ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﻫﺎ 1 ﻣﺤﻤﺪ ﺍﻣﻴﻦ ﺑﺪﻳﻊﺯﺍﺩﮔﺎﻥ [email protected] ﭼﮑﻴﺪﻩ ﻳﮑﻲ ﺍﺯ ﻣﺴﺎﺋﻠﻲ ﮐﻪ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ٢ﻧﻘﺶ ﺩﺍﺭﺩ ،ﻧﺤﻮﻩ ﺗﻮﺯﻳﻊ ﺳﻮﺩ ﻳﺎ ﻫﺰﻳﻨﻪ ﺑﺎﺯﻱ ﺑﻴﻦ ﺍﻓﺮﺍﺩﻱ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﺁﻥ ﺷﺮﮐﺖ ﻣﻲﮐﻨﻨﺪ .ﺍﻳﻦ ﺗﻮﺯﻳﻊ ﺑﺎﻳﺪ ﺑﻪ ﮔﻮﻧﻪﺍﻱ ﺑﺎﺷﺪ ﮐﻪ ﻋﻼﻭﻩ ﺑﺮ ﺁﻧﮑﻪ ﺧﻮﺍﺳﺘﻪﻫﺎﻱ ﻫﺮ ﻓﺮﺩ ﺭﺍ ﺗﺎ ﺣﺪ ﻣﻤﮑﻦ ﺑﺮﺁﻭﺭﺩﻩ ﻣﻲﮐﻨﺪ ،ﺧﻮﺍﺳﺘﻪﻫﺎﻱ ﺟﻤﻌﻲ ﺭﺍ ﻧﻴﺰ ﺩﺭﺑﺮﺑﮕﻴﺮﺩ ﻭ ﻫﻤﭽﻨﻴﻦ ﻋﺎﺩﻻﻧﻪ ﺑﺎﺷﺪ. ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﻣﻔﻬﻮﻡ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﻫﺎ ﻣﻌﺮﻓﻲ ﻣﻲﺷﻮﺩ ﻭ ﻧﻘﺶ ﺁﻥ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺑﻴﺎﻥ ﻣﻲﮔﺮﺩﺩ .ﻫﻤﭽﻨﻴﻦ ﻭﻳﮋﮔﻲﻫﺎﻱ ﺭﻭﺵﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﺮﺍﻱ ﺑﺮﺁﻭﺭﺩﻩ ﮐﺮﺩﻥ ﺧﻮﺍﺳﺘﻪﻫﺎﻱ ﺍﻓﺮﺍﺩ ﺍﺯ ﺑﺎﺯﻱ ﻭ ﺍﻋﻤﺎﻝ ﻋﺪﺍﻟﺖ ﺩﺭ ﺑﺎﺯﻱ ﺑﻴﺎﻥ ﻣﻲﺷﻮﻧﺪ. ﻫﺰﻳﻨﻪﻫﺎ ﺩﺭ ﺑﺎﺯﻱﻫﺎ ﺑﻪ ﺩﻭ ﺻﻮﺭﺕ ﺑﺮﺭﺳﻲ ﻣﻲﺷﻮﻧﺪ :ﻫﺰﻳﻨﻪﻫﺎﻱ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ﻭ ﻏﻴﺮ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ .ﺩﺭ ﺑﺎﺯﻱﻫﺎﻳﻲ ﮐﻪ ﻫﺰﻳﻨﻪ ﻳﮏ ﻓﺮﺩ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ٣ﺍﺳﺖ ،ﻫﺰﻳﻨﻪ ﺑﺎﺯﻱ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﺪﻭﻥ ﻣﺤﺪﻭﺩﻳﺖ ﺑﻴﻦ ﺍﻓﺮﺍﺩ ﺑﺎﺯﻱ ﺗﻮﺯﻳﻊ ﮐﺮﺩ ﺍﻣﺎ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻳﻲ ﮐﻪ ﻫﺰﻳﻨﻪﻫﺎ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ﻧﻴﺴﺘﻨﺪ ،٤ﻣﺤﺪﻭﺩﻳﺖ ﺑﻴﺸﺘﺮﻱ ﺑﺮﺍﻱ ﻫﺰﻳﻨﻪ ﻳﮏ ﻓﺮﺩ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ﺑﻴﺸﺘﺮ ﺑﻪ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﻗﺎﺑﻠﻴﺖ ﺍﻧﺘﻘﺎﻝ ﻫﺰﻳﻨﻪ ﭘﺮﺩﺍﺧﺘﻪ ﻣﻲﺷﻮﺩ. ﮐﻠﻤﺎﺕ ﮐﻠﻴﺪﻱ :ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ،ﻫﺴﺘﻪ ،ﻳﮑﻨﻮﺍﻳﻲ ﮔﺮﻭﻫﻲ ،ﻣﮑﺎﻧﻴﺰﻡ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ،ﻣﻘﺪﺍﺭ ،Shapleyﻗﻀﻴﻪ ﭼﺎﻧﻪﺯﻧﻲ 1 Cost Sharing Cooperative Games 3 Cooperative Games with Transferable Utilities 4 Cooperative Games with Nontransferable Utilities 2 -۱ﻣﻘﺪﻣﻪ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ،ﺑﺎﺯﻱﻫﺎﻳﻲ ﻫﺴﺘﻨﺪ ﮐﻪ ﺩﺭ ﺁﻧﻬﺎ ﺭﻗﺎﺑﺖ ﺑﻪ ﺟﺎﻱ ﺁﻧﮑﻪ ﺑﻴﻦ ﺗﮏﺗﮏ ﺍﻓﺮﺍﺩ ﺑﺎﺷﺪ ﺑﻴﻦ ﮔﺮﻭﻩﻫﺎﻳﻲ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﺭﻗﺎﺑﺖ ﻫﺮ ﮔﺮﻭﻩ ﺳﻮﺩﻱ ﺑﺪﺳﺖ ﻣﻲﺁﻭﺭﺩ ﻭ ﻳﺎ ﻫﺰﻳﻨﻪﺍﻱ ﺭﺍ ﻣﺘﺤﻤﻞ ﻣﻲﺷﻮﺩ .ﺳﻮﺍﻝ ﻣﻬﻢ ﺩﺭ ﺍﻳﻦ ﺯﻣﻴﻨﻪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﺳﻮﺩ ﻳﺎ ﻫﺰﻳﻨﻪ ﭼﮕﻮﻧﻪ ﺑﺎﻳﺪ ﺑﻴﻦ ﺍﻋﻀﺎﻱ ﮔﺮﻭﻩ ﺗﻮﺯﻳﻊ ﺷﻮﺩ .ﻧﺤﻮﻩ ﭘﺎﺳﺦ ﺑﻪ ﺍﻳﻦ ﭘﺮﺳﺶ ﻣﻮﺿﻮﻉ ﺑﺤﺚ ﺩﺭ ﺗﺌﻮﺭﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﻫﺎ ﺩﺭ ﻧﻈﺮﻳﻪ ﺑﺎﺯﻱﻫﺎﺳﺖ. ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﻴﻦ ﺍﻋﻀﺎﻱ ﮔﺮﻭﻩ ﺑﺎﻳﺪ ﺑﻪ ﮔﻮﻧﻪﺍﻱ ﺑﺎﺷﺪ ﮐﻪ ﺍﻫﺪﺍﻑ ﺷﺨﺼﻲ ﻭ ﮔﺮﻭﻫﻲ ﺭﺍ ﭘﻮﺷﺶ ﺩﻫﺪ ﻭ ﺩﺭ ﻋﻴﻦ ﺣﺎﻝ ﻋﺎﺩﻻﻧﻪ ﺑﺎﺷﺪ .ﺧﻮﺍﻫﻴﻢ ﺩﻳﺪ ﮐﻪ ﺭﻭﺵﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﺍﻱ ﮐﻪ ﺧﺼﻮﺻﻴﺖ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ﺭﺍ ﭘﺸﺘﻴﺒﺎﻧﻲ ﻣﻲﮐﻨﻨﺪ ،ﻋﻼﻭﻩ ﺑﺮ ﻭﻳﮋﮔﻲﻫﺎﻳﻲ ﮐﻪ ﺩﺭ ﺑﺎﻻ ﺫﮐﺮ ﺷﺪ ﻣﻲﺗﻮﺍﻧﻨﺪ ﻣﺎﻧﻊ ﺗﺒﺎﻧﻲ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺷﻮﻧﺪ .ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺧﺼﻮﺻﻴﺖ ﻣﻲﺗﻮﺍﻥ ﺭﻭﻳﻪﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﺍﻱ ﻃﺮﺍﺣﻲ ﮐﺮﺩ ﮐﻪ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺑﻬﻴﻨﻪﺳﺎﺯﻱ ﺗﺮﮐﻴﺐ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﻣﻲﮔﻴﺮﻧﺪ. ﺑﺮﺍﻱ ﻭﺭﻭﺩ ﺑﻪ ﺑﺤﺚ ،ﺍﺑﺘﺪﺍ ﺑﻪ ﺗﻌﺮﻳﻒ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﻭ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﻫﺎ ﺩﺭ ﺁﻧﻬﺎ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ. | |( ) : ℙ → ℝ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻫﺮ ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ﺑﻪ ﻣﺠﻤﻮﻋﻪﺍﻱ ﻣﺎﻧﻨﺪ Sﺍﺯ ﻋﺎﻣﻞﻫﺎ ،ﺑﺮﺩﺍﺭﻱ ﺍﺳﺖ ﺩﺭ ﻓﻀﺎﻱ | | ℝﮐﻪ ﻣﻮﻟﻔﻪ iﺍﻡ ﺁﻥ ﺳﻮﺩ )ﻳﺎ ﻫﺰﻳﻨﻪ( ﺑﺎﺯﻳﮑﻦ ∈ ﺭﺍ ﻣﺸﺨﺺ ﻣﻲﮐﻨﺪ .ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻋﺎﻣﻞﻫﺎﻱ Aﻭ ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ،Vﺑﺎﺯﻱ ﺗﻌﺎﻣﻠﻲ ﻣﻲﮔﻮﻳﻴﻢ ﻭ ﺁﻥ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ) (A, Vﻧﺸﺎﻥ ﻣﻲﺩﻫﻴﻢ .ﺩﺭ ﺻﻮﺭﺗﻲ ﮐﻪ ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ﻣﻮﺭﺩ ﻧﻈﺮ ﺩﺭ ﻣﻮﺭﺩ ﻫﺰﻳﻨﻪﻫﺎ ﺑﺎﺷﺪ ،ﺁﻥ ﺭﺍ ﺑﺎ c ﻧﺸﺎﻥ ﻣﻲﺩﻫﻴﻢ .ﺍﻳﻦ ﻧﻮﻉ ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ﻣﺨﺼﻮﺹ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﺧﺎﺻﻴﺖ ﻏﻴﺮ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ﺑﻮﺩﻥ ٥ﻫﺰﻳﻨﻪﻫﺎﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻧﻮﻉ ﺑﺎﺯﻱﻫﺎ ،ﺳﻮﺩ ﻋﺎﻣﻞﻫﺎ ﺑﻪ ﺻﻮﺭﺕ ﺟﺪﺍﮔﺎﻧﻪ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﻲﺷﻮﺩ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﺁﻧﻬﺎ ﺭﺍ ﺑﺎ ﺑﺮﺩﺍﺭ ﻧﺸﺎﻥ ﻣﻲﺩﻫﻴﻢ .ﺩﺭ ﻧﻮﻉ ﺩﻳﮕﺮ ﮐﻪ ﺳﻮﺩﻫﺎ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ٦ﻫﺴﺘﻨﺪ ،ﭼﻮﻥ ﻣﻲﺗﻮﺍﻥ ﺳﻮﺩ ﮐﻠﻲ ﺭﺍ ﺑﻪ ﻫﺮ ﻧﺤﻮﻱ ﺑﻴﻦ ﺍﻋﻀﺎﻱ ﮔﺮﻭﻩ ﺗﻮﺯﻳﻊ ﮐﺮﺩ ،ﺳﻮﺩ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﺎ ﻳﮏ ﻋﺪﺩ ﺑﻴﺎﻥ ﮐﺮﺩ. ( ): ℙ → ℝ ﺩﺭ ﺍﻳﻨﺠﺎ ﺗﺎﺑﻊ ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ﻳﮏ ﮔﺮﻭﻩ ﺍﺯ ﻋﺎﻣﻞﻫﺎ ﺑﻪ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﺑﺮﺩﺍﺭﻫﺎ ﺩﺭ ﻓﻀﺎ ﻱ | | ℝﺗﺒﺪﻳﻞ ﻣﻲﺷﻮﺩ ﮐﻪ ﻣﺠﻤﻮﻉ ﻣﻮﻟﻔﻪﻫﺎﻳﺶ )ﺳﻮﺩ ﺗﮏﺗﮏ ﺑﺎﺯﻳﮑﻨﺎﻥ( ﺍﺯ ﺳﻮﺩ ﮔﺮﻭﻩ ﺑﻴﺸﺘﺮ ﻧﻴﺴﺖ≤ ( ) . ∈ ∑ | | |∈ ℝ =) ( . ﻧﻤﻮﻧﻪﺍﻱ ﺍﺯ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ،ﻃﺮﺍﺣﻲ ﺷﺒﮑﻪ ﺍﺗﺼﺎﻝ ﺑﻪ -۲ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺍﻳﻨﺘﺮﻧﺖ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﻱ ﻳﮏ ﺷﺮﮐﺖ ﺍﺭﺍﺋﻪ ﺧﺪﻣﺎﺕ ﺩﺭ ﻳﮏ ﺑﺎﺯﻱ ﺗﻌﺎﻣﻠﻲ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻋﺎﻣﻞﻫﺎ ﺑﻪ ﺍﺳﻢ Aﺑﺎ ﺍﻳﻨﺘﺮﻧﺘﻲ ﻫﺰﻳﻨﻪ ﺍﻳﺠﺎﺩ ﺍﺭﺗﺒﺎﻁ ﻣﺸﺘﺮﻱﻫﺎ ﺑﺎ ﺍﻳﻨﺘﺮﻧﺖ ﺭﺍ ﺑﺎﻳﺪ ﺑﻪ ﻳﮑﺪﻳﮕﺮ ﻫﻤﮑﺎﺭﻱ ﻣﻲﮐﻨﻨﺪ ﺗﺎ ﺑﻪ ﻫﺪﻑ ﻣﺸﺘﺮﮐﻲ ﺑﺮﺳﻨﺪ ﻭ ﻳﺎ ﻃﻮﺭ ﻋﺎﺩﻻﻧﻪ ﺑﻴﻦ ﺁﻧﻬﺎ ﺗﻘﺴﻴﻢ ﮐﻨﺪ .ﺍﻳﻦ ﻫﺰﻳﻨﻪ ،ﻫﺰﻳﻨﻪﺍﻱ ﻗﺎﺑﻞ ﻣﺤﺼﻮﻟﻲ ﺭﺍ ﺗﻮﻟﻴﺪ ﮐﻨﻨﺪ .ﺧﺮﻭﺟﻲ ﺍﻳﻦ ﺗﻌﺎﻣﻞ ﺑﺎ ﻳﮏ ﺍﻧﺘﻘﺎﻝ ﺍﺳﺖ. ﺍﺭﺯﺵﮔﺰﺍﺭﻱ ﻣﺸﺨﺺ ﻣﻲﺷﻮﺩ .ﺑﺮ ﻋﮑﺲ ﺑﺎﺯﻱﻫﺎﻱ ﺩﺭ ﻧﻤﻮﻧﻪﺍﻱ ﺩﻳﮕﺮ ﻣﻲﺗﻮﺍﻥ ﻫﺰﻳﻨﻪ ﺭﺍ ﺗﺎﺧﻴﺮﻱ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ ﻏﻴﺮﺗﻌﺎﻣﻠﻲ ﮐﻪ ﺧﺮﻭﺟﻲ ﺑﺮ ﺍﺳﺎﺱ ﺍﺳﺘﺮﺍﺗﮋﻱﻫﺎﻱ ﺑﺎﺯﻳﮑﻨﺎﻥ ﮐﻪ ﻫﺮ ﻣﺸﺘﺮﻱ ﺩﺭ ﺷﺒﮑﻪ ﻣﺘﺤﻤﻞ ﻣﻲﺷﻮﺩ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺑﺪﺳﺖ ﻣﻲﺁﻣﺪ ،ﺧﺮﻭﺟﻲ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺗﻨﻬﺎ ﺑﻪ ﺑﺪﻳﻬﻲ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﻫﺰﻳﻨﻪ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ﺑﻪ ﺳﺎﻳﺮ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﻋﺎﻣﻞﻫﺎ ﮐﻪ ﺑﺎ ﻫﻢ ﺗﻌﺎﻣﻞ ﻣﻲﮐﻨﻨﺪ ﺑﺴﺘﮕﻲ ﺩﺍﺭﺩ ﻧﻴﺴﺖ ﻭ ﻳﮏ ﻫﺰﻳﻨﻪ ﺷﺨﺼﻲ ﺍﺳﺖ. ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﺗﻨﻬﺎ ﺑﻪ ﺟﻨﺒﻪ ﮐﺎﺭ ﮔﺮﻭﻫﻲ ﺩﺭ ﺑﺎﺯﻱ ﭘﺮﺩﺍﺧﺘﻪ ﺷﻮﺩ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺭﺳﻤﻲﺗﺮ ،ﺍﺭﺯﺵﮔﺰﺍﺭﻱ Vﺑﺮﺍﺑﺮ ﺍﺳﺖ ﺑﺎ: Cooperative Games with Nontransferable Utilities Cooperative Games with Transferable Utilities 5 6 ﻧﻤﻮﻧﻪﺍﻱ ﺩﻳﮕﺮ ﺍﺯ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﻫﺰﻳﻨﻪ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ، ﺑﺎﺯﻱ ﻣﺮﺍﮐﺰ ﺧﺪﻣﺎﺕ ﺍﺳﺖ .ﺩﺭ ﺍﻳﻦ ﻣﺴﺎﻟﻪ ،ﻗﺮﺍﺭ ﺍﺳﺖ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻣﺮﺍﮐﺰ ﺧﺪﻣﺎﺕﺩﻫﻲ ) (Fﺑﻪ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻣﺸﺘﺮﻱﻫﺎ ) (Aﺧﺪﻣﺘﻲ ﺍﺭﺍﺋﻪ ﺩﻫﻨﺪ .ﻣﺸﺘﺮﻱﻫﺎ ﻭ ﻣﺮﺍﮐﺰ ﺧﺪﻣﺎﺗﻲ ﺑﻪ ﺻﻮﺭﺕ ﮔﺮﺍﻓﻲ ﺑﻪ ﻳﮑﺪﻳﮕﺮ ﻣﺘﺼﻠﻨﺪ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻓﺎﺻﻠﻪ ﺁﻧﻬﺎ ﺍﺯ ﻳﮑﺪﻳﮕﺮ ﺑﺎ ﻣﺎﺗﺮﻳﺲ dﻣﺸﺨﺺ ﺷﺪﻩ ﺍﺳﺖ. ﻓﻌﺎﻝﮐﺮﺩﻥ ﻫﺮ ﻣﺮﮐﺰ ﮐﻪ ﺁﻥ ﺭﺍ ﺑﺎ iﻧﺸﺎﻥ ﻣﻲﺩﻫﻴﻢ ﻫﺰﻳﻨﻪﺍﻱ ﺩﺭ ﺑﺮ ﺩﺍﺭﺩ ﮐﻪ ﺑﺎ fiﻣﺸﺨﺺ ﻣﻲﺷﻮﺩ .