﺑﻪ ﺍﻳﻦ ﺭﻭﺵ‪-‬‬
‫ﻫﺎﻱ ﺷﺮﻁﺑﻨﺪﻱ ﺍﺷﺎﺭﺍﺗﻲ ﺩﺍﺭﻳﻢ‪.‬‬
‫‪ ١.٣‬ﺷﺮﻁﺑﻨﺪﻱ ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪﺍﻱ‬
‫ﺭﻭﺵ ‪ Hanson‬ﺑﺮﺍﻱ ﺻﺎﺣﺒﺎﻥ ﺑﺎﺯﺍﺭﻫﺎ ﺑﻪ ﻳﮏ ﺭﻭﺵ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺗﺒﺪﻳﻞ ﺷﺪﻩ ﺍﺳﺖ ]‪ .[٥‬ﺭﻭﺵ ‪ ١٤ LMSR‬ﺩﺍﺭﺍﻱ ﻣﺰﺍﻳﺎﻱ‬
‫ﺯﻳﺎﺩﻱ ﺍﺳﺖ ﻭ ﺗﻮﺳﻂ ﺷﺮﮐﺖﻫﺎﻱ ﻣﺘﻌﺪﺩﻱ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﺩ‪.‬‬
‫ﺍﻓﺮﺍﺩ ﺷﺮﮐﺖ ﮐﻨﻨﺪﻩ ﺑﺮﺍﻱ ﺷﺮﻁﺑﻨﺪﻱ ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺩﺭ ﺑﺎﺯﺍﺭ ‪ LMSR‬ﺑﻪ ﺩﻭ ﻃﺮﻳﻖ ﺷﺮﻁﺑﻨﺪﻱ ﻣﻲﮐﻨﻨﺪ‪:‬‬
‫·‬
‫ﺑﺮ ﺍﺳﺎﺱ ﻣﻮﻗﻌﻴﺖ‬
‫·‬
‫ﺑﺮ ﺍﺳﺎﺱ ﮐﺎﻧﺪﻳﺪﻫﺎ‬
‫ﺩﺭ ﺭﻭﺵ ﺍﻭﻝ ﻗﺎﻟﺐ ﮐﻠﻲ ﺍﻭﺭﺍﻕ ﺷﺮﻁﺑﻨﺪﻱ ﺑﻪ ﺻﻮﺭﺕ ⟩‪ ⟨i|Φ‬ﺍﺳﺖ ﮐﻪ ‪ Φ‬ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻣﻮﻗﻌﻴﺖﻫﺎ ﺍﺳﺖ‪ .‬ﺩﺭ‬
‫ﺍﻳﻦ ﺷﺮﺍﻳﻂ ﺍﮔﺮ ﮐﺎﻧﺪﻳﺪﺍﻱ ‪ i‬ﺩﺭ ﻣﮑﺎﻥ )ﻫﺎﻱ( ‪ Φ‬ﻗﺮﺍﺭ ﮔﻴﺮﺩ ﻣﻲﺑﺎﻳﺴﺖ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﺷﻮﺩ ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻨﺼﻮﺭﺕ ﻫﻴﭻ‬
‫ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﻧﻤﻲﺷﻮﺩ‪.‬‬
‫ﺩﺭ ﺣﺎﻟﺖ ﺩﻭﻡ ﮐﻪ ﺁﻥ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ⟩ │‪ ⟨Ψ‬ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ ﮐﻪ ‪ Ψ‬ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﮐﺎﻧﺪﻳﺪﻫﺎ ﺍﺳﺖ ﺍﮔﺮ ﻫﺮﮐﺪﺍﻡ ﺍ ﺯ‬
‫ﮐﺎﻧﺪﻳﺪﻫﺎﻱ ‪ Ψ‬ﺩﺭ ﻣﻮﻗﻌﻴﺖ ‪ j‬ﻗﺮﺍﺭ ﮔﻴﺮﻧﺪ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﻣﻲﺷﻮﺩ ﻭ ﺩﺭﻏﻴﺮ ﺍﻳﻨﺼﻮﺭﺕ ﻫﻴﭻ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﻧﻤﻲﺷﻮﺩ‪.‬‬
‫ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﺩﺭ ﻣﻮﺭﺩ ﺷﺮﻁﺑﻨﺪﻱ ﺍﺳﺐﻫﺎ ﻧﻴﺰ ﺑﻪ ﺩﻭ ﺻﻮﺭﺕ ﻣﻲﺗﻮﺍﻥ ﻋﻤﻞ ﮐﺮﺩ‪ .‬ﺍﻭﻝ ﺍﻳﻨﮑﻪ ﺍﺳﺐ ‪ a‬ﺩﺭ ﻳﮑﻲ ﺍﺯ‬
