EverCrop Examining the impact of perennial pastures on profitability Graeme Sandral, Richard Hayes, Guangdi Li NSW Department of Primary Industries and E H Graham Centre Tony Swan and Mark Peoples CSIRO Shawn McGrath Fred Morley Unit and E H Graham Centre Jim Virgona Graminus Consulting Aims • Grow more pasture • Fix more Nitrogen Sites Sites Average Rainfall (mm) April to Oct Rainfall % April to October (mm) (mm) Mirrool 471 288 61 Burrumbuttock 580 384 66 Eurongilly 535 329 62 Wagga Wagga 530 331 63 Lockhart 484 308 64 Treatments Species and species combination Pasture description and sowing rate (kg/ha) Sub clover Monoculture Sub clover only (4 kg/ha) Lucerne Monoculture Lucerne only (3 kg/ha) Lucerne Sub clover Mix Lucerne (3 kg/ha) and Sub clover (4 kg/ha) in the same row Lucerne Sub clover 1:1 Lucerne (3 kg/ha) and Sub clover (4 kg/ha) in alternate rows Lucerne Biserrula 1:1 Lucerne (3 kg/ha) and Biserrula (1kg/ha) in alternate rows Lucerne annual Medic 1:1 Lucerne (3 kg/ha) and annual Medic (3 kg/ha) in alternate rows Lucerne Sub clover 1:2 Lucerne (3 kg/ha) sown in one row and Sub clover (4 kg/ha) sown in two rows Phalaris Lucerne Sub clover Mix Phalaris (1.5 kg/ha), Lucerne (1.5 kg/ha) and Sub clover (4 kg/ha) sown in every row Phalaris Lucerne 1:1 Sub clover Phalaris (1.5 kg/ha) sown in one row, Lucerne (1.5 kg/ha) sown in the other row with Sub clover (4 kg/ha) sown in all rows. Phalaris Lucerne 1:2 Sub clover Phalaris (1.5 kg/ha) sown in one row, Lucerne (1.5 kg/ha) sown in the next two rows with Sub clover (4 kg/ha) sown in all rows. Phalaris Sub clover 1:1 Phalaris (3 kg/ha) and Sub clover (4 kg/ha) in alternate rows Phalaris Sub clover Mix Phalaris (3 kg/ha) and Sub clover (4 kg/ha) in the same row 1 Lucerne : 2 sub clover Sub clover only 1 Phalaris : 1 sub clover Phalaris & sub clover mix Wagga Wagga 4th Sept 2013 Mirrool 14th Nov 2013 Lockhart 11th March 2014 Burrumbuttock 10th Dec 2013 Details • Sown: Autumn 2012 – Measurements • • • • • • • • Seedling counts (annuals + perennials year 1) Basal frequency (perennials) Dry matter and botanical composition (4 times a year) Seed bank of annual legume (summer) N-fix and OMD (potentially 4 times a year) Soil nitrogen (pre-cropping) Estimated N-fix Estimated livestock performance The Nitrogen Story Relationship between sub clover dry matter and amount of atmospheric nitrogen fixed For every 1000 kg/ha of legume shoot dry matter you gain approximately 20 kg/ha of fixed N. (Unkovich et al 2010) Relationship between legume dry matter and amount of nitrogen available prior to cropping Mineral N in May prior to cropping to 1 m (kg/ha) 400 N = 130 + 0.0148 x legume DM R2 = 0.66 350 300 250 200 150 For every 1000 kg/ha of legume shoot dry matter you gain approximately 15 kg/ha of mineral N. 100 50 2 4 6 8 10 12 Legume dry matter accumulated over 3 years (kg/ha) 14 N-fix estimation & valuation • To estimate the value of the N contribution by the pastures (in N fixed kg/ha) we have assumed 15 kg N /ha for every 1000 kg/ha of legume. • The estimated dollar value of the N was provided by assuming Urea cost was $550/t with an N concentration of 46%. • The estimated value to crops assumes 15% of the N fixed by the pasture is utilised by the following crop. N-fix estimations Wagga Wagga assuming 15 N kg per 1000 kg/ha of legume Scenario 1 Species & species combination Sub clover mono Lucerne mono Lucerne + Sub clover mix Lucerne + Sub clover 1:1 Lucerne + Biserrula 1:1 Lucerne + Medic 1:1 Lucerne + Sub clover 1:2 Phalaris + Lucerne + Sub Phalaris + Lucerne 1:1 + Sub Phalaris + Lucerne 