ﻫﺪﻑ ﺩﺭ ﺍﻳﻦ ﺑﺎﺯﻱ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺗﻤﺎﻡ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺧﺪﻣﺎﺕ ﺩﺭﻳﺎﻓﺖ ﮐﻨﻨﺪ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻫﺰﻳﻨﻪ ﮐﻞ ﻣﻴﻨﻴﻤﻢ ﺷﻮﺩ. ﺑﺮﺍﻱ ﺑﺮﺭﺳﻲ ﻧﺤﻮﻩ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺩﺭ ﻳﮏ ﺑﺎﺯﻱ ،ﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺑﻪ ﺗﻌﺮﻳﻒ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﭘﺮﺩﺍﺧﺖ. ﻫﺴﺘﻪ ﻳﮏ ﺑﺎﺯﻱ ،ﺧﺮﻭﺟﻲﺍﻱ ﺍﺯ ﺑﺎﺯﻱ ﺗﻤﺎﻡ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺍﺳﺖ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻫﻴﭻ ﮔﺮﻭﻫﻲ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻧﻔﻊ ﺑﻴﺸﺘﺮﻱ ﺍﺯ ﺷﮑﺴﺘﻦ ﺍﺋﺘﻼﻑ ﮐ ﻞ ﻭ ﺗﺸﮑﻴﻞ ﮔﺮﻭﻫﻲ ﺟﺪﺍﮔﺎﻧﻪ ﻧﻤﻲﺑﺮﻧﺪ .ﺑﻪ ﺻﻮﺭﺕ ﺭﺳﻤﻲﺗﺮ ﺍﮔﺮ ) (A, cﻳﮏ ﺑﺎﺯﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﻫﺰﻳﻨﻪ ﻗﺎﺑﻞ ﺍﻧﺘﻘﺎﻝ ﺑﺎﺷﺪ ،ﺑﻪ | |∈ ℝ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﻣﻲﮔﻮﻳﻨﺪ ﺍﮔﺮ ﺍﻳﻦ ﺑﺮﺩﺍﺭ ﺧﻮﺍﺹ ﺯﻳﺮ ﺭﺍ ﺩﺍﺭﺍ ﺑﺎﺷﺪ: · ﮐﻪ ﻫﺰﻳﻨﻪ ﺍﺧﺘﺼﺎﺹﻳﺎﻓﺘﻪ ﺑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺍﺳﺖ ﺑﺎﻳﺪ ﺑﺎ ﻫﺰﻳﻨﻪ ﮐﻞ · ﻫﺰﻳﻨﻪ ﺭﺍ ﻃﻮﺭﻱ ﺑﻴﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺗﻘﺴﻴﻢ ﻣﻲﮐﻨﺪ ﮐﻪ ﺑﻪ ﻧﻔﻊ ﻫﻤﻪ ﺑﺎﺷﺪ .ﺍﻣﺎ ﻣﻮﺍﻗﻌﻲ ﻧﻴﺰ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺗﻬﻲ ﺍﺳﺖ. ﺑﺮﺍﻱ ﺑﺮﺭﺳﻲ ﺗﻬﻲ ﺑﻮﺩﻥ ﻫﺴﺘﻪ ﻳﮏ ﺑﺎﺯﻱBondareva- ، Shapleyﺷﺮﻁ ﻻﺯﻡ ﻭ ﮐﺎﻓﻲﺍﻱ ﺭﺍ ﺍﺭﺍﺋﻪ ﮐﺮﺩﻩﺍﻧﺪ .ﺑﺮﺍﻱ ﺑﻴﺎﻥ ﺍﻳﻦ ﺷﺮﻁ ﺍﺑﺘﺪﺍ ﻣﺠﻤﻮﻋﻪ ﻭﺯﻥﻫﺎﻱ ﻣﺘﻮﺍﺯﻥ ﺭﺍ ﺗﻌﺮﻳﻒ ﻣﻲﮐﻨﻴﻢ. ﺗﻌﺮﻳﻒ :۱ﺑﺮﺩﺍﺭ ﮐﻪ ﺑﻪ ﻫﺮ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﺍﺯ Aﻳﮏ ﻭﺯﻥ ﻧﺴﺒﺖ ﻣﻲﺩﻫﺪ ﺭﺍ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﻭﺯﻥ ﻣﺘﻮﺍﺯﻥ ﻣﻲﻧﺎﻣﻴﻢ ﺍﮔﺮ ﺑﻪ ﺍﺯﺍﻱ ﻫﺮ ﺑﺎﺯﻳﮑﻦ jﻭ ﻫﺮ ﮐﻪ jﺭﺍﺷﺎﻣﻞ ﺑﺎﺷﺪ ،ﻣﺠﻤﻮﻉ ⊆ ﻭﺯﻥﻫﺎﻱ ﻧﺴﺒﺖ ﺩﺍﺩﻩ ﺷﺪﻩ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﻫﺎﻱ Sﺑﺮﺍﺑﺮ ۱ﺑﺎﺷﺪ. ∈ ⊆ : ∙ ∈ ∀ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺗﻌﺮﻳﻒ ،ﺷﺮﻁ ﻣﺮﺑﻮﻁ ﺑﻪ ﺗﻬﻲ ﻧﺒﻮﺩﻥ ﻫﺴﺘﻪ ﺭﺍ ﺩﺭ ﻗﻀﻴﻪ ﺯﻳﺮ ﺑﻴﺎﻥ ﻣﻲﮐﻨﻴﻢ. ﻗﻀﻴﻪ :۱ﺩﺭ ﻳﮏ ﺑﺎﺯﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﻗﺎﺑﻠﻴﺖ ﺍﻧﺘﻘﺎﻝ ﺳﻮﺩ ،ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺗﻬﻲ ﻧﻴﺴﺖ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ ﺑﺮﺍﻱ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﻭﺯﻥﻫﺎﻱ ﻣﺘﻮﺍﺯﻥ ﻣﺜﻞ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ( ) ≥ ( ) : ⊆ ∑ ﺍﺛﺒﺎﺕ :ﻣﻲﺗﻮﺍﻥ ﺩﻭ ﻭﻳﮋﮔﻲ ﻫﺴﺘﻪ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻳﮏ ﻣﺴﺎﻟﻪ ٨ ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ :ﻣﺠﻤﻮﻉ ﻣﻮﻟﻔﻪﻫﺎﻱ ﺑﺮﺩﺍﺭ ﺑﺎﺯﻱ ﺑﺮﺍﺑﺮ ﺑﺎﺷﺪ= ( ). ∈ ∙ ﻫﻤﺎﻥﻃﻮﺭ ﮐﻪ ﺩﻳﺪﻳﻢ ،ﻫﺴﺘﻪ ﻳﮏ ﺑﺎﺯﻱ ﺧﺮﻭﺟﻲﺍﻱ ﺍﺳﺖ ﮐﻪ =1 -۳ﻫﺴﺘﻪ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ٧ ) ( ≤ ⊆ ∀ ∈ ∑. ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﺧﻄﻲ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺍﮔﺮ ﺍﻳﻦ LPﺟﻮﺍﺑﻲ ﺑﺮﺍﺑﺮ ﺑﺎ ) c(Aﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺗﻬﻲ ﻧﺨﻮﺍﻫﺪ ﺑﻮﺩ. ﻭﻳﮋﮔﻲ ﻫﺴﺘﻪ :ﺑﺮﺍﻱ ﻫﺮ ﺯﻳﺮﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ، ﻣﺠﻤﻮﻉ ﻫﺰﻳﻨﻪ ﺍﺧﺘﺼﺎﺹﻳﺎﻓﺘﻪ ﺑﻪ ﺗﮏﺗﮏ ﺁﻧﻬﺎ ﻧﺒﺎﻳﺪ ﺑﻴﺸﺘﺮ ﺍﺯ ﻫﺰﻳﻨﻪﺍﻱ ﺑﺎﺷﺪ ﮐﻪ ﺑﻪ ﮐﻞ ﮔﺮﻭﻩ ﺗﻌﻠﻖ ﻣﻲﮔﻴﺮﺩ. ﺑﺎ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﻫﻴﭻ ﮐﺲ ﻧﻤﻲﺧﻮﺍﻫﺪ ﮔﺮﻭﻩ ﺑﺰﺭﮒ ﺭﺍ ﺗﺮﮎ ﮐﻨﺪ. Grand Coalition 7 ≤ ( ). ∈ ∙ ∈ ⊆ ∀ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻗﻀﻴﻪ LPﻫﻤﺰﺍﺩ ﻗﻮﻱ ،ﺍﮔﺮ LPﻗﻮﻱ ﻫﻤﺰﺍﺩ ﺍﻳﻦ ﻣﺴﺎﻟﻪ ﺭﺍ ﺑﻨﻮﻳﺴﻴﻢ ،ﺟﻮﺍﺏ ﺁﻥ ﻧﻴﺰ ﺑﺎﻳﺪ ﺑﺮﺍﺑﺮ ﺑﺎ ) c(Aﺑﺎﺷﺪ. )Linear Programming (LP 8 -۴ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻭ ﺭﻭﻳﻪﻫﺎﻱ ﺗﻮﺯﻳﻊ ) ( =1 ∈ ⊆ : ≥ 0. ⊆ ∙ ﻫﺰﻳﻨﻪ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ∈ ∀ ∙ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﮐﻪ ﺗﻘﺎﺿﺎ ﻧﺴﺒﺖ ﺑﻪ ﻗﻴﻤﺖ ﺣﺴﺎﺱ ⊆ ∀ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺗﻬﻲ ﻧﺨﻮﺍﻫﺪ ﺑﻮﺩ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ ﺑﺮﺍﻱ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﻭﺯﻥﻫﺎﻱ ﻣﺘﻮﺍﺯﻥ ﻣﺜﻞ ) ( ≥) ( ⊆ ﻫﺴﺘﻪ ﺗﻘﺮﻳﺒﻲ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ: ∑ ﺑﺎﺯﻱﻫﺎﻱ ﺑﻬﻴﻨﻪﺳﺎﺯﻱ ﺗﺮﮐﻴﺐ ﮐﻪ ﻣﻌﻤﻮﻻ ﭘﻴﭽﻴﺪﮔﻲ ﻣﺤﺎﺳﺒﺎﺗﻲ ﺩﺍﺭﻧﺪ ،ﺭﺥ ﻣﻲﺩﻫﺪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻫﺴﺘﻪ ﺁﻧﻬﺎ ﺗﻬﻲ ﺍﺳﺖ .