‫ﻣﮑﺎﻥﻫﺎﻱ ﺍﻭﻝ‪ ،‬ﺳﻮﻡ ﻭ ﻳﺎ ﭘﻨﺠﻢ ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﺩ ﻭ ﻳﺎ ﺑﻪ ﺻﻮﺭﺗﻲ ﺩﻳﮕﺮ ﻣﺜﻼ ﻳﮑﻲ ﺍﺯ ﺍﺳﺐﻫﺎﻱ ‪ b‬ﻳﺎ ‪ c‬ﺩﺭ ﺭﺗﺒﻪ ﺩﻭﻡ ﻗﺮﺍﺭ‬
‫ﮔﻴﺮﻧﺪ‪ .‬ﺩﺭ ﺣﺎﻟﺖ ﮐﻠﻲ ﻣﻲﺗﻮﺍﻧﻴﻢ ﻫﺮ ﺩﻭ ﻧﻮﻉ ﺷﺮﻁﺑﻨﺪﻱ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ > < ﻧﻤﺎﻳﺶ ﺩﻫﻴﻢ ‪.‬‬
‫ﻣﻲﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺣﺘﻲ ﺩﺭ ﻳﮏ ﺑﺎﺯﺍﺭ ﺳﺎﺩﻩ ﻓﺮﺍﻫﻢ ﺁﻭﺭﺩﻥ ﻗﻴﻤﺖ ﺷﺮﻁﺑﻨﺪﻱﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﻟﺤﻈﻪﺍﻱ‪ ،‬ﺍﺭﺯﻳﺎﺑﻲ ﺗﺎﺑﻊ‬
‫ﻗﻴﻤﺖ ﻭ ﻳﺎ ﻣﺤﺎﺳﺒﻪﻱ ﭘﺮﺩﺍﺧﺖﻫﺎ ﻣﺴﺌﻠﻪﺍﻱ ‪ #P-Hard‬ﺍﺳﺖ ]‪.[٥‬‬
‫‪ ۲.۳‬ﺷﺮﻁﺑﻨﺪﻱ ﺩﻭﺗﺎﻳﻲ‬
‫ﺩﺭ ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﺷﺮﻁﺑﻨﺪﻱ ﺯﻳﺮ ﻣﺠﻤﻮﻋﻪﺍﻱ ﮐﻪ ﺩﺭ ﺁﻥ ﺍﻓﺮﺍﺩ ﺑﺮ ﺍﺳﺎﺱ ﻣﻮﻗﻌﻴﺖ ﮐﺎﻧﺪﻳﺪﻫﺎ ﺷﺮﻁﺑﻨﺪﻱ ﻣﻲﮐﺮﺩﻧﺪ ﺩﺭ‬
‫ﺷﺰﻁﺑﻨﺪﻱ ﺩﻭﺗﺎﻳﻲ ﺍﻓﺮﺍﺩ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺑﺮﺍﺳﺎﺱ ﻣﻮﻗﻌﻴﺖ ﻳﮏ ﮐﺎﻧﺪﻳﺪﺍ ﻧﺴﺒﺖ ﺑﻪ ﮐﺎﻧﺪﻳﺪﺍﻱ ﺩﻳﮕﺮ)ﻣﻮﻗﻌﻴﺖ ﻧﺴﺒﻲ( ﺷﺮﻁﺑﻨﺪﻱ‬
‫ﮐﻨﻨﺪ‪ .‬ﺑﻪ ﻋﻼﻭﻩ ﺍﻭﺭﺍﻕ ﺷﺮﻁﺑﻨﺪﻱ ﺩﺭ ﻗﺎﻟﺐ 〉 > 〈 ﺧﺮﻳﺪ ﻭ ﻓﺮﻭﺵ ﻣﻲﺷﻮﻧﺪ ﮐﻪ ﺩﺭ ﺁﻥ ‪ i‬ﻭ ‪ j‬ﮐﺎﻧﺪﻳﺪﺍﻫﺎ ﻫﺴﺘﻨﺪ‪ .‬ﺩﺭ ﺍﻳﻦ‬
‫ﺷﺮﺍﻳﻂ ﺍﮔﺮ ﮐﺎﻧﺪﻳﺪﺍﻱ ‪ i‬ﺩﺭ ﻣﮑﺎﻧﻲ ﺑﺎﻻﺗﺮ ﺍﺯ ﮐﺎﻧﺪﻳﺪﺍﻱ ‪ j‬ﻗﺮﺍﺭ ﮔﻴﺮﺩ ﻣﻲﺑﺎﻳﺴﺖ ﭘﻮﻝ ﭘﺮﺩﺍﺧﺖ ﺷﻮﺩ ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻦ ﺻﻮﺭﺕ‬
‫ﻫﻴﭻ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﻧﻤﻲﺷﻮﺩ ‪.‬‬
‫‪Order matching‬‬
‫‪Logarithmic Market Scoring Rule‬‬
‫‪14‬‬
‫‪13‬‬
‫ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻣﻲﺗﻮﺍﻥ ﺑﺮ ﺭﻭﻱ ﻭﻗﺎﻳﻌﻲ ﻧﻈﻴﺮ‪ :‬ﺍﺳﺐ ‪ a‬ﺑﺮ ﺍﺳﺐ ‪ b‬ﻏﻠﺒﻪ ﻣﻲﮐﻨﺪ ﻭ ﻣﻴﺰﺍﻥ ﺁﺭﺍﻱ ﮐﺎﻧﺪﻳﺪﺍﻱ ‪ a‬ﺍﺯ‬
‫ﮐﺎﻧﺪﻳﺪﺍﻱ ‪ b‬ﺑﻴﺸﺘﺮ ﺍﺳﺖ ﺷﺮﻁﺑﻨﺪﻱ ﻧﻤﻮﺩ‪ .‬ﻣﻲﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﻣﺤﺎﺳﺒﻪ ﻫﻤﺰﻣﺎﻥ ﻗﻴﻤﺖﻫﺎ ﺩﺭ ﻳﮏ ﺑﺎﺯﺍﺭ ‪ LMSR‬ﺑﺮﺍﻱ‬
