GEOPHYSICALRF.•EARCHLETTERS,VOL. i9, NO. 2, PAGES131-134,JANUARY24, 1992 GLOBAL GEODESY USING GPS WITHOUT FIDUCIAL SITES MichaelHerin, Willy Bertiger, GeoffBlewitt,AdamFreedman, KenHurst,SteveLichten, U!fLindqwister, Yvonne Vigue, Frank Webb, TomYunck, andJames Zumberge JetPropulsion Laboratory, California Institute ofTechnology Abstract. Baselinelengthsand geocentricradii havebeen 90• determinedfrom GPS data without the use of fiducial sites. • ........... I' "i NALL I i" I Data from the first GPS experiment for the IERS and Geodynamics (GIG '91)havebeenanalyzed witha no-fiducial strategy.A baselinelengthdailyrepeatability of 2 mm + 4 pansperbillionwasobtained for baselines in thenorthern hemisphere. Comparison of baselinelengthsfromGPSand theglobalVLBI solution GLB659(Caprette et al. 1990)show rmsagreement of 2.1 pansperbillion. The geocentric radius meandailyrepeatability for all siteswas15 cm. Comparison of geocentric radii from GPS andSV5 (Murrayet al. 1990) 60 showrms agreementof 3.8 cm. Given n globallydistributed stations, the n(n - 1)/2 baselinelengthsandn geocentric radii -30 JPLM ALGO o uniquely definea rigidclosedpolyhedron witha we!l-defined centerof mass. Geodeticinformationcan be obtainedby examining the structureof thepolyhedronandits changewith k -60 I • -IART• vYAR1 • SANT time. Introduction -180 The first GPS experimentfor the IERS andGeodynamics (GIG '91) took place betweenJanuary22 andFebruary13, 1991. The global extent of the experimentpromptedan analysisstrategy designedto investigatethe arnountof geodeticinformationthat GPS can providewithoutusing fiducialsites.We decidedto focuson the21 Roguereceivers whichparticipated.A mapwith all 21 sitesis givenin Figure 1. Receiver names and locations are listed in Table 1. A fiducial site is one with coordinates which are held fixed at previouslydeterminedvaluesduring analysis. A fiducial networkconsistingof severalfiducial sitescan be usedto providea well-definedterrestrialreferenceframe. Fiducial networkstrategyhas been discussedby Davidsonet al. (1985),Malla andWu (1989), KornreichWolf et al. (1990), Larsonet. al (1991), andmanyothers.A terrestrial reference -120 -60 0 60 120 180 longitude(deg) Fig. 1. Roguereceiverlocations. geoeentricradii as illustratedin Figure2. Intrinsicproperties of the polyhedron such as the difference between two geocentricradii, the openingangiebetweentwo geocentric radii, andtheperpendicular distancefrom thecenterof massto a baseline can be examined without the use of fiducial sites. The absolute orientation of the polyhedron is poorly determinedwithoutfiducialsites. The directionsof the x-, y-, andz-axesareconstrained by placing10-kma priori standard deviations on each station and initial satellite position component.The directionof the z-axisis furtherconstrained by the signatureof Earth'sdaily rotation. Mathernatically framerequiresan origin,scale,andorientation.Fiducial speaking,theestimatedz-component for eachsitewill havea networks arenotnecessary to provideanoriginandscalefor smallererrorthanthe estimatedx- andy-components andall of globalGPS measurements.The satelliteforcemodel implies the errors will be correlatedso that rotationally invariant anoriginat theEarth'scenterof mass.A scaleis impliedby quantitiessuchas geocentricradiusand baselinelengthare thesatelliteforcernodel,radiopropagation model,andGPS well determined.The intrinsicstructureof the polyhedronis data. Furthermore,the orientationprovidedby fiducial completelyindependent of itsorientation. coordinates doesnot affectrotationallyinvariantquantities. The followinganalysisdemonstrates a no-fiducialapproach Baseline lengthandgeocentric radiusarerotationally invariant. to globalgeodesy.Baselinelengthsandgeocentricradii are Givenn globallydistributed stations, then(n- 1)/2 baseline determinedbothpreciselyand accuratelywithoutthe useof lengths andn geocentric radiicanbeusedtoconstruct a rigid fiducial sites---the polyhedron is well defined. The closed polyhedron with a centerof masswell-defined by the polyhedroncan be orientedarbitrarily or with information from other techniquessuchas SLR and VLBI. Consistent informationfrom othertechniquessuchasSLR and VLBI can Copyright 1992by theAmerican Geophysical Union. be used to improve the no-fiducia! solution. Our analysis focuseson geodeticparameters.Herring et al. (1991) have Papernumber91GL02933 0094-8534/92/91GL-02933503.00 obtainedpolarmotionestimates usinga no-fiducialapproach. 131 132 Herin et al.: Geodesy WithoutFiducialSites Table 1 Station Information And Geocentric Radii NameIx>cation 20 Days Radius (m) •R (m) • • • • x x xn 16 AI_DO Algonquin,Canada CANB FAIR GOI• HART 20 Canberra,Australia 19 Fairbanks, Alaska 20 Goldstone,California 20 Hartebeesthoek,S. Africa 16 HONE H0nefoss,Norway 16 JPLM Pasadena,California KOKB Kokee, Hawaii 20 20 KOSG Kootwijk, Netherlands MADR Madrid,Spain MATE Matera,Italy 20 20 20 NALL NyJdesund, Norway 20 PGC1 20 Victoria, Canada PINY Pinyon,California SANT Santiago,Chile 20 18 SCRI La Jolla, California 16 TROM USUD WETB YAR1 Troms0, Norway Usuda,Japan Wettzel,Germany Yarragadee, Australia 10 14 20 20 YFJ_I. Yellowknife, Canada N (N - 1) / 2 Lengths 20 6367333.62 6371684.46 6360923.50 6371978.83 6375643.95 6362263.30 6371841.80 6376292.47 6364932.44 6370016.64 6369640.56 6357629.07 6366132.38 6372878.12 6372503.53 6371883.45 6359486.92 6372250.91 6366607.82 6373369.65 6361528.66 0.!7 0.!2 0.18 0.13 0.!9 0.19 0.13 0.08 0. !7 0.15 0.15 0.20 0.15 0.13 0.12 0.12 0.!5 0.12 0.16 0.14 0.19 N Radii 1 2 Constructed Polyhedron o Receiver Geocenter Baseline Radius x x .--12 O OOoCl C• 0 ...,