ﺑﻪ ﻋﻼﻭﻩ ﺩﺭ ﺑﺮﺧﻲ ﻣﻮﺍﺭﺩ ،ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﺍﻳﻨﮑﻪ ﻫﺴﺘﻪ ﺗﻬﻲ ﺍﺳﺖ ﻳﺎ ﺧﻴﺮ ﺑﻪ ﺧﺎﻃﺮ ﭘﻴﭽﻴﺪﮔﻲ ﻣﺤﺎﺳﺒﺎﺗﻲ ﻋﻤﻼ ﻏﻴﺮﻣﻤﮑﻦ ﻣﻲﺷﻮﺩ. ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺮﺍﻱ ﭘﻴﺪﺍ ﮐﺮﺩﻥ ﻳﮏ ﺗﻮﺯﻳﻊ ﻓﺮﺍﮔﻴﺮ ﺗﻘﺮﻳﺒﻲ ﻭ ﻧﻪ ﺗﺤﻘﻴﻘﻲ ﺗﻌﺮﻳﻔﻲ ﺩﻳﮕﺮ ﺍﺯ ﻫﺴﺘﻪ ،ﺑﺎ ﻧﺎﻡ ﻫﺴﺘﻪ ﺗﻘﺮﻳﺒﻲ ﺍﺭﺍﺋﻪ ﻣﻲﮐﻨﻴﻢ. ﺗﻌﺮﻳﻒ :۲ﻫﺴﺘﻪ ﺗﻘﺮﻳﺒﻲ ﺑﺎ ﺿﺮﻳﺐ ) (A, cﺑﺮﺩﺍﺭ ﺑﺮﺁﻭﺭﺩﻩ ﮐﻨﺪ. ﺧﺪﻣﺎﺕ ﻣﻮﺭﺩ ﻧﻈﺮ ﺭﺍ ﺑﻪ ﻣﺰﺍﻳﺪﻩ ﺑﮕﺬﺍﺭﺩ ﺗﺎ ﺑﺪﻳﻦ ﻭﺳﻴﻠﻪ ﻣﺸﺘﺮﻱﻫﺎﻳﻲ ﺭﺍ ﮐﻪ ﺗﻮﺍﻥ ﭘﺮﺩﺍﺧﺖ ﻫﺰﻳﻨﻪ ﺭﺍ ﺩﺍﺭﻧﺪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺳﺎﺧﺘﺎﺭ ﻣﺎﻟﻲ ﻣﻌﺎﻣﻠﻪ ﺍﻧﺘﺨﺎﺏ ﮐﻨﺪ ﻭ ﺑﻪ ﺍﻳﻦ ﺗﺮﺗﻴﺐ ﻗﻴﻤﺖ ﻣﺸﮑﻠﻲ ﮐﻪ ﺩﺭ ﻣﻮﺭﺩ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ،ﻣﺨﺼﻮﺻﺎ | ﺍﺳﺖ ،ﺳﺮﻭﻳﺲﺩﻫﻨﺪﻩ ﺑﻪ ﺟﺎﻱ ﺗﻌﻴﻴﻦ ﻗﻴﻤﺖ ،ﻣﻲﺗﻮﺍﻧﺪ ﮐﺎﻻ ﻳﺎ ﻳﮏ ﺑﺎﺯﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺍﺳﺖ ﺍﮔﺮ ﺩﻭ ﻭﻳﮋﮔﻲ ﺯﻳﺮ ﺭﺍ |∈ ℝ ﻗﺎﺑﻞﻗﺒﻮﻝﺗﺮﻱ ﺍﺯ ﻧﻈﺮ ﻫﻤﻪ ﺑﺪﺳﺖ ﺁﻳﺪ .ﺩﺭ ﺍﻳﻨﺠﺎ ﻫﺪﻑ ﻃﺮﺍﺣﻲ ﻳﮏ ﻣﺰﺍﻳﺪﻩ ﺍﺳﺖ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻋﻼﻭﻩ ﺑﺮ ﻣﻨﺎﻓﻊ ﺷﺨﺼﻲ ،ﻣﻨﺎﻓﻊ ﺟﻤﻌﻲ ﻧﻴﺰ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﺷﻮﺩ ﺗﺎ ﺍﻓﺮﺍﺩ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ ﻭﺍﻗﻌﻲ ﺧﻮﺩ ﺭﺍ ﺩﺭ ﻣﻌﺎﻣﻠﻪ ﻣﻄﺮﺡ ﮐﻨﻨﺪ .ﺑﺮﺍﻱ ﺍﺩﺍﻣﻪ ﺑﺤﺚ ،ﺍﺑﺘﺪﺍ ﻣﺴﺎﻟﻪ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺭﺳﻤﻲ ﺑﻴﺎﻥ ﻣﻲﮐﻨﻴﻢ. ﺩﺭ ﺍﻳﻦ ﻣﺴﺎﻟﻪ A ،ﺭﺍ ﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ nﺑﺎﺯﻳﮑﻨﻲ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ ﮐﻪ ﺩﺭ ﺍﻧﺘﻈﺎﺭ ﺳﺮﻭﻳﺲ ﻫﺴﺘﻨﺪ .ﺗﺎﺑﻊ ﺗﺨﺼﻴﺺ ﻫﺰﻳﻨﻪ ﺑﻪ ﻫﺮ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ،ﺑﻪ ﺻﻮﺭﺕ } : ℙ → ℝ ∪ {0ﺗﻌﺮﻳﻒ ﻣﻲﺷﻮﺩ .ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺧﺪﻣﺎﺕ ﺑﺮﺍﻱ ﻫﺮ ﺑﺎﺯﻳﮑﻦ iﺑﻪ ﺍﻧﺪﺍﺯﻩ uiﻣﻲﺍﺭﺯﺩ .ﺍﮔﺮ ﺩﺭ ﻧﻬﺎﻳﺖ ﺑﺎﺯﻳﮑﻦ iﺳﺮﻭﻳﺲ ﮔﺮﻓﺖ qi ،ﺁﻥ ۱ﻣﻲﺷﻮﺩ ﻭ ﺩﺭ ﻏﻴﺮ ﺍﻳﻦ ﺻﻮﺭﺕ ﻣﻘﺪﺍﺭ ﺻﻔﺮ ﻣﻲﮔﻴﺮﺩ xi .ﻧﻴﺰ ﻣﺸﺨﺺ ﻣﻲﮐﻨﺪ ﮐﻪ ≤ ( ): · ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ · ﻭﻳﮋﮔﻲ ﻫﺴﺘﻪ≤ ( ) : ∈ ∈ ∑≤) ( ∑∙ ⊆ ∀ ﺑﺎﺯﻳﮑﻦ ﭼﻪ ﻣﻘﺪﺍﺭ ﺑﺎﻳﺪ ﻫﺰﻳﻨﻪ ﮐﻨﺪ ﺗﺎ ﺍﺯ ﺧﺪﻣﺎﺕ ﺍﺳﺘﻔﺎﺩﻩ ﮐﻨﺪ. ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﻨﻔﻌﺖ ﺑﺎﺯﻳﮑﻦ iﺍﻡ ﺍﺯ ﻓﺮﻣﻮﻝ − ﻣﺤﺎﺳﺒﻪ ﺑﺎ ﺍﻳﻦ ﺗﻌﺮﻳﻒ ،ﻗﻀﻴﻪ Bondareva-Shapleyﺩﺭ ﻣﻮﺭﺩ ﻣﻲﺷﻮﺩ. ﺷﺮﻁ ﺗﻬﻲ ﻧﺒﻮﺩﻥ ﻫﺴﺘﻪ ،ﺑﻪ ﺻﻮﺭﺕ ﮐﻠﻲﺗﺮ ﺯﻳﺮ ﺗﺒﺪﻳﻞ ﻳﮏ ﻣﮑﺎﻧﻴﺰﻡ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ،ﺑﺎ ﺩﺭﻳﺎﻓﺖ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ ﻫﺮ ﻣﻲﺷﻮﺩ. ﺑﺎﺯﻳﮑﻦ ،ﺗﺼﻤﻴﻢ ﻣﻲﮔﻴﺮﺩ ﮐﻪ ﭼﻪ ﮐﺴﺎﻧﻲ ﺑﺎﻳﺪ ﺳﺮﻭﻳﺲ ﺑﮕﻴﺮﻧﺪ ﻗﻀﻴﻪ :۲ﺑﺮﺍﻱ ﻫﺮ ≥ 1 ﻳﮏ ﺑﺎﺯﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ) (A, cﺑﺎ ﻗﺎﺑﻠﻴﺖ ﺍﻧﺘﻘﺎﻝ ﻫﺰﻳﻨﻪ ﺩﺍﺭﺍﻱ ﻫﺴﺘﻪ ﻧﺎﺗﻬﻲ ﺍﺳﺖ ﺍﮔﺮ ﻭ ﻓﻘﻂ ﺍﮔﺮ ﺑﺮﺍﻱ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﻭﺯﻥﻫﺎﻱ ﻣﺘﻮﺍﺯﻥ ﻣﺜﻞ ) ( ≥) ( ⊆ ∑ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻴﻢ: ﻭ ﭼﻪ ﻣﻘﺪﺍﺭ ﺑﺎﻳﺪ ﭘﺮﺩﺍﺧﺖ ﮐﻨﻨﺪ .ﻣﺠﻤﻮﻋﻪ ﺑﺎﺯﻳﮑﻨﺎﻧﻲ ﮐﻪ ﺳﺮﻭﻳﺲ ﺭﺍ ﺩﺭﻳﺎﻓﺖ ﻣﻲﮐﻨﻨﺪ ﺑﺎ Qﻭ ﻫﺰﻳﻨﻪ ﭘﺮﺩﺍﺧﺘﻲ ﺁﻧﻬﺎ ﺭﺍ ﺑﺎ ﺑﺮﺩﺍﺭ pﻧﻤﺎﻳﺶ ﻣﻲﺩﻫﻴﻢ .ﺑﺮﺍﻱ ﺍﻳﻦ ﻣﮑﺎﻧﻴﺰﻡ ﺷﺮﻁﻫﺎﻱ ﺯﻳﺮ ﺭﺍ ﻧﻴﺰ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ. · ﺑﺪﻭﻥ ﺭﺷﻮﻩ :ﻫﺰﻳﻨﻪ ﭘﺮﺩﺍﺧﺘﻲ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﻣﻨﻔﻲ ﻧﻴﺴﺖ. )≥ 0 ( · · ﺷﺮﮐﺖ ﺩﺍﻭﻃﻠﺒﺎﻧﻪ :ﺍﮔﺮ ﮐﺴﻲ ﺳﺮﻭﻳﺲ ﻧﻤﻲﮔﻴﺮﺩ ،ﭘﻮﻟﻲ ﺩﺭ ﺭﻭﺷﻲ ﮐﻪ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﺍﺳﺖ ﺍﮔﺮ ﮔﺮﻭﻩ ﮔﺴﺘﺮﺵ ﻧﻴﺰ ﭘﺮﺩﺍﺧﺖ ﻧﺨﻮﺍﻫﺪ ﮐﺮﺩ ﻭ ﺍﮔﺮ ﺑﻪ ﮐﺴﻲ ﺳﺮﻭﻳﺲ ﺩﺍﺩﻩ ﭘﻴﺪﺍ ﮐﻨﺪ ﻭ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﻳﮕﺮﻱ ﺭﺍ ﺷﺎﻣﻞ ﺷﻮﺩ ،ﻫﺰﻳﻨﻪﺍﻱ ﮐﻪ ﺩﺭ ﻣﻲﺷﻮﺩ ،ﻫﺰﻳﻨﻪ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺳﺮﻭﻳﺲ ،ﺍﺯ ﺍﺭﺯﺷﻲ ﮐﻪ ﺁﻥ ﺣﺎﻟﺖ ﺟﺪﻳﺪ ﺑﻪ ﻳﮏ ﻓﺮﺩ ﺗﺤﻤﻴﻞ ﻣﻲﺷﻮﺩ ﺍﺯ ﺣﺎﻟﺖ ﻗﺒﻠﻲﺍﺵ ﺧﺪﻣﺖ ﺑﺮﺍﻱ ﺷﺨﺺ ﺩﺍﺭﺩ ﺑﻴﺸﺘﺮ ﻧﻴﺴﺖ. ﺑﺪﺗﺮ ﻧﺨﻮﺍﻫﺪ ﺑﻮﺩ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺩﻳﮕﺮ ،ﺩﺭ ﺍﻳﻦ ﻧﻮﻉ ﺭﻭﺵﻫﺎ ،ﮐﺎﺭ ﻣﺸﺘﺮﻱ ﻣﺤﻮﺭﻱ :ﺑﺮﺍﻱ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ،iﭘﻴﺸﻨﻬﺎﺩﻱ ﻣﺎﻧﻨﺪ ﮔﺮﻭﻫﻲ ﺍﮔﺮ ﺑﺎﻋﺚ ﮐﺎﻫﺶ ﻫﺰﻳﻨﻪ ﺍﻓﺮﺍﺩ ﮔﺮﻭﻩ ﻧﺸﻮﺩ ،ﺑﺎﻋﺚ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺍﮔﺮ ﺁﻥ ﺭﺍ ﺩﺭ ﻣﺰﺍﻳﺪﻩ ﻣﻄﺮﺡ ﮐﻨﺪ، ﺍﻓﺰﺍﻳﺶ ﺁﻥ ﻧﺨﻮﺍﻫﺪ ﺷﺪ .