‫ﺷﺮﻁﺑﻨﺪﻱ ﺩﻭﺗﺎﻳﻲ ﻧﻴﺰ ‪ #P-Hard‬ﺍﺳﺖ‪.‬‬
‫‪ ٣.٣‬ﺷﺮﻁﺑﻨﺪﻱ ﺻﻔﺮ ﻳﺎ ﻳﮏ‬
‫ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻮﻉ ﺩﻳﮕﺮﻱ ﺍﺯ ﺗﺮﮐﻴﺐﺷﻨﺎﺳﻲ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺣﺎﻟﺘﻲ ﺍﺷﺎﺭﻩ ﮐﺮﺩ ﮐﻪ ﺧﺮﻭﺟﻲﻧﻬﺎﻳﻲ ﺗﺮﮐﻴﺒﻲ ﺍﺯ ﻧﺘﺎﻳﺞ ﺭﺧﺪﺍﺩﻫﺎﻱ‬
‫ﻣﺘﻔﻮﺕ ﺍﺳﺖ‪ .‬ﻓﺮﺽ ﮐﻨﻴﺪ ‪ A‬ﻓﻀﺎﻱ ﺭﺧﺪﺍﺩﻫﺎ ﺍﺳﺖ ﻭ ﺷﺎﻣﻞ ‪ N‬ﺭﺧﺪﺍﺩ ﻣﻨﺤﺼﺮ ﺑﻪ ﻓﺮﺩ‬
‫ﺭﺧﺪﺍﺩﻫﺎ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺩﻭ ﺑﻪ ﺩﻭ ﻣﺴﺘﻘﻞ ﻭ ﻳﺎ ﻭﺍﺑﺴﺘﻪ ﺑﺎﺷﻨﺪ‪ .‬ﻓﻀﺎﻱ ﺣﺎﻟﺖ ﻣﻮﺟﻮﺩ ﺭﺍ ﺑﺎ‬
‫‪,…,‬‬
‫ﻣﻲﺑﺎﺷﺪ ﮐﻪ ﺍﻳﻦ‬
‫ﻧﺸﺎﻥ ﻣﻲ ﺩﻫﻴﻢ ﻭ ﺍﺯ ﺁﻧﺠﺎﻳﻴﮑﻪ‬
‫ﻣﺠﻤﻮﻋﻪ ﺗﻤﺎﻡ ﻧﺘﺎﻳﺞ ﻣﺸﺘﺮﮎ ‪ N‬ﺭﺧﺪﺍﺩ ﻣﻲﺑﺎﺷﺪ‪ ،‬ﺩﺍﺭﻳﻢ ‪ . | | = 2‬ﺩﺭ ﻳﮏ ﺑﺎﺯﺍﺭ ﺷﺮﻁﺑﻨﺪﻱ ﺻﻔﺮﻭﻳﮏ ﺩﺭ ﺷﺮﺍﻳﻄﻲ ﮐﻪ‬
‫ﻓﺮﻣﻮﻝ ﻣﻮﺭﺩ ﻧﻈﺮ ﺑﺮﺁﻭﺭﺩﻩ ﺷﻮﺩ ﻣﻲﺑﺎﻳﺴﺖ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﺷﻮﺩ ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻨﺼﻮﺭﺕ ﻫﻴﭻ ﭘﻮﻟﻲ ﭘﺮﺩﺍﺧﺖ ﻧﻤﻲﺷﻮﺩ ﮐﻪ‬
‫ﺍﻭﺭﺍﻕ ﺷﺮﻁﺑﻨﺪﻱ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ 〉‪〈Φ‬ﻧﺸ ﺎﻥ ﺩﺍﺩﻩ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ﻗﺮﺍﺭﺩﺍﺩ 〉 ‪ 〈 ⋁A‬ﺭﺍ ﺩﺭ ﻧﻈﺮ ﺑﮕ ﻴﺮﻳﺪ‪ ،‬ﺩﺭ ﺍﻳ ﻦ‬
‫ﺷﺮﺍﻳﻂ ﺍﮔﺮ ﺣﺪﺍﻗﻞ ﻳﮑﻲ ﺍﺯ ﻭﻗﺎﻳﻊ ‪ A‬ﻳﺎ ‪ A‬ﺍﺗﻔﺎﻕ ﺑﻴﻔﺘﺪ‪ ،‬ﺳﻮﺩ ﭘﺮﺩﺍﺧﺖ ﻣﻲﺷﻮﺩ‪.‬‬
‫ﻣﻲﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺣﺘﻲ ﺩﺭ ﺳﺎﺩﻩﺗﺮﻳﻦ ﺣﺎﻟﺖ )ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺗﺮﮐﻴﺐ ﻭ ﻳﺎ ﻋﺪﻡ ﺗﺮﮐﻴﺐ ﺩﻭ ﺭﺧﺪﺍﺩ( ﻧﻴﺰ ﻣﺤﺎﺳﺒﻪﻱ‬
‫ﻗﻴﻤﺖﻫﺎ ﺍﺭﺯﺵ ﺗﺎﺑﻊ ﻫﺰﻳﻨﻪ ﻭ ﭘﺮﺩﺍﺧﺖﻫﺎ ﺩﺭ ﻳﮏ ﺑﺎﺯﺍﺭ ﺷﺮﻁﺑﻨﺪﻱ ﺻﻔﺮﻭﻳﮏ ﺗﻮﺳﻂ ﻣﻮﺳﺲ ﺑﺎﺯﺍﺭ ‪ LMSR ١٥‬ﻫﻤﭽﻨﺎﻥ‬
‫ﺍﺯ ﻣﺮﺗﺒﻪ ‪ #P-Hard‬ﺍﺳﺖ‪.‬‬