1:2 + Sub Phalaris + Sub clover 1:1 Phalaris + Sub clover mix LSD Cumulative Cumulative % Cumulative Estimated Value to DM Legume DM Legume N-fix Value of N crop Ranking (kg/ha) (kg/ha) (kg N/ha) $/ha $/ha 28595 26034 91.0 391 988 148 3 22839 18268 80.0 274 693 104 8 27993 26951 96.3 404 1,023 153 2 27109 25480 94.0 382 967 145 4 17376 15264 87.8 229 579 87 9 16314 13807 84.6 207 524 79 11 28762 27614 96.0 414 1,048 157 1 38611 18390 47.6 276 698 105 7 35472 19061 53.7 286 723 109 5 32736 18836 57.5 283 715 107 6 35385 14339 40.5 215 544 82 10 38045 8727 22.9 131 331 50 12 5792 4142 N-fix estimations Wagga Wagga measured 30 N kg per 1000 kg/ha of sub clover and 20.4 N kg per 1000 kg/ha of Lucerne Scenario 2 Cumulative Cumulative % Cumulative Estimated Value to DM (kg/ha) Legume DM Legume Species & species combination (kg/ha) N-fix Value of N crop (kg N/ha) $/ha Ranking $/ha Sub clover mono 28595 26034 91.0 781 1,976 296 1 Lucerne mono 22839 18268 80.0 373 944 142 10 Lucerne + Sub clover mix 27993 26951 96.3 689 1,743 261 3 Lucerne + Sub clover 1:1 27109 25480 94.0 639 1,617 243 4 Lucerne + Biserrula 1:1 17376 15264 87.8 374 946 142 9 Lucerne + Medic 1:1 16314 13807 84.6 332 840 126 11 Lucerne + Sub clover 1:2 28762 27614 96.0 719 1,819 273 2 Phalaris + Lucerne + Sub 38611 18390 47.6 475 1,202 180 7 Phalaris + Lucerne 1:1 + Sub 35472 19061 53.7 477 1,207 181 6 Phalaris + Lucerne 1:2 + Sub 32736 18836 57.5 489 1,237 186 5 Phalaris + Sub clover 1:1 35385 14339 40.5 421 1,065 160 8 Phalaris + Sub clover mix 38045 8727 22.9 261 660 99 12 5792 4142 LSD N-fix estimations Wagga Wagga methods compared Species & species combination Sub clover mono Lucerne mono Lucerne + Sub clover mix Lucerne + Sub clover 1:1 Lucerne + Biserrula 1:1 Lucerne + Medic 1:1 Lucerne + Sub clover 1:2 Phalaris + Lucerne + Sub Phalaris + Lucerne 1:1 + Sub Phalaris + Lucerne 1:2 + Sub Phalaris + Sub clover 1:1 Phalaris + Sub clover mix Scenario 1 Estimated Value to Value of N crop Ranking $/ha $/ha 988 148 3 693 104 8 1023 153 2 967 145 4 579 87 9 524 79 11 1048 157 1 698 105 7 723 109 5 715 107 6 544 82 10 331 50 12 Scenario 2 Estimated Value of N crop $/ha $/ha 1,976 944 1,743 1,617 946 840 1,819 1,202 1,207 1,237 1,065 660 Ranking 296 142 261 243 142 126 273 180 181 186 160 99 1 10 3 4 9 11 2 7 6 5 8 12 Nitrogen fixation (N-fix) Wagga Wagga results • Adding phalaris to the mix increased dry matter yield but decreased N-fixation. • Lucerne plus sub clover in any combination produced more fixed N than lucerne plus medic or lucerne plus biserrula. • The sub clover monoculture performed as well as sub clover plus lucerne combinations as determined by N-fix The Livestock Story Livestock modelling details • An estimate of the value/ranking of each of the treatments on livestock production was calculated using GrazFeed®. Dry matter available for grazing was calculated by assuming an efficiency of utilisation of 40% above a minimum amount of 1800 kg/ha of available pasture. • The daily intake rate and growth rates of 30 kg merino wether lambs, were calculated for each of the treatments based on the legume composition achieved and assuming digestibility of 80 % and 45% for green and dead pasture respectively. Total weight gain was then calculated based on the dry matter available for grazing, the daily intake rates and the daily growth rates predicted. Each of the treatments was then ranked according to estimated weight gain (per ha). Livestock estimations Model 1 Model 1 Species & species combination Cumulative % DM grazed Est intake Est live DM Legume kg/ha g/hd/day wt