ﺑﺮﺍﻱ ﺗﻌﺮﻳﻒ ﺭﺳﻤﻲ ﻳﮑﻨﻮﺍﻳﻲ ∗ · ﺑﺪﻭﻥ ﺗﻮﺟﻪ ﺑﻪ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ ﺑﻘﻴﻪ ﭘﻴﺮﻭﺯ ﻣﻲﺷﻮﺩ. ﺑﻴﻦﮔﺮﻭﻫﻲ ﺍﺑﺘﺪﺍ ﺑﺎﻳﺪ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺭﺍ ﺗﻌﺮﻳﻒ ﮐﻨﻴﻢ. ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ ﺗﻘﺮﻳﺒﻲ :ﻣﮑﺎﻧﻴﺰﻡ ﺑﺎﻳﺪ ﺍﺯ ﻧﻈﺮ ﺑﻮﺩﺟﻪ ﺑﻪ ﻃﻮﺭ ﺗﻌﺮﻳﻒ :۳ﺍﮔﺮ ) (A, cﻳﮏ ﺑﺎﺯﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﺎﺷﺪ ،ﺁﻧﮕﺎﻩ ﺗﻘﺮﻳﺒﻲ ﻣﺘﻮﺍﺯﻥ ﺑﺎﺷﺪ ﻳﻌﻨﻲ: ) ( ≤ ∈ ﻳﮏ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﻳﮏ ﺗﺎﺑﻊ ﺗﺨﺼﻴﺺ ﻫﺰﻳﻨﻪ ﺍﺳﺖ ﮐﻪ ﺑﻪ ≤) ( ﮐﺴﺎﻧﻲ ﮐﻪ ﺩﺭ ﮔﺮﻭﻩ ﻧﻴﺴﺘﻨﺪ ﻣﻘﺪﺍﺭ ﺻﻔﺮ ﻭ ﺑﻪ ﺑﻘﻴﻪ ﻣﻘﺪﺍﺭ ﻋﻼﻭﻩ ﺑﺮ ﻭﻳﮋﮔﻲﻫﺎﻱ ﺑﺎﻻ ﺑﺮﺍﻱ ﺍﻳﻨﮑﻪ ﻣﮑﺎﻧﻴﺰﻣﻲ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺑﺎﺷﺪ ،ﺑﺎﻳﺪ ﺍﺯ ﻭﻳﮋﮔﻲ ﺯﻳﺮ ﻧﻴﺰ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺑﺎﺷﺪ. ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ⊆ ﻳﮏ ﮔﺮﻭﻩ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﺎﺷﻨﺪ .ﺩﻭ ﺑﺮﺩﺍﺭ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ uﻭ ’ uﺭﺍ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ ﮐﻪ ﺣﺎﻭﻱ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ ﺗﻤﺎﻡ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﺭ ﺩﻭ ﺣﺎﻟﺖ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻭ ﻏﻴﺮﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺍﺳﺖ .ﺍﻳﻦ ﺩﻭ ﺑﺮﺩﺍﺭ ﭘﻴﺸﻨﻬﺎﺩ ﺩﺭ ﺗﻤﺎﻡ ﻣﻮﻟﻔﻪﻫﺎ ﺑﺎ ﻫﻢ ﺑﺮﺍﺑﺮﻧﺪ ﻭ ﺗﻨﻬﺎ ﻣﻤﮑﻦ ﺍﺳﺖ ﺩﺭ ﻣﻮﻟﻔﻪﻫﺎﻳﻲ ﮐﻪ ﺑﺎﺯﻳﮑﻦ، ﻋﻀﻮ Sﺍﺳﺖ ﺍﺧﺘﻼﻑ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﭘﻴﺸﻨﻬﺎﺩ ﺁﻥ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ’ uﺧﻼﻑ ﻭﺍﻗﻊ ﻭ ﺑﺮﺍﻱ ﻣﻨﻔﻌﺖ ﺑﻴﺸﺘﺮ ﺍﺳﺖ .ﺑﺎ ﺍﻳﻦ ﭘﻴﺸﻨﻬﺎﺩﺍﺕ ،ﻣﮑﺎﻧﻴﺰﻡ ،ﺩﻭ ﺧﺮﻭﺟﻲ ) (Q, pﻭ )’ (Q’, pﺭﺍ ﺑﺪﺳﺖ ﻣﻲﺩﻫﺪ .ﻣﻲﮔﻮﻳﻴﻢ ﻳﮏ ﻣﮑﺎﻧﻴﺰﻡ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺍﺳﺖ ﺍﮔﺮ ﺍﻳﻦ ﻃﻮﺭ ﻧﺒﺎﺷﺪ ﮐﻪ ﭘﻴﺸﻨﻬﺎﺩ ﺧﻼﻑ ﻭﺍﻗﻊ ﻳﮏ ﮔﺮﻭﻩ ﺑﺎﻋﺚ ﺑﺪﺗﺮ ﺷﺪﻥ ﺳﻮﺩ ﻫﻴﭻ ﺑﺎﺯﻳﮑﻨﻲ ﺍﺯ ﺁﻥ ﻧﺸﻮﺩ ﻭ ﺣﺪﺍﻗﻞ ﻳﮏ ﻧﻔﺮ ﺳﻮﺩ ﺑﻴﺸﺘﺮﻱ ﻧﻴﺰ ﺑﺒﺮﺩ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺭﺳﻤﻲ: ∙ ∈ ∀ ∙ ⊆ ∀( ≥ ⇒ − = ) − ⇒ − − ℎ ℳ Moulinﻧﺸﺎﻥ ﺩﺍﺩ ﮐﻪ ﺭﻭﺵﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﺍﻱ ﮐﻪ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ﺭﺍ ﭘﺸﺘﻴﺒﺎﻧﻲ ﮐﻨﻨﺪ ﻣﻲﺗﻮﺍﻧﻨﺪ ﺩﺭ ﻃﺮﺍﺣﻲ ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﻴﺮﻧﺪ. ﻣﺮﺑﻮﻁ ﺭﺍ ﻧﺴﺒﺖ ﻣﻲﺩﻫﺪ .ﺍﻳﻦ ﺭﻭﻳﻪ ﺭﺍ ﻣﺘﻮﺍﺯﻥ ﺑﺎ ﺿﺮﻳﺐ ﻣﻲﮔﻮﻳﻴﻢ ﺍﮔﺮ ﻣﺠﻤﻮﻉ ﺗﻤﺎﻡ ﺑﻮﺩﺟﻪ ﺍﺧﺘﺼﺎﺻﻲ ﺑﻪ ﺍﻓﺮﺍﺩ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻫﺰﻳﻨﻪ ﺁﻥ ﻣﺠﻤﻮﻋﻪ ﺑﻴﺸﺘﺮ ﻭ ﺍﺯ ﺑﺮﺍﺑﺮ ﺁﻥ ﮐﻤﺘﺮ ﻧﺒﺎﺷﺪ .ﺑﻪ ﺻﻮﺭﺕ ﺭﺳﻤﻲ ،ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﻪ ﻓﺮﻡ ξ: × ℙ → ℝﺍﺳﺖ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ∙ ξ( , ) = 0 ∉ ∀∙ ⊆ ∀ ﺗﻌﺮﻳﻒ :۴ﻳﮏ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ξﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﺍﺳﺖ ﺍﮔﺮ ) ∪ ∙ (, )≥ (, ∈ ∀∙ ⊆ ∀ , ﺩﺭ ﺯﻳﺮ ﻣﻲﺑﻴﻨﻴﻢ ﮐﻪ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻭﻳﮋﮔﻲ ﻗﻮﻱﺗﺮﻱ ﻧﺴﺒﺖ ﺑﻪ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺍﺳﺖ. ﻗﻀﻴﻪ :۳ﺍﮔﺮ ﻳﮏ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ،ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﻭ ﺩﺍﺭﺍﻱ ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ ﺑﺎ ﺿﺮﻳﺐ ﺑﺎﺷﺪ ،ﺁﻧﮕﺎﻩ ﻣﻘﺎﺩﻳﺮ ﺁﻥ ﺩﺭ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺍﺳﺖ. ﺍﺛﺒﺎﺕ :ﺗﻨﻬﺎ ﮐﺎﻓﻲ ﺍﺳﺖ ﮐﻪ ﺍﺛﺒﺎﺕ ﮐﻨﻴﻢ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﺩﺍﺭﺍﻱ ﻭﻳﮋﮔﻲ ﻫﺴﺘﻪ ﺍﺳﺖ .ﻳﻌﻨﻲ ) ( ≤) (, ∈ ∙ ⊆ ∀ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ﺩﺍﺭﻳﻢ ﮐﻪ ) ∙ (, )≤ (, ∈ ∀ ) (, ∈ ⇒) ∙ (, )≤ (, ) ( ≤) ( , ∈ ≤ ∈ ∀ ﻧﺎﻣﺴﺎﻭﻱ ﺁﺧﺮ ﺍﺯ ﺧﺎﺻﻴﺖ ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ. ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ،ﻣﮑﺎﻧﻴﺰﻡ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ℳﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺯﻳﺮ ﺗﻌﺮﻳﻒ ﻣﻲﮐﻨﻴﻢ. Mechanism ℳ ← Initialize Repeat }) ← { ∈ | ≥ ( , ) Until for all ∈ ∙ ≥ ( , Return = = ( , ) for all i ﻳﮏ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﻗﻀﻴﻪ :۴ﺍﮔﺮ ﺑﺎﺷﺪ ﻭ }∈ ℝ+ ∪ {0 ﺟﺰﻭ ∗ ﻧﺨﻮﺍﻫﺪ ﺑﻮﺩ ﮐﻪ ﻳﮏ ﺗﻨﺎﻗﺾ ﺍﺳﺖ. ﻗﻀﻴﻪ ﺯﻳﺮ ﺑﻴﺎﻥ ﻣﻲﮐﻨﺪ ﮐﻪ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺍﺳﺖ. ﻗﻀﻴﻪ :۵ﺍﮔﺮ ℳﻳﮏ ﻣﮑﺎﻧﻴﺰﻡ ﮔﺮﻭﻫﻲ ﻳﮏ ﺭﻭﻳﻪ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﺑﺎ ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ ﺑﻪ ﺿﺮﻳﺐ ﺑﺎﺷﺪ ،ﺁﻧﮕﺎﻩ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺑﺎ ﺗﻮﺍﺯﻥ ﭘﻮﻟﻲ ﺍﺳﺖ. ℳﻳﮏ ﻣﮑﺎﻧﻴﺰﻡ ﻭﺟﻮﺩ ﺩﺍﺭﺩ .ﻣﮑﺎﻧﻴﺰﻡ ℳ ﻏﻴﺮﻭﺍﻗﻌﻲ ’ uﺑﻪ ﺟﺎﻱ uﻣﻨﻔﻌﺖ ﺑﻴﺸﺘﺮﻱ ﮐﺴﺐ ﮐﻨﺪ .ﻓﺮﺽ ⊆ ﮐﻪ ﺗﻮﺳﻂ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎﻻ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ ﻳﮑﺘﺎ ﻭﺟﻮﺩ ﺧﻮﺍﻫﺪ ﺩﺍﺷﺖ ﮐﻪ ﺁﻥ ﻧﻴﺰ ﺑﻴﺸﻴﻨﻪ ﺍﺳﺖ ﻭ ﺑﺮﺍﻱ ﻫﺮ ﻋﻀﻮ iﺁﻥ ) ≥ ( , .ﺑﻨﺎﺑﺮﺍﻳﻦ ﻃﺒﻖ ) ∪ ≥ (, ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: ﮐﻨﻴﺪ ﮐﻪ iﺑﺎ ﺍﻳﻦ ﮐﺎﺭ ﮔﺮﻭﻩ ،ﺑﺮﻧﺪﻩ ﺷﻮﺩ .ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ≥ ) . ′ ≥ ( ,ﺑﻨﺎﺑﺮﺍﻳﻦ ﻫﺰﻳﻨﻪﺍﻱ ﮐﻪ ﺷﺨﺺ ﭘﺮﺩﺍﺧﺖ ﻣﻲﮐﻨﺪ ﺍﺯ ﺍﺭﺯﺷﻲ ﮐﻪ ﺧﺪﻣﺎﺕ ﻣﻮﺭﺩ ﻧﻈﺮ ﺑﺮﺍﻳﺶ ﺩﺍﺭﺩ ﺑﻴﺸﺘﺮ ﺍﺳﺖ ﮐﻪ ﺑﻪ ﻧﻔﻊ ﺍﻭ ﻧﻴﺴﺖ. ﺍﺯ ﻃﺮﻑ ﺩﻳﮕﺮ ﭼﻮﻥ ﭘﻴﺸﻨﻬﺎﺩ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﺮﻧﺪﻩ ﺩﺭ ﺳﻨﺎﺭﻳﻮﻱ ﻳﮑﻨﻮﺍﻳﻲ ﺧﻮﺍﻫﻴﻢ ﺩﺍﺷﺖ: ﺑﻨﺎﺑﺮﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﻧﺎﻣﺴﺎﻭﻱ ﺍﺧﻴﺮ، )∗ < (, ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ .ﭘﺲ i ﮔﺮﻭﻫﻲ ﻣﺎﻧﻨﺪ Tﻭﺟﻮﺩ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ ﮐﻪ ﺑﺎ ﺍﻋﻼﻡ ﭘﻴﺸﻨﻬﺎﺩ ﺍﻳﻦ ﻣﺠﻤﻮﻋﻪ ﺭﺍ ﺑﺪﺳﺖ ﻣﻲﺩﻫﺪ. ﻫﻤﻴﻦﻃﻮﺭ ﺑﺮﺍﻱ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ )∗ . ( , ) < ( ,ﺑﻨﺎﺑﺮ ﺩﻭ ﭘﻴﺸﻨﻬﺎﺩ ﻗﻴﻤﺖ ﺑﺮﺍﻱ ﺑﺎﺯﻳﮑﻦ iﺍﻡ ﮐﻪ ﺑﺮﺍﻱ ﻫﺮ ﻋﻀﻮ iﺁﻥ ) ≥ ( , ﻧﺒﺎﺷﺪ ،ﺁﻧﮕﺎﻩ ﻣﺠﻤﻮﻋﻪ ﻣﺠﻤﻮﻋﻪ ﻧﻬﺎﻳﻲ ﺑﻴﺸﻴﻨﻪ ) ∗ ( ﺍﺳﺖ .ﭘﺲ ﻃﺒﻖ ﺍﺛﺒﺎﺕ :ﺍﺯ ﺑﺮﻫﺎﻥ ﺧﻠﻒ ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﮐﻨﻴﻢ .ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ﺑﺎﺷﺪ ،ﺁﻧﮕﺎﻩ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺑﻴﺸﻴﻨﻪ ﻭ ﻳﮑﺘﺎ ﺍﺛﺒﺎﺕ :ﺍﮔﺮ ﺭﺍ ﻫﺮﺑﺎﺭ ﮐﻮﭼﮏ ﻣﻲﮐﻨﺪ ،ﻣﻲﺗﻮﺍﻧﻴﻢ ﻧﺘﻴﺠﻪ ﺑﮕﻴﺮﻳﻢ ﮐﻪ ﺯﻳﺮ ∙ ∈ ∀ ) ∪ ∀ ∈ ∙ ≥ (, ∪ ﭼﻮﻥ ﺍﺯ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﺩﻳﮕﺮ ﺑﺰﺭﮔﺘﺮ ﺍﺳﺖ ﺑﺎﻳﺪ ﺑﻴﺸﻴﻨﻪ ﺑﺎﺷﺪ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﻓﺮﺽ ﺍﻭﻝ ﮐﻪ ﺩﻭ ﻣﺠﻤﻮﻋﻪ ﺑﻴﺸﻴﻨﻪ ﺩﺍﺷﺘﻴﻢ ﺍﺷﺘﺒﺎﻩ ﺑﻮﺩ. ﺣﺎﻻ ﺍﺛﺒﺎﺕ ﻣﻲﮐﻨﻴﻢ ﮐﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺎﻻ ﺗﻤﺎﻡ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺣﺎﺋﺰ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﮐﻤﺘﺮ ﺍﺯ ﭘﻴﺸﻨﻬﺎﺩ ﺁﻥ ﺩﺭ ﺳﻨﺎﺭﻳﻮﻱ ﻏﻴﺮﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻧﻴﺴﺖ، ﺑﻴﺸﻴﻨﻪ ﺍﺳﺖ ﻭ ﺩﺍﺭﻳﻢ ⊆ . ′ﺑﻨﺎﺑﺮﺍﻳﻦ ﺑﺮ ﺍﺳﺎﺱ ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ،ﻫﺰﻳﻨﻪ ﻫﺮ ﺷﺨﺺ ﺩﺭ ﺳﻨﺎﺭﻳﻮﻱ ﻏﻴﺮﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺣﺪﺍﻗﻞ ﺑﻪ ﺍﻧﺪﺍﺯﻩ ﻫﺰﻳﻨﻪﺍﺵ ﺩﺭ ﺳﻨﺎﺭﻳﻮﻱ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺍﺳﺖ .ﺑﻨﺎﺑﺮﺍﻳﻦ ﻫﻴﭻ ﮐﺴﻲ ﺩﺭ ﺳﻨﺎﺭﻳﻮﻱ ﻏﻴﺮﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﺳﻮﺩ ﺑﻴﺸﺘﺮﻱ ﻧﻤﻲﺑﺮﺩ. ﺷﺮﺍﻳﻂ ﺭﺍ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﺑﻴﺸﻴﻨﻪ ﻭﺍﺭﺩ ﻣﻲﮐﻨﺪ .ﺍﺯ ﺑﺮﻫﺎﻥ ﺧﻠﻒ -۵ﻣﻘﺪﺍﺭ Shapley ﺍﺳﺘﻔﺎﺩﻩ ﻣﻲﮐﻨﻴﻢ .ﻓﺮﺽ ﮐﻨﻴﺪ ﮐﻪ ﺑﺎﺯﻳﮑﻦ ،iﺍﻭﻟﻴﻦ ﺑﺎﺯﻳﮑﻨﻲ ﻳﮑﻲ ﺍﺯ ﻣﺸﮑﻼﺕ ﻫﺴﺘﻪ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺍﻳﻦ ﺍﺳﺖ ﺍﺳﺖ ﮐﻪ ﺣﺬﻑ ﻣﻲﺷﻮﺩ ﺩﺭ ﺻﻮﺭﺗﻲ ﮐﻪ ﻧﺒﺎﻳﺪ ﺣﺬﻑ ﻣﻲﺷﺪ. ﮐﻪ ﺑﻪ ﻧﺪﺭﺕ ﻳﮏ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﻳﮑﺘﺎ ﺑﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻧﺴﺒﺖ ﺩﺍﺩﻩ .ﺍﺯ ﻃﺮﻓﻲ ﭼﻮﻥ ﻣﻲﺷﻮﺩ .