‫‪ ٤‬ﺯﻣﻴﻨﻪﻫﺎﻱ ﮐﺎﺭﻱ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‬
‫ﺩﺭ ﺣﺎﻟﺖ ﮐﻠﻲ‪ ،‬ﺯﻣﻴﻨﻪﻫﺎﻱ ﻋﻼﻗﻪﻣﻨﺪﻱ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺩﺭ ﺳﻪ ﺩﺳﺘﻪ ﻋﻤﺪﻩ ﻃﺒﻘﻪﺑﻨﺪﻱ ﻧﻤﻮﺩ ﮐﻪ ﻋﺒﺎﺭﺗﻨﺪ‬
‫ﺍﺯ ﭘﻴﺸﮕﻮﻳﻲ‪ ،‬ﺗﺼﻤﻴﻢﮔﻴﺮﻱ ﻭ ﻣﺪﻳﺮﻳﺖ ﺭﻳﺴﮏ‪ .‬ﻣﻬﻤﺘﺮﻳﻦ ﺳﻮﺍﻟﻲ ﮐﻪ ﻣﻲﺗﻮﺍﻥ ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﻣﻄﺮﺡ ﻧﻤﻮﺩ ﺍﻳﻦ‬
‫ﺍﺳﺖ ﮐﻪ ﭼﮕﻮﻧﻪ ﺁﻥﻫﺎ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺍﻧﺘﻈﺎﺭﺍﺕ ﺯﻳﺎﺩﻱ ﺭﺍ ﮐﻪ ﺩﺭ ﻣﻮﺭﺩ ﺁﻥﻫﺎ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺑﺮﺁﻭﺭﺩﻩ ﻧﻤﺎﻳﻨﺪ‪ .‬ﺩﺭ ﺍﻳﻦ ﺭﺍﺳﺘﺎ‪،‬‬
‫ﻣﻮﺍﺭﺩﻱ ﺭﺍ ﮐﻪ ﻫﻤﻮﺍﺭﻩ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﻄﺎﻟﺐ ﻣﻬﻢ ﻭ ﻗﺎﺑﻞ ﺑﺮﺭﺳﻲ ﺩﺭ ﺍﻳﻦ ﺣﻮﺯﻩ ﺑﻪ ﺷﻤﺎﺭ ﻣﻲﺁﻳﻨﺪ ﻣﻲﺗﻮﺍﻥ ﺩﺭ ﭘﻨﺞ ﺩﺳﺘﻪ ﮐﻠﻲ‬
‫ﻃﺒﻘﻪﺑﻨﺪﻱ ﻧﻤﻮﺩ ]‪ [١‬ﮐﻪ ﻋﺒﺎﺭﺗﻨﺪ ﺍﺯ‪:‬‬
‫·‬
‫ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮﺍﻥ ﺳﻔﺎﺭﺷﺎﺕ ﺍﻓﺮﺍﺩ ﻏﻴﺮﻣﻄﻠﻊ ﺭﺍ ﺟﺬﺏ ﮐﺮﺩ؟ ﻣﺸﮑﻞ ﺍﺻﻠﻲ ﺩﺭ ﺑﻴﺸﺘﺮ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‬
‫ﺟﺬﺏ ﮐﺎﻓ ﻲ ﺳﻔﺎﺭﺷﺎﺕ ﺍﻓﺮﺍﺩ ﻏﻴﺮﻣﻄﻠﻊ ﺍﺳﺖ‪ .‬ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺑﺮﺍﻱ ﺩﺍﺩﻥ ﻧﺘ ﻴﺠﻪﻱ ﺩﺭﺳﺖ ﻧﻴﺎﺯ ﺑﻪ ﺑﺎﻭﺭ‬
‫ﺍﻓﺮﺍﺩ ﻏﻴﺮﻣﻄﻠﻊ ﺩﺍﺭﻧﺪ‪ .‬ﺗﻨﻬﺎ ﺑﺎ ﺗﮑﻴﻪ ﺑﻪ ﻧﻈﺮﺍﺕ ﺍﻓﺮﺍﺩ ﻣﻄﻠﻊ ﻧﻤﻲﺗﻮﺍﻥ ﭘﻴﺶﺑ ﻴﻨﻲ ﺩﺭﺳﺘﻲ ﺍﺯ ﻭﺿﻌﻴﺖ ﺑﺎﺯﺍﺭ ﺑﻪ‬
‫ﺩﺳﺖ ﺁﻭﺭﺩ‪ .‬ﺑﺮﺍﻱ ﺟﺬﺏ ﺳﻔﺎﺭﺷﺎﺕ ﺍﻓﺮﺍﺩ ﻧﺎﻣﻄﻠﻊ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﺍﻧﮕﻴﺰﻩﻫﺎﻳﻲ ﻣﺎﻧﻨﺪ ﺳﺮﮔﺮﻣﻲ ﻳﺎ ﺍﻳﺠﺎﺩ ﺍﻋﺘﻤﺎﺩ‬
‫ﺑﻴﺸﺘﺮ ﺍﺳﺘﻔﺎﺩﻩ ﻧﻤﻮﺩ ﺍﻣﺎ ﺍﻳﻦ ﺭﻭﺵﻫﺎ ﺍﮐﺜﺮﺍ ﻏﻴﺮ ﺍﻗﺘﺼﺎﺩﻱ ﻫﺴﺘﻨﺪ‪.‬‬
‫‪Market maker‬‬
‫‪15‬‬
‫·‬
‫ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮﺍﻥ ﻋﻼﻗﻪﻣﻨﺪﻱ ﺍﻳﺠﺎﺩ ﺷﺪﻩ ﺭﺍ ﺑﻪ ﻗﺎﻟﺐ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺭ ﺁﻭﺭﺩ؟ ﻳﮑﻲ ﺍﺯ ﻣﺸﮑﻼﺕ ﺍﺳﺎﺳﻲ ﺩﺭ‬