gain (kg/ha) 1800 Ranking Kg/ha Sub clover mono 7149 91.0 2140 1.64 405 7 Lucerne mono 5710 80.0 1564 1.61 285 10 Lucerne + Sub clover mix 6998 96.3 2079 1.65 401 8 Lucerne + Sub clover 1:1 6777 94.0 1991 1.64 381 9 Lucerne + Biserrula 1:1 4344 87.8 1018 1.63 191 11 Lucerne + Medic 1:1 4079 84.6 911 1.62 169 12 Lucerne + Sub clover 1:2 7191 96.0 2156 1.65 415 6 Phalaris + Lucerne + Sub 9653 47.6 3141 1.54 509 1 Phalaris + Lucerne 1:1 + Sub 8868 53.7 2827 1.55 469 2 Phalaris + Lucerne 1:2 + Sub 8184 57.5 2554 1.56 429 5 Phalaris + Sub clover 1:1 8846 40.5 2819 1.52 445 4 Phalaris + Sub clover mix 9511 22.9 3085 1.48 455 3 LSD 1448 Livestock modelling details • An estimate of the value/ranking of each of the treatments on livestock production was calculated using GrazFeed®. Dry matter available for grazing was calculated by assuming an efficiency of utilisation of 40% above a minimum amount of 1800 kg/ha of available pasture. • Model run using 4 month old wether XB lamb, 35 kg LW. Legume pastures were assumed to have a OMD of 75% and phalaris based pastures were assumed at 70% OMD. • The dry matter available for grazing was divided by the predicted dry matter intake and then multiplied by the predicted liveweight gains to produce an estimate (“index”) of lamb production. Livestock estimations Model 2 Model 2 DM Grazed Digestability Species & species combination Sub clover mono (kg/ha) % DM Est live KG of Protein Est intake wt gain lamb % DM kg/hd g/hd/day /ha/yr Ranking 10718 75 28.1 1.80 382 758 7 8416 75 27.3 1.77 360 571 10 Lucerne + Sub clover mix 10477 75 28.5 1.82 391 750 8 Lucerne + Sub clover 1:1 10124 75 28.3 1.81 388 723 9 Lucerne + Biserrula 1:1 6230 75 27.9 1.78 367 428 11 Lucerne + Medic 1:1 5806 75 27.7 1.77 360 394 12 Lucerne + Sub clover 1:2 10785 75 28.5 1.82 392 774 5 Phalaris + Lucerne + Sub 14724 70 21.3 1.68 305 891 1 Phalaris + Lucerne 1:1 + Sub 13469 70 21.6 1.69 313 832 2 Phalaris + Lucerne 1:2 + Sub 12374 70 21.9 1.70 317 769 6 Phalaris + Sub clover 1:1 13434 70 20.8 1.66 292 788 4 Phalaris + Sub clover mix 14498 70 19.7 1.62 267 796 3 Lucerne mono Livestock estimations Methods compared Model 2 Model 2 KG of Species & species combination Sub clover mono DM Grazed Est intake lamb Ranking (kg/ha) kg/hd /ha/yr Est intake Est live g/hd/day wt gain Ranking kg/ha 10718 1.80 758 7 1.64 405 7 8416 1.77 571 10 1.61 285 10 Lucerne + Sub clover mix 10477 1.82 750 8 1.65 401 8 Lucerne + Sub clover 1:1 10124 1.81 723 9 1.64 381 9 Lucerne + Biserrula 1:1 6230 1.78 428 11 1.63 191 11 Lucerne + Medic 1:1 5806 1.77 394 12 1.62 169 12 Lucerne + Sub clover 1:2 10785 1.82 774 5 1.65 415 6 Phalaris + Lucerne + Sub 14724 1.68 891 1 1.54 509 1 Phalaris + Lucerne 1:1 + Sub 13469 1.69 832 2 1.55 469 2 Phalaris + Lucerne 1:2 + Sub 12374 1.70 769 6 1.56 429 5 Phalaris + Sub clover 1:1 13434 1.66 788 4 1.52 445 4 Phalaris + Sub clover mix 14498 1.62 796 3 1.48 455 3 Lucerne mono Livestock performance Wagga Wagga results • Adding phalaris to the pasture mix increased dry matter and is likely to increase animal performance even when a lower OMD is assigned to phalaris in the modeling process. • Lucerne plus biserrula and lucerne plus annual medic under performed. • The lucerne monoculture under performed and required the addition of sub clover to boost production. Overall performance Wagga Wagga Species & species combination Sub clover mono Livestock Livestock N-fix N-fix Overall Model 1 Model 2 Scenario 1 Scenario 2 mean ranking ranking ranking ranking rank 7 7 1 3 5 10 10 10 8 10 Lucerne + Sub clover mix 8 8 3 2 5 Lucerne + Sub clover 