ﻣﻌﻤﻮﻻ ﻳﺎ ﻫﺴﺘﻪ ﺗﻬﻲ ﺍﺳﺖ ﻭ ﻳﺎ ﺍﻳﻨﮑﻪ ﭼﻨﺪ ﻧﻘﻄﻪ ﺩﺭ ﺑﻨﺎﺑﺮﺍﻳﻦ ﻃﺒﻖ ﺍﻟﮕﻮﺭﻳﺘﻢ ) < ( , ﺍﻟﮕﻮﺭﻳﺘﻢ ﺑﺮﺍﻱ ﺑﺪﺳﺖ ﺁﻭﺭﺩﻥ ﻣﺠﻤﻮﻋﻪ ﺑﻴﺸﻴﻨﻪ ،ﻣﺠﻤﻮﻋﻪ ﺁﻥ ﻗﺮﺍﺭ ﺩﺍﺭﺩ ﮐﻪ ﻃﺮﺍﺡ ﺭﺍ ﻣﺠﺒﻮﺭ ﻣﻲﮐﻨﺪ ﺍﺯ ﺷﺮﺍﻳﻂ ﺩﻳﮕﺮ ﺑﺮﺍﻱ ﻣﺤﺪﻭﺩ ﮐﺮﺩﻥ ﺁﻥ ﺍﺳﺘﻔﺎﺩﻩ ﮐﻨﺪ Shapley .ﺗﻮﺯﻳﻊ submodularﻫﺮ ﺭﻭﺵ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺍﻓﺰﺍﻳﺸﻲ ﮐﻪ ﻣﻘﺪﺍﺭ ﻫﺰﻳﻨﻪﺍﻱ ﺭﺍ ﻣﻌﺮﻓﻲ ﮐﺮﺩ ﮐﻪ ﺑﻪ ﺻﻮﺭﺕ ﻳﮑﺘﺎ ﻭ ﺑﺎ ﺷﺮﺍﻳﻂ Shapleyﺭﺍ ﺷﺎﻣﻞ ﻣﻲﺷﻮﺩ ،ﺩﺭ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﻗﺮﺍﺭ ﺩﺍﺭﻧﺪ. ﻋﺎﺩﻻﻧﻪ ﻫﺰﻳﻨﻪ ﺭﺍ ﺗﻮﺯﻳﻊ ﻣﻲﮐﻨﺪ. ﺩﺭ ﻭﺍﻗﻊ ﻣﻘﺪﺍﺭ Shapleyﻳﮏ ﺭﻭﺵ ﺑﻴﻦﮔﺮﻭﻫﻲ ﻳﮑﻨﻮﺍ ﺍﺳﺖ ﺑﺎﺯﻱ ) (A, cﺭﺍ ﺩﺭ ﻧﻈﺮ ﻣﻲﮔﻴﺮﻳﻢ .ﻳﮏ ﺭﺍﻩ ﺳﺎﺩﻩ ﺗﻮﺯﻳﻊ ﮐﻪ ﻣﻲﺗﻮﺍﻧﺪ ﺩﺭ ﻃﺮﺍﺣﻲ ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻫﺰﻳﻨﻪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺑﻪ ﺗﺮﺗﻴﺒﻲ ﻣﺮﺗﺐ ﮐﻨﻴﻢ ﻭ ﻣﻮﺭﺩ ﺍﺳﺘﻔﺎﺩﻩ ﻗﺮﺍﺭ ﮔﻴﺮﺩ. ﺳﭙﺲ ﺑﻪ ﺗﺮﺗﻴﺐ ﻟﻴﺴﺖ ،ﺑﻪ ﻫﺮﮐﺲ ﻫﺰﻳﻨﻪﺍﻱ ﺭﺍ ﺗﺨﺼﻴﺺ ﺩﺭ ﻳﮏ ﺑﺎﺯﻱ ،submodularﺑﺮﺍﻱ ﻫﺮ ﺩﻭ ﺯﻳﺮﻣﺠﻤﻮﻋﻪﺍﻱ ﺍﺯ ﺑﺪﻫﻴﻢ ﮐﻪ ﺍﺯ ﺍﺿﺎﻓﻪ ﺷﺪﻥ ﺍﻭ ﺑﻪ ﮔﺮﻭﻩ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ .ﺑﻪ ﺍﻳﻦ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﺎﻧﻨﺪ ) ( ) ≤ ( )+ ﻫﺰﻳﻨﻪ ،ﻫﺰﻳﻨﻪ ﻣﺮﺯﻱ ﻣﻲﮔﻮﻳﻨﺪ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺩﻳﮕﺮ ﺑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ iﺑﻪ ﺍﻧﺪﺍﺯﻩ) ( ( ∪ { }) −ﻫﺰﻳﻨﻪ ﺍﺧﺘﺼﺎﺹ ﻣﻲﻳﺎﺑﺪ. ﺑﻪ ﺍﻳﻦ ﺭﻭﺵ ،ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺍﻓﺰﺍﻳﺸﻲ ﻣﻲﮔﻮﻳﻨﺪ. ﺧﻮﺍﺹ ﻣﻘﺪﺍﺭ Shapley · ﻣﺸﮑﻞ ﺭﻭﺵ ﺑﺎﻻ ﺩﺭ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺑﻲﻧﺎﻡ ﻧﻴﺴﺖ .ﻳﻌﻨﻲ ﺗﺮﺗﻴﺐ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﺭ ﺁﻥ ﻣﻬﻢ ﺍﺳﺖ .ﺑﺮﺍﻱ ﺭﻓﻊ ﺍﻳﻦ ﻧﻘﺺShapley ، ﺑﻲﻧﺎﻡ :ﺗﻐﻴﻴﺮ ﻧﺎﻡ )ﺗﺮﺗﻴﺐ( ﺑﺎﺯﻳﮑﻨﺎﻥ ﺑﺮ ﻣﻘﺪﺍﺭ ﻫﺰﻳﻨﻪ ﺁﻧﻬﺎ · ﺑﺎﺯﻳﮑﻦ ﺑﻲﺗﺎﺛﻴﺮ :ﺍﮔﺮ ﺑﺎﺯﻳﮑﻨﻲ ﻫﺰﻳﻨﻪﺍﻱ ﺭﺍ ﺗﺤﻤﻴﻞ ﻧﻤﻲﮐﻨﺪ ،ﻧﺒﺎﻳﺪ ﻫﺰﻳﻨﻪﺍﻱ ﺭﺍ ﻧﻴﺰ ﺑﭙﺮﺩﺍﺯﺩ. · ﺍﻓﺰﻭﺩﻧﻲ :ﻣﻘﺪﺍﺭ Shapleyﻣﺠﻤﻮﻉ ﺩﻭ ﺗﺎﺑﻊ ﻫﺰﻳﻨﻪ ﻳﮑﺘﺎ ﻭ ﻋﺎﺩﻻﻧﻪ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ .ﺍﻳﻦ ﮐﺎﺭ ﻣﺎﻧﻨﺪ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﮑﺎﻥ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻦ ﺑﺎﺯﻳﮑﻦ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﺗﺼﺎﺩﻓﻲ ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ ﮐﻪ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﺩﻳﮕﺮ ﺗﺮﺗﻴﺐ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻣﻬﻢ ﻧﺒﺎﺷﺪ. ﺍﺣﺘﻤﺎﻝ ﺍﻳﻨﮑﻪ ﻣﺠﻤﻮﻋﻪ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﮐﻪ ﺷﺎﻣﻞ ﻳﮏ ﺑﺎﺯﻳﮑﻦ iﻧﻴﺴﺖ ،ﻗﺒﻞ ﺍﺯ ﺍﻳﻦ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ﺗﺮﺗﻴﺐ ﻗﺮﺍﺭ ﺑﮕﻴﺮﺩ ،ﺑﺮﺍﺑﺮ ﺍﺳﺖ ﺑﺎ !) ! (! ﮐﻪ ﺩﺭ ﺁﻥ | | = . ﺑﻨﺎﺑﺮﺍﻳﻦ ﺍﻣﻴﺪ ﻫﺰﻳﻨﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﺮﺍﺑﺮ ﺧﻮﺍﻫﺪ ﺑﻮﺩ ﺑﺎ ﻣﺠﻤﻮﻉ ﻫﺰﻳﻨﻪﻫﺎﻱ ﻣﺮﺯﻱ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ﺍﺣﺘﻤﺎﻝ ﺣﻀﻮﺭ ﺁﻥ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ﺁﻥ ﻣﺮﺯ. ) ( ( ∪ { }) − =) ( | |⊆ \{ }: !) ! ( − 1 − ! ∩ ( )+ ∪ ( ﺗﺎﺛﻴﺮ ﻧﺪﺍﺭﺩ. ﺍﻣﻴﺪ ﻫﺰﻳﻨﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺩﺭ ﺗﻤﺎﻡ ﺣﺎﻻﺕﻫﺎﻱ ﻗﺮﺍﺭ ﮔﺮﻓﺘﻦ ﺍﻭ ﺭﺍ ﺣﺴﺎﺏ ﮐﺮﺩ ﻭ ﻣﻘﺪﺍﺭ ﺑﺪﺳﺖ ﺁﻣﺪﻩ ﺭﺍ ﺑﻪ ﻋﻨﻮﺍﻥ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﻭ ﺧﺼﻮﺻﻴﺖ ﺯﻳﺮ ﺑﺮﻗﺮﺍﺭ ﺍﺳﺖ: ﻭ ﺍﺯ ﺟﻤﻊ ﻣﻘﺪﺍﺭ Shapleyﻫﺮ ﻳﮏ ﺍﺯ ﺁﻧﻬﺎ ﺑﺪﺳﺖ ﻣﻲﺁﻳﺪ. ﺑﺮﺍﻱ ﻣﻘﺪﺍﺭ Shapleyﺍﺛﺒﺎﺕ ﻣﻲﺷﻮﺩ ﮐﻪ ﺗﻨﻬﺎ ﺗﻮﺯﻳﻌﻲ ﺍﺳﺖ ﮐﻪ ﺧﺼﻮﺻﻴﺖﻫﺎﻱ ﺑﺎﻻ ﺭﺍ ﺩﺍﺭﺍ ﻣﻲﺑﺎﺷﺪ. -۶ﭼﺎﻧﻪﺯﻧﻲ ﻧﺶ ﻣﺴﺎﻟﻪ ﺩﻳﮕﺮﻱ ﮐﻪ ﺩﺭ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪﺍﻱ ﻣﻄﺮﺡ ﻣﻲﺷﻮﺩ ،ﺑﺤﺚ ﻣﺬﺍﮐﺮﻩ ﻭ ﭼﺎﻧﻪﺯﻧﻲ ﺍﺳﺖ .ﺩﺭ ﻣﺴﺎﻟﻪ ﭼﺎﻧﻪﺯﻧﻲ ﺩﻭ ﻳﺎ ﭼﻨﺪ ﺑﺎﺯﻳﮑﻦ ﺑﺮﺍﻱ ﺭﺳﻴﺪﻥ ﺑﻪ ﻳﮏ ﻧﻈﺮ ﻭﺍﺣﺪ ﺑﺎ ﻳﮑﺪﻳﮕﺮ ﻣﺬﺍﮐﺮﻩ ﻣﻲﮐﻨﻨﺪ .ﻫﺮ ﻃﺮﻑ ﻣﺬﺍﮐﺮﻩ ﻣﻲﺗﻮﺍﻧﺪ ﻣﺬﺍﮐﺮﻩ ﺭﺍ ﺗﺮﮎ ﮐﻨﺪ ﮐﻪ ﺩﺭ ﺍﻳﻦ ﺻﻮﺭﺕ ﺧﺮﻭﺟﻲ ﭼﺎﻧﻪﺯﻧﻲ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﺧﻮﺍﻫﺪ ﺑﻮﺩ .ﺑﻪ ﻋﺒﺎﺭﺕ ﺭﺳﻤﻲ ،ﻳﮏ ﺑﺎﺯﻱ ﭼﺎﻧﻪﺯﻧﻲ ﺑﺎ ﺩﻭ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﻫﻤﺎﻥ ﻫﺰﻳﻨﻪ ﺍﺧﺘﺼﺎﺹﻳﺎﻓﺘﻪ ﺑﻪ ﻫﺮ ﺑﺎﺯﻳﮑﻦ ﺑﻪ ﺍﺳﻢ ﺑﺎﺯﻳﮑﻦ )ﺗﻌﻤﻴﻢ ﺁﻥ ﺑﻪ ﺻﻮﺭﺕ ﻣﺸﺎﺑﻪ ﺍﺳﺖ( ﺑﺎ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﻣﻘﺪﺍﺭ Shapleyﺍﺳﺖ .