‫ﻃﺮﺍﺣ ﻲ ﻣﮑﺎﻧﻴﺰﻡ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺍﮐﺜﺮﺍ ﻧﻤﻲﺗﻮﺍﻥ ﻋﻼﺋﻖ ﺍﻓﺮﺍﺩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻗﺮﺍﺭﺩﺍﺩ‬
‫ﻧﻮﺷﺖ ‪ .‬ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﻣﻮﺍﺭﺩ ﻧﻤﻲﺗﻮﺍﻥ ﻋﻼﺋﻖ ﺭﺍ ﺑﺮ ﺍﺳﺎﺱ ﻣﻌﻴﺎﺭﻫﺎﻳﻲ ﺑﺮﺍﻱ ﺛﺒﺖ ﺩﺭ ﻗﺮﺍﺭﺩﺍﺩ ﺩﺭﺁﻭﺭﺩ ﻭ ﺍﻳﻦ‬
‫ﺍﻣﺮ ﻣﺸﮑﻼﺗﻲ ﺩﺭ ﭘﻲ ﺩﺍﺭﺩ‪.‬‬
‫·‬
‫ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮﺍﻥ ﺩﺳﺘﮑﺎﺭﻱﻫﺎ ﺭﺍ ﻣﺤﺪﻭﺩ ﮐﺮﺩ؟ ﺍﻳﻦ ﻧﮕﺮﺍﻧﻲ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﻗﻴﻤﺖﻫﺎ‬
‫ﺑﻪ ﻃﻮﺭ ﻋﻤﺪﻱ ﺩﺳﺘﮑﺎﺭﻱ ﺷﻮﻧﺪ ﻭ ﺍﻳﻦ ﺍﻣﺮ ﺩﺭ ﺷﺮﺍﻳﻄﻲ ﮐﻪ ﺑﺎ ﻗﻴﻤﺖﻫﺎﻱ ﺳﻨﮕﻴﻦ ﺳﺮ ﻭ ﮐﺎﺭ ﺩﺍﺭﻳﻢ ﺑﻴﺸﺘﺮ‬
‫ﻧﮕﺮﺍﻥ ﮐﻨﻨﺪﻩ ﺍﺳﺖ‪.‬‬
‫·‬
‫ﺁﻳﺎ ﺑﺎﺯﺍﺭﻫﺎ ﺗﻮﺍﻧﺎﻳﻲ ﻣﺪﻳﺮ ﻳﺖ ﺩﺭ ﺍﺗﻔﺎﻗﺎﺗﻲ ﺑﺎ ﺍﺣﺘﻤﺎﻝ ﺭﺧﺪﺍﺩ ﮐﻢ ﺭﺍ ﺩﺍﺭﻧﺪ؟ ﺩﺭ ﺑﺴﻴﺎﺭﻱ ﺍﺯ ﻣﻮﺍﺭﺩ‬
‫ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮﻳﻲ ﺑﺎ ﻭﻗﺎﻳﻌﻲ ﺳﺮ ﻭ ﮐﺎﺭ ﺩﺍﺭﻧﺪ ﮐﻪ ﺍﺣﺘﻤﺎﻝ ﺭﻭﻱﺩﺍﺩﻥ ﮐﻤﻲ ﺩﺍﺭﻧﺪ ‪ .‬ﺩﺭ ﻋﻤﻞ ﻣﺸﺎﻫﺪﻩ ﺷﺪﻩ‬
‫ﺍﺳﺖ ﮐﻪ ﺍﻓﺮﺍﺩ ﺩﺭ ﺗﺸﺨﻴﺺ ﺑﻴﻦ ﺍﺣﺘﻤﺎﻻﺕ ﮐﻢ ﺑﺎ ﺍﺣﺘﻤﺎﻻﺕ ﻧﺎﭼﻴﺰ ﺿﻌﻴﻒ ﻫﺴﺘﻨﺪ ﻭ ﺍﻳﻦ ﺍﻣﺮ ﻣﻤﮑﻦ ﺍﺳﺖ‬
‫ﻗﻴﻤﺖ ﺑﺎﺯﺍﺭ ﺭﺍ ﺗﺤﺖ ﺗﺎﺛﻴﺮ ﻗﺮﺍﺭ ﺩﻫﺪ‪.‬‬
‫·‬
‫ﭼﮕﻮﻧﻪ ﻣﻲﺗﻮﺍﻥ ﺑﻴﻦ ﺍﺭﺗﺒﺎﻁ ‪ ١٦‬ﻭ ﺳﺒﺐ ‪ ١٧‬ﺗﻤﺎﻳﺰ ﻗﺎﺋﻞ ﺷﺪ؟ ﺑﻌﻀﻲ ﺍﺯ ﺑﺎﺯﺍﺭﻫﺎ ﺍﺟﺎﺯﻩ ﻣﻲﺩﻫﻨﺪ ﮐﻪ ﺍﺣﺘﻤﺎﻝ‬
‫ﻭﻗﻮﻉ ﻳﮏ ﭘ ﻴﺸﺎﻣﺪ ﻣﺸﺮﻭﻁ ﺑﺮ ﻭﻗﻮﻉ ﭘ ﻴﺸﺎﻣﺪ ﺩﻳﮕﺮﻱ ﺭﺍ ﺗﺨﻤﻴﻦ ﺯﺩ ‪ .‬ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﺩﻳﺪﻱ ﺩﺭ ﻣﻮﺭﺩ ﺭﺍﺑﻄﻪﻱ‬
‫ﺍﻳﻦ ﺭﺧﺪﺍﺩﻫﺎ ﺭﺍ ﻣﻲﺩﻫﻨﺪ‪ .‬ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ﻣﺸﺨﺺ ﮐﺮﺩﻥ ﺍﻳﻨﮑﻪ ﻳﮏ ﺭﻭﻳﺪﺍﺩ ﺳﺒﺐ ﺗﻐﻴﻴﺮ ﺍﺣﺘﻤﺎﻝ ﭘ ﻴﺸﺎﻣﺪ‬
‫ﺩﻳﮕﺮ ﻣﻲﺷﻮﺩ‪ ،‬ﺳﻮﺍﻝ ﻣﻬﻤﺘﺮﻱ ﺍﺳﺖ ‪.‬‬
‫ﺑﻪ ﻣﻨﻈﻮﺭ ﺍﺭﺍﺋﻪ ﭼﺎﺭﭼﻮﺑﻲ ﺑﺮﺍﻱ ﺍﻧﺪﻳﺸﻴﺪﻥ ﺑﻪ ﺍﻳﻦ ﺳﻮﺍﻻﺕ‪ ،‬ﻣﻲﺗﻮﺍﻥ ﻣﺪﻟﻲ ﺳﺎﺩﻩ ﺍﺭﺍﺋﻪ ﻧﻤﻮﺩ ]‪ .[٦‬ﺩﺭ ﺍﻳﻦ ﻣﺪﻝ‪ ،‬ﺳﻪ‬