1:1 9 9 4 4 7 Lucerne + Biserrula 1:1 11 11 9 9 10 Lucerne + Medic 1:1 12 12 11 11 12 Lucerne + Sub clover 1:2 6 5 2 1 4 Phalaris + Lucerne + Sub mix 1 1 7 7 4 Phalaris + Lucerne 1:1 + Sub 2 2 6 5 4 Phalaris + Lucerne 1:2 + Sub 5 6 5 6 6 Phalaris + Sub clover 1:1 4 4 8 10 7 Phalaris + Sub clover mix 3 3 12 12 8 Lucerne mono Overall performance Wagga Wagga results • Best performing phalaris treatments had two legumes species included (lucerne and sub clover either mixed or 1:1 sowing arrangement). • The best performing pasture in the absence of phalaris was lucerne plus sub clover 1:2 sowing arrangement. Overall performance Mirrool Species & species combination Livestock Livestock N-fix N-fix Overall Model 1 Model 2 Scenario 1 Scenario 2 mean ranking ranking ranking ranking rank Sub clover mono 7 6 1 6 5 Lucerne mono 9 9 8 3 7 Lucerne + Sub clover mix 8 8 3 2 5 Lucerne + Sub clover 1:1 10 10 5 4 7 Lucerne + Biserrula 1:1 6 7 2 1 4 Lucerne + Medic 1:1 12 12 7 7 10 Lucerne + Sub clover 1:2 11 11 4 5 8 Phalaris + Lucerne + Sub mix 3 2 9 9 6 Phalaris + Lucerne 1:1 + Sub 4 4 10 10 7 Phalaris + Lucerne 1:2 + Sub 2 1 6 8 4 Phalaris + Sub clover 1:1 5 5 11 11 8 Phalaris + Sub clover mix 1 3 12 12 7 Results in a wider context Livestock Farm Monitor Project in Victoria – result shown are for Northern Victoria • Running since 1971 • Compares average farm result to top 20% of farms as determined by onfarm profitability • The result highlight some important points. Northern Victoria whole farm financial summary Average Top 20% Difference Gross income ($/ha) 433 607 174 Variable costs ($/ha) 151 146 -5 Overhead costs ($/ha) 104 112 8 EBIT ($/ha) 102 312 210 51 265 214 Return on assets (%) 2.0% 6.0% 0.04 Return on equity (%) 0.90% 6.80% 0.059 Net farm income ($/ha) Northern Victoria livestock and pasture summary Average Top 20% Difference Avg. Rainfall (mm) 659 657 -2 Stocking rate (DSE/ha) 9.8 11.4 1.6 DSE/ha/100 mm 1.5 1.6 0.1 July stocking rate (DSE/ha) 9.3 8.9 -0.4 6 9 3 Kg P/ha/100 mm 0.9 1.2 0.3 Pasture costs 32 52 20 12.3 14.2 1.9 Kg P/ha Sup feeding kg/DSE (grain) Take home messages • Look at ways to grow more pasture and maintain adequate legume content (species selection and sowing arrangement). This allows you to have a higher stocking rate (DSE/ha). • Target soil Colwell P (phosphorus) at 30 to 35 mg/kg or Olsen P at 15 to 17 mg/kg for maximum pasture growth. • Ensure your utilization of pasture is high (e.g. 40% plus) and increased stocking rate will help achieve this. • Match livestock demand as best as possible with pasture supply by manipulating lambing/caving. This will help minimize additional feeding costs. Thank you Livestock Farm Monitor Project in Victoria – result shown are for Northern Victoria • Running since 1971 • Compares average farm result to top 20% as determined by profitability Findings include – the most profitable farms had: • More income per ha = higher profits • More red meat and/or wool per ha but at a lower cost per ha • Grow more pasture • Have higher utilisation efficiencies and achieve this with higher stocking rates • Match livestock demands with feed supply (lambing / calving timing) http://agriculture.vic.gov.au/agriculture/livestock/farm-monitor-project Northern Victorian livestock farm in 2013/14. Average Top 20% Sheep (head) 5,473 7,485 Cattle (head) 727 1,333 Labour efficiency (ha/person) Labour efficiency (DSE/person) 601 724 5,782 8,146 Effective hectares 1,103 1,415 Northern Victoria enterprise mix Average Top 20% Wool 45% 11% Lamb 23% 41% Beef Hay / cropping 28% 4% 46% 2%
© Copyright 2025 Paperzz