ﻻﺯﻡ ﺑﻪ ﺫﮐﺮ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﻣﻘﺪﺍﺭ ﻟﺰﻭﻣﺎ ⊆ℝ ﺍﺯ ﻧﻘﺎﻁ ﻗﺎﺑﻞ ﻣﺬﺍﮐﺮﻩ ﺩﺭ ﭼﺎﻧﻪﺯﻧﻲ ﻭ ﻳﮏ ﻧﻘﻄﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻧﻘﻄﻪ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﻣﺸﺨﺺ ﻣﻲﺷﻮﺩ .ﻫﺮ ﺑﺎ ﺍﻳﻦ ﻭﺟﻮﺩ ﺛﺎﺑﺖ ﺷﺪﻩ ﺍﺳﺖ ﮐﻪ ﺑﺮﺍﻱ ﻫﺮ ﺑﺎﺯﻱ ﻧﻘﻄﻪ ﺩﺭ ﮐﻪ ﻳﮏ ﺧﺮﻭﺟﻲ ﻣﺬﺍﮐﺮﻩ ﻣﻲﺗﻮﺍﻧﺪ ﺑﺎﺷﺪ ،ﻣﻨﻔﻌﺖ ﺩﺭ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﻗﺮﺍﺭ ﻧﺪﺍﺭﺩ ﺣﺘﻲ ﺍﮔﺮ ﻫﺴﺘﻪ ﺗﻬﻲ ﻧﺒﺎﺷﺪ. ∈ ﻫﺮﮐﺪﺍﻡ ﺍﺯ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺭﺍ ﺑﻴﺎﻥ ﻣﻲﮐﻨﺪ .ﭼﻮﻥ ﺍﺿﺎﻓﻪ ﻳﺎ ﮐﻢ ﮐﺮﺩﻥ ﻗﻀﻴﻪ :۶ﺑﺮﺍﻱ ﻳﮏ ﺑﺎﺯﻱ ﭼﺎﻧﻪﺯﻧﻲ ﮐﻪ ﺧﻮﺍﺹ ﺑﺎﻻ ﺭﺍ ﺩﺍﺭﺍ ﻳﮏ ﻣﻘﺪﺍﺭ ﺑﻪ ﻣﻨﻔﻌﺖ ﺑﺎﺯﻳﮑﻨﺎﻥ ،ﺗﺎﺛﻴﺮﻱ ﺩﺭ ﺗﺮﺟﻴﺢ ﺁﻧﻬﺎ ﻧﺴﺒﺖ ﺑﺎﺷﺪ ﻳﮏ ﺭﺍﻩﺣﻞ ﻭﺍﺣﺪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺑﻪ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﺑﻪ ﻳﮑﺪﻳﮕﺮ ﻧﺪﺍﺭﺩ ﻣﻲﺗﻮﺍﻧﻴﻢ ﻧﻘﻄﻪ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﺭﺍ )= (0,0 ﺩﺭ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ .ﻓﺮﺽ ﺑﺮ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﺩﺭ ﻫﻤﻴﺸﻪ ﻳﮏ ﻧﻘﻄﻪ ) , ﺑﻴﺸﻴﻨﻪ ﺷﻮﺩ. ( ﺭﺍ ﻧﺴﺒﺖ ﻣﻲﺩﻫﺪ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻧﻘﻄﻪ ﻣﺜﺒﺖ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﺗﺎ ﻫﻤﻴﺸﻪ ﺩﻟﻴﻠﻲ ﺑﺮﺍﻱ ﻣﺬﺍﮐﺮﻩ ﻭﺟﻮﺩ ﺗﺎﺑﻊ ﺳﻮﺩﻱ ﮐﻪ ﺍﻳﻦ ﻗﻀﻴﻪ ﺍﺭﺍﺋﻪ ﻣﻲﺩﻫﺪ ﻣﺜﺎﻟﻲ ﺍﺯ ﺗﻮﺍﺑﻊ ﺗﺠﻤﻴﻊ ﺩﺍﺷﺘﻪ ﺑﺎﺷﺪ. ﺍﺳﺖ ﮐﻪ ﻣﻨﻔﻌﺖ ﺍﻓﺮﺍﺩ ﺭﺍ ﺑﻪ ﺻﻮﺭﺕ ﻳﮏ ﻋﺪﺩ ﮐﻪ ﻧﺸﺎﻥﺩﻫﻨﺪﻩ ﺑﺎ ﺍﻳﻦ ﺗﻌﺮﻳﻒ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﮐﻪ ﺍﻧﺘﻘﺎﻝ ﻫﺰﻳﻨﻪ ﺩﺭ ﺁﻧﻬﺎ ﻣﻨﻔﻌﺖ ﺟﻤﻌﻲ ﺍﺳﺖ ،ﻧﺸﺎﻥ ﻣﻲﺩﻫﺪ. ﻭﺟﻮﺩ ﻧﺪﺍﺭﺩ ﺭﺍ ﻣﻲﺗﻮﺍﻥ ﺑﻪ ﺻﻮﺭﺕ ﻳﮏ ﭼﺎﻧﻪﺯﻧﻲ ﻣﺪﻝ ﮐﺮﺩ. ﺍﻟﺒﺘﻪ ﺑﺎﻳﺪ ﻋﻼﻭﻩ ﺑﺮ ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﺍﻓﺮﺍﺩ ،ﻋﺪﻡ ﺗﻮﺍﻓﻖ ﮔﺮﻭﻩﻫﺎ ﺭﺍ ﻧﻴﺰ ﺩﺭ ﻧﻈﺮ ﮔﺮﻓﺖ. ﺑﺎ ﺍﻳﻦ ﻣﻘﺪﻣﻪ ﺑﻪ ﺭﺍﻩﺣﻠﻲ ﻣﻲﭘﺮﺩﺍﺯﻳﻢ ﮐﻪ ﻧﺶ ﺑﺮﺍﻱ ﺣﻞ ﻣﺴﺎﺋﻞ ﭼﺎﻧﻪﺯﻧﻲ ﺍﺭﺍﺋﻪ ﮐﺮﺩﻩ ﺍﺳﺖ. ﺗﻌﺮﻳﻒ :۵ﻳﮏ ﺭﺍﻩﺣﻞ ﺑﺮﺍﻱ ﺑﺎﺯﻱ ﭼﺎﻧﻪﺯﻧﻲ ﻳﮏ ﺗﺎﺑﻊ ﺍﻧﺘﺨﺎﺏ ﺍﺟﺘﻤﺎﻋﻲ ﺍﺳﺖ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﺑﻪ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﮐﻪ ﺩﺍﺭﺍﻱ ﺧﺼﻮﺻﻴﺖﻫﺎﻱ ﺑﺎﻻ ﺑﺎﺷﺪ ،ﻳﮏ ﻧﻘﻄﻪ ﺍﺯ ﺁﻥ ) ∈ ) ( ( ﺭﺍ ﺍﺧﺘﺼﺎﺹ ﻣﻲﺩﻫﺪ ﮐﻪ ﺧﺼﻮﺻﻴﺎﺕ ﺯﻳﺮ ﺭﺍ ﺩﺍﺭﺍ ﺑﺎﺷﺪ: · ﺑﻬﻴﻨﮕﻲ ﭘﺮﺗﻮ ( ) : ٩ﻳﮏ ﻧﻘﻄﻪ ﺑﻬﻴﻨﻪ ﺍﺳﺖ ﺑﺪﻳﻦ ﻣﻌﻨﻲ ﮐﻪ ﻫﻴﭻ ﻧﻘﻄﻪﺍﻱ ﺍﺯ ﻧﻈﺮ ﻫﻴﭻﮐﺲ ﺑﻪ ﺁﻥ ﺗﺮﺟﻴﺢ ﻧﺪﺍﺭﺩ. · ﺗﻘﺎﺭﻥ :ﺍﮔﺮ ﻣﺘﻘﺎﺭﻥ ﺑﺎﺷﺪ ،ﻣﻮﻟﻔﻪﻫﺎﻱ ) ( ﻫﻢ ﺑﺎ ﻫﻢ ﺑﺮﺍﺑﺮ ﺧﻮﺍﻫﻨﺪ ﺑﻮﺩ. · ﺍﺳﺘﻘﻼﻝ ﺍﺯ ﻣﻘﻴﺎﺱ :ﺍﮔﺮ ﻧﻘﺎﻁ ﻣﻮﺭﺩ ﻣﺬﺍﮐﺮﻩ ﺩﺭ ﺿﺮﻳﺒﻲ ﺿﺮﺏ ﺷﻮﻧﺪ ،ﻧﻘﻄﻪ ﻣﻮﺭﺩ ﺗﻮﺍﻓﻖ ﻧﻴﺰ ﺩﺭ ﺁﻥ ﺿﺮﻳﺐ ﺿﺮﺏ ﺧﻮﺍﻫﺪ ﺷﺪ. · ﺍﺳﺘﻘﻼﻝ ﺍﺯ ﺍﻧﺘﺨﺎﺏﻫﺎﻱ ﻧﺎﻣﺮﺑﻮﻁ :ﺍﮔﺮ ﻳﮏ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﺍﺯ ﻧﻘﺎﻁ ﻣﺬﺍﮐﺮﻩ ﺩﺍﺭﺍﻱ ﻧﻘﻄﻪ ﺗﻮﺍﻓﻖ ﻣﺬﺍﮐﺮﻩ ﺑﺎﺷﺪ ﺁﻧﮕﺎﻩ ﺁﻥ ﻧﻘﻄﻪ ،ﻧﻘﻄﻪ ﺗﻮﺍﻓﻖ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﻧﻴﺰ ﺧﻮﺍﻫﺪ ﺑﻮﺩ. Pareto Optimality -۷ﺟﻤﻊﺑﻨﺪﻱ ﺩﺭ ﺍﻳﻦ ﻣﻘﺎﻟﻪ ،ﻣﻔﺎﻫﻴﻢ ﺍﻭﻟﻴﻪ ﺑﺎﺯﻱﻫﺎﻱ ﺗﻌﺎﻣﻠﻲ ﺑﺎ ﺗﻤﺮﮐﺰ ﺑﺮ ﺑﺎﺯﻱﻫﺎﻱ ﺑﺎ ﻗﺎﺑﻠﻴﺖ ﺍﻧﺘﻘﺎﻝ ﻫﺰﻳﻨﻪ ﺑﺤﺚ ﺷﺪﻧﺪ .ﺩﻳﺪﻳﻢ ﮐﻪ ﺳﻮﺍﻝﻫﺎﻱ ﺍﻟﮕﻮﺭﻳﺘﻤﻲ ﻣﺎﻧﻨﺪ ﻣﺤﺎﺳﺒﻪ ﻧﺤﻮﻩ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺑﺮﻧﺎﻣﻪﻧﻮﻳﺴﻲ ﺧﻄﻲ ﻣﺴﺎﻟﻪ ﺑﻬﻴﻨﻪﺳﺎﺯﻱ ﻣﺘﻨﺎﻇﺮﺷﺎﻥ ﻣﺪﻝ ﻣﻲﺷﻮﻧﺪ. ﻣﻔﻬﻮﻡ ﺩﻳﮕﺮﻱ ﮐﻪ ﺑﻪ ﺁﻥ ﭘﺮﺩﺍﺧﺘﻪ ﺷﺪ ،ﻣﻔﻬﻮﻡ ﻫﺴﺘﻪ ﺍﺳﺖ ﮐﻪ ﺍﻳﻦ ﺍﻣﮑﺎﻥ ﺭﺍ ﻣﻲﺩﻫﺪ ﮐﻪ ﻫﻤﻪ ﺑﺎﺯﻳﮑﻨﺎﻥ ﺩﺭ ﺑﺎﺯﻱ ﻧﻔﻊ ﺑﺒﺮﻧﺪ ﺑﻪ ﻃﻮﺭﻱ ﮐﻪ ﻫﻴﭻﮐﺲ ﺍﺯ ﺍﺋﺘﻼﻑ ﮐﻞ ﻧﺨﻮﺍﻫﺪ ﺟﺪﺍ ﺷﻮﺩ .ﻣﻔﻬﻮﻡ ﺩﻳﮕﺮ ،ﻳﮑﻨﻮﺍﻳﻲ ﺑﻴﻦﮔﺮﻭﻫﻲ ﺍﺳﺖ ﮐﻪ ﺑﺎﻋﺚ ﻣﻲﺷﻮﺩ ﺑﺎﺯﻳﮑﻨﺎﻥ، ﺍﻧﮕﻴﺰﻩﻫﺎﻱ ﻭﺍﻗﻌﻲ ﺧﻮﺩ ﺭﺍ ﺩﺭ ﺑﺎﺯﻱ ﻧﺸﺎﻥ ﺩﻫﻨﺪ ﺗﺎ ﺑﺪﻳﻦ ﻭﺳﻴﻠﻪ ﺑﺘﻮﺍﻥ ﻣﮑﺎﻧﻴﺰﻡﻫﺎﻱ ﮔﺮﻭﻫﻲ ﺭﺍﺳﺘﮕﻮﻳﺎﻧﻪ ﻃﺮﺍﺣﻲ ﮐﺮﺩ. ﻣﻘﺪﺍﺭ Shapleyﻧﻴﺰ ،ﻳﮏ ﺗﻮﺯﻳﻊ ﻫﺰﻳﻨﻪ ﻳﮑﺘﺎ ﻭ ﻋﺎﺩﻻﻧﻪ ﺭﺍ ﺑﺮﺍﻱ ﺑﺎﺯﻳﮑﻨﺎﻥ ﻳﮏ ﺑﺎﺯﻱ ﺑﺪﺳﺖ ﻣﻲﺩﻫﺪ ﺩﺭ ﺣﺎﻟﻲ ﮐﻪ ﻫﺴﺘﻪ ﺑﺎﺯﻱ ﺍﺯ ﺍﻳﻦ ﻭﻳﮋﮔﻲ ﺑﺮﺧﻮﺭﺩﺍﺭ ﻧﺒﻮﺩ. ﺩﺭ ﺁﺧﺮ ﻧﻴﺰ ﺩﻳﺪﻳﻢ ﮐﻪ ﺑﺮﺍﻱ ﺑﺎﺯﻱﻫﺎﻱ ﭼﺎﻧﻪﺯﻧﻲ ﮐﻪ ﻃﺮﻑﻫﺎﻱ ﺑﺎﺯﻱ ﺑﺮ ﺳﺮ ﺭﺳﻴﺪﻥ ﺑﻪ ﻳﮏ ﺗﻮﺍﻓﻖ ﻣﺬﺍﮐﺮﻩ ﻣﻲﮐﻨﻨﺪ ،ﻳﮏ ﺭﺍﻩﺣﻞ ﺑﻬﻴﻨﻪ ﻭﺟﻮﺩ ﺩﺍﺭﺩ ﮐﻪ ﺁﻥ ،ﺑﻴﺸﻴﻨﻪ ﺿﺮﺏ ﻣﻮﻟﻔﻪﻫﺎﻱ ﻧﻘﺎﻁ ﻣﺬﺍﮐﺮﻩ ﺍﺳﺖ. ﻣﺮﺟﻊ 9 § N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani, Algorithmic Game Theory, Cambridge University Press, 2007.
© Copyright 2025 Paperzz