‫ﻧﻮﻉ ﻋﺎﻣﻞ ‪ ١٨‬ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺍﺯ ﻫﻢ ﻣﺘﻤﺎﻳﺰ ﺳﺎﺧﺖ‪ :‬ﺍﻓﺮﺍﺩ ﮐﺎﻣﻼ ﻣﻄﻠﻊ‪ ،‬ﺍﻓﺮﺍﺩ ﻏﻴﺮ ﻣﻄﻠﻊ ﻭ ﻣﻮﺳﺴﻴﻦ ﺑﺎﺯﺍﺭ ﮐﺎﻣﻼ ﺧﺒﺮﻩ‪.‬‬
‫ﺑﻪﻋﻼﻭﻩ‪ ،‬ﻣﺒﺎﺩﻻﺕ ﺩﺭ ﻳﮏ ﺑﺎﺯﺍﺭ ﭘﻴﺸﮕﻮﻳﻲ ﺩﻭﺩﻭﻳﻲ )ﺻﻔﺮ ﻭ ﻳﮏ( ﺍﻧﺠﺎﻡ ﻣﻲﺷﻮﻧﺪ‪ .‬ﺍﺣﺘﻤﺎﻝ ﺭﺧﺪﺍﺩ ﻳﮏ ﻭﺍﻗﻌﻪ ﺭﺍ ﺑﺎ ‪q‬‬
‫ﻧﻤﺎﻳﺶ ﻣﻲﺩﻫﻴﻢ؛ ﺍﻳﻦ ﺍﺣﺘﻤﺎﻝ ﺗﻮﺳﻂ ﻣﻮﺳﺴﻴﻦ ﺑﺎﺯﺍﺭ ﻣﺸﺎﻫﺪﻩ ﺷﺪﻩ ﺍﺳﺖ ‪ .‬ﺍﻓﺮﺍﺩ ﮐﺎﻣﻼ ﻣﻄﻠﻊ‪ ،‬ﺍﻃﻼﻋﺎﺕ ﻋﻤﻴﻘﻲ ﺩﺍﺭﻧﺪ ﻭ‬
‫ﻣﻲﺩﺍﻧﻨﺪ ﮐﻪ ﺁﻳﺎ ﻭﺍﻗﻌﻪ ﺭﺥ ﻣﻲﺩﻫﺪ ﻳﺎ ﺧﻴﺮ‪ .‬ﺍﻧﺘﻈﺎﺭ ﺫﻫﻨﻲ ﺍﻓﺮﺍﺩ ﻏﻴﺮ ﻣﻄﻠﻊ ﺍﺯ ﻭﺍﻗﻌﻪ‪ ،‬ﺑﺮﺍﺑﺮ ﺑﺎ ﺍﺣﺘﻤﺎﻝ ﺭﺧﺪﺍﺩ ﻭﺍﻗﻌﻪ ﺍﺳﺖ‪،q ،‬‬
‫ﺑﻪﻋﻼﻭﻩ ﻣﻘﺪﺍﺭﻱ ﻧﻮﻳﺰ ‪.η‬‬
‫ﻣﻮﻗﻌﻴﺖ ﺍﻓﺮﺍﺩ ﻣﺮﺗﺒﻂ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺭﺍﺑﻄﻪ ﺯﻳﺮ ﺑﺪﺳﺖ ﺁﻭﺭﺩ‪:‬‬
‫) ‪( −‬‬
‫)‬
‫(‬
‫=‬
‫ﮐﻪ ﺩﺭ ﺁﻥ‪ w ،‬ﻣﻴﺰﺍﻥ ﺛﺮﻭﺕ ﺁﻥﻫﺎ‪ p ،‬ﻗﻴﻤﺖ ﻭﺭﻕ ﺑﻬﺎﺩﺍﺭ ﻭ ‪ e‬ﺍﻧﺘﻈﺎﺭ ﺫﻫﻨﻲ ﺍﺯ ﺭﺧﺪﺍﺩ ﻭﺍﻗﻌﻪ ﺍﺳﺖ‪.‬‬
‫ﺩﺭ ﺣﺎﻟﺖ ﮐﻠﻲ ﻣﻲﺗﻮﺍﻥ ﮔﻔﺖ ﮐﻪ ﺍﻓﺮﺍﺩ ﻣﺮﺗﺒﻂ ﺑﺮ ﺍﺳﺎﺱ ﻣﺠﻤﻮﻉ ﺍﺣﺘﻤﺎﻝ ﺫﻫﻨﻲ )‪ ،(q‬ﺧﻄﺎﻱ ﺍﻧﺘﻈﺎﺭﺍﺕ )‪، (η‬‬
‫ﺍﻧﮕﻴﺰﻩﻫﺎﻱ ﺷﺮﻁﺑﻨﺪﻱ ﻭ ﺟﺎﺑﻪﺟﺎﻳﻲ ﺍﺭﻗﺎﻡ ‪ ،(g) ١٩‬ﻭ ﺍﻧﮕﻴﺰﻩ ﺩﺍﺩﻭﺳﺘﺪ ﺗﺎﻣﻴﻨﻲ‪ (H) ٢٠‬ﺑﻪ ﺍﻧﺠﺎﻡ ﻣﺒﺎﺩﻻﺕ ﺧﻮﺩ ﻣﻲﭘﺮﺩﺍﺯﻧﺪ‪.‬‬
‫ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳ ﻦ ﭼﺎﺭﭼﻮﺏ ﻣﻲﺗﻮﺍﻥ ﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺍﻓﺮﺍﺩ ﻣﺨﺘﻠﻒ ﺩﺭ ﭼﻪ ﺷﺮﺍﻳﻄﻲ ﺑﻪ ﺗﺠﺎﺭﺕ ﻣﻲﭘﺮﺩﺍﺯﻧﺪ‪ .‬ﻣﺜﻼ ﻳﮏ ﻓﺮﺩ‬
‫ﻧﺎﻣﻄﻠﻊ ﺯﻣﺎﻧﻲ ﺑﻪ ﺍﻧﺠﺎﻡ ﺗﺠﺎﺭﺕ ﻣﻲ ﭘﺮﺩﺍﺯﺩ ﮐﻪ ‪. = + η + g‬‬
‫‪16‬‬
‫‪Correlation‬‬
‫‪Causation‬‬
‫‪18‬‬
‫‪Agent‬‬
‫‪19‬‬
‫‪Manipulation‬‬
‫‪20‬‬
‫‪Hedge‬‬
‫‪17‬‬
‫ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﭘﻨﺞ ﻣﻮﺭﺩ ﻣﻄﺮﺡ ﺷﺪﻩ ﻭ ﺗﻮﺟﻪ ﺑﻪ ﻣﺪﻝ ﺍﺭﺍﺋﻪ ﺷﺪﻩ‪ ،‬ﻣﻲﺗﻮﺍﻥ ﺩﺭﻳﺎﻓﺖ ﮐﻪ ﻣﻮﺭﺩ ﺍﻭﻝ ﺑﻴﺸﺘﺮ ﺍﺯ ﺁﻧﮑﻪ ﺑﻪ‬
‫ﻋﻠﻢ ﺍﻗﺘﺼﺎﺩ ﺗﻮﺟﻪ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ‪ ،‬ﺑﻪ ﺑﺎﺯﺍﺭﻳﺎﺑﻲ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ‪ .‬ﺍﻳﻦ ﻣﻮﺭﺩ ﺍﺯ ﺁﻧﺠﺎﻳﻲ ﺍﺯ ﺍﻫﻤﻴﺖ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ ﮐﻪ ﺟﺬﺏ‬
‫ﺗﻘﺎﺿﺎﻫﺎﻱ ﺍﻓﺮﺍﺩ ﻏﻴﺮﻣﻄﻠﻊ‪ ،‬ﺳﺒﺐ ﺑﺮﺍﻧﮕﻴﺨﺘﻦ ﺍﻧﮕﻴﺰﻩ ﺍﻓﺮﺍﺩ ﻭ ﮔﺮﻭﻩﻫﺎﻱ ﻣﻄﻠﻊ ﺑﺮﺍﻱ ﺍﻧﺠﺎﻡ ﻣﺒﺎﺩﻻﺕ ﻣﻲﺷﻮﺩ‪ .‬ﺩﻭﻣﻴﻦ ﻣﻮﺭﺩ‬
‫ﺑﻪ ﻗﺮﺍﺭﺩﺍﺩﻫﺎ ﻣﻲﭘﺮﺩﺍﺯﺩ ﻭ ﺑﻬﺘﺮ ﺍﺳﺖ ﮐﻪ ﻃﺮﺍﺣﺎﻥ ﺑﺎﺯﺍﺭ ﺑﻪ ﺩﺭﺱﻫﺎﻱ ﺁﻣﻮﺧﺘﻪ ﺷﺪﻩ ﺗﻮﺟﻪ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ‪ .‬ﺩﺭ ﺣﺎﻟﺖ ﺳﻮﻡ‪ ،‬ﺑﺎ‬
‫ﻗﺮﺍﺭ ﺩﺍﺩﻥ ﻣﺤﺪﻭﺩﻳﺖﻫﺎﻱ ﺑﺮﺍﻱ ﺷﺮﮐﺖ ﮐﻨﻨﺪﮔﺎﻥ‪ ،‬ﺑﺎﺯﺍﺭ ﭘﻴﺶﮔﻮﻳﻲ ﺗﺒﺪﻳﻞ ﺑﻪ ﺭﺃﻱﮔﻴﺮﻱ ﻣﻲﺷﻮﺩ ﻭ ﺑﺎ ﺑﺮﺩﺍﺷﺘﻦ ﺍﻳﻦ‬
‫ﻣﺤﺪﻭﺩﻳﺖ‪ ،‬ﺗﺒﺪﻳﻞ ﺑﻪ ﻳﮏ ﻣﺰﺍﻳﺪﻩ ﻣﻲﺷﻮﺩ ﻭ ﻧﮕﺮﺍﻧﻲ ﺩﺭ ﻣﻮﺭﺩ ﺩﺳﺘﮑﺎﺭﻱ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﮐﺎﻫﺶ ﺩﺍﺩ‪ .‬ﺩﺭﻣﻮﺭﺩ ﭼﻬﺎﺭﻡ‬
‫ﺭﻭﺍﻧﺸﻨﺎﺳﺎﻥ ﻭ ﺷﺮﮐﺖﻫﺎﻱ ﺑﻴﻤﻪ ﺑﻪ ﺧﻮﺑﻲ ﻣﻲﺩﺍﻧﻨﺪ ﮐﻪ ﺑﺮﺧﻲ ﺍﺯ ﺍﻓﺮﺍﺩﻱ ﮐﻪ ﺑﺎ ﺁﻥﻫﺎ ﻣﺮﺗﺒﻂ ﻫﺴﺘﻨﺪ‪ ،‬ﺩﺭ ﻣﻮﺭﺩ ﺗﺨﻤﻴﻦ ﻭ‬
‫ﺍﺭﺯﻳﺎﺑﻲ ﺍﺣﺘﻤﺎﻻﺕ ﺟﺰﺋﻲ ﺑﻪ ﺩﺭﺳﺘﻲ ﻋﻤﻞ ﻧﻤﻲﮐﻨﻨﺪ ﻭ ﺑﺮﺧﻲ ﺍﺯ ﻣﺸﮑﻼﺕ ﺁﻥﻫﺎ ﺑﺎﻋﺚ ﺗﺎﺛﻴﺮ ﺑﺮ ﺑﻬﺎﻱ ﺑﺎﺯﺍﺭ ﭘﻴﺶﮔﻮﻳﻲ‬
‫ﻣﻲﺷﻮﻧﺪ‪ .‬ﺩﺭ ﻧﻬﺎﻳﺖ ﻣﻲﺗﻮﺍﻥ ﮔﻔﺖ ﮐﻪ ﺗﻤﺎﻳﺰ ﺑﻴﻦ ﺳﺒﺐ ﻭ ﺭﺍﺑﻄﻪ ﺑﺴﻴﺎﺭ ﻣﺸﮑﻞ ﺍﺳﺖ ﻭﻟﻲ ﺍﻳﻦ ﺍﻣﺮ ﺩﺭ ﺑﺎﺯﺍﺭ ﭘﻴﺶﮔﻮﻳﻲ ﺍﺯ‬
‫ﺍﻫﻤﻴﺖ ﺑﺴﺰﺍﻳﻲ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ‪.‬‬
‫‪ ٥‬ﻧﺘﻴﺠﻪﮔﻴﺮﻱ‬
‫ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻣﺮﻭﺭﻱ‪ ،‬ﺍﺑﺘﺪﺍ ﺑﻪ ﻣﻔﺎﻫﻴﻢ ﭘﺎﻳﻪ ﺩﺭ ﺯﻣﻴﻨﻪ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﭘﺮﺩﺍﺧﺘﻪ ﻭ ﻟﺰﻭﻡ ﺑﮑﺎﺭﮔﻴﺮﻱ ﺁﻥﻫﺎ ﺭﺍ ﺩﺭ ﺣﻮﺯﻩﻫﺎﻱ‬
‫ﮐﺎﺭﻱ ﻣﺨﺘﻠﻒ ﺑﻴﺎﻥ ﮐﺮﺩﻳﻢ ‪ .‬ﺩﺭ ﺍﺩﺍﻣﻪ ﺿﻤﻦ ﺑﻴﺎﻥ ﻃﺒﻘﻪﺑﻨﺪﻱﻫﺎﻱ ﻣﺨﺘﻠﻒ ﻣﻮﺟﻮﺩ ﺩﺭ ﺍﻳﻦ ﺯﻣﻴﻨﻪ ﺑﻪ ﭼﻨﺪ ﻧﻤﻮﻧﻪ ﺍﺯ‬
‫ﮐﺎﺭﺑﺮﺩﻫﺎﻱ ﻣﺘﻨﻮﻉ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪ‪ .‬ﭘﺲ ﺍﺯ ﺁﻥ ﺑﻪ ﺗﺤﻘﻴﻘﺎﺗﻲ ﮐﻪ ﺑﺮﺍﻱ ﺗﻌﻴﻴﻦ ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘﻴﺸﮕﻮ‬
‫ﺍﻧﺠﺎﻡ ﺷﺪﻩ‪ ،‬ﺍﺷﺎﺭﻩ ﺷﺪ ﻭ ﻣﺸﺨﺺ ﮔﺮﺩﻳﺪ ﮐﻪ ﺑﺎ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺷﺮﺍﻳﻄﻲ ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﻗﻴﻤﺖ ﺗﻌﺎﺩﻟﻲ ﺑﺮﺍﺑﺮ ﻣﻴﺎﻧﮕﻴﻦ‬
‫ﻧﻈﺮﺍﺕ ﺍﻓﺮﺍﺩ ﺍﺳﺖ‪ .‬ﭘﺲ ﺍﺯ ﺁﻥ ﺑﻪ ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﻃﺮﺍﺣﻲ ﺍﻳﻦ ﺑﺎﺯﺍﺭﻫﺎ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪﻩ ﻭ ﻣﺸﺨﺺ ﮔﺮﺩﻳﺪ ﮐﻪ ﺍﻧﺘﺨﺎﺏ‬
‫ﭘﻴﺸﻨﻬﺎﺩﻫﺎ ﺑﺮﺍﻱ ﺻﺎﺣﺐ ﺑﺎﺯﺍﺭ ﺩﺭ ﺷﺮﺍﻳﻂ ﮔﻔﺘﻪ ﺷﺪﻩ ﮐﺎﺭﻱ ﺳﺨﺖ ﺍﺳﺖ‪ .‬ﺩﺭ ﺍﻧﺘﻬﺎ ﻧ ﻴﺰ ﺑﻪ ﺑﻴﺎﻥ ﺗﻌﺪﺍﺩﻱ ﺍﺯ ﺳﻮﺍﻻﺕ ﺍﺳﺎﺳ ﻲ‬
‫ﭘﻴﺶﺭﻭ ﺩﺭ ﺑﺎﺯﺍﺭﻫﺎﻱ ﭘ ﻴﺸﮕﻮ ﭘﺮﺩﺍﺧﺘﻴﻢ‪.‬‬
‫‪ ٥‬ﻣﻨﺎﺑﻊ‬
‫‪1. Wolfers, Justin and Eric Zitzewitz (2004), “Prediction Markets,” Journal of Economic‬‬
‫‪Perspectives, 18(2).‬‬
‫‪2. Manski, Charles (2006), “Interpreting the Predictions of Prediction Markets”, Economic‬‬
‫‪Letters, 91(3), 425-429.‬‬
‫‪3. Gjerstad, Steven (2005), “Risk Aversion, Beliefs, and Prediction Market Equilibrium”,‬‬
‫‪mimeo University of Arizona.‬‬
‫‪4. Chen, y., Fortnow, L., Lambert, N., Pennock M.D., Wortman, J.: Complexity Combinatorial‬‬
‫‪Market Makers, in EC'08, 190-199, 2008.‬‬
‫‪5. R. D. Hanson. Combinatorial information marketdesign. Information Systems Frontiers,‬‬
‫‪(1):105–119, 2003.‬‬
‫‪6. Wolfers, J., Zitzewitz, E.: Five Open Question about Prediction Markets, in federal reserve‬‬
‫‪bank of san Francisco working paper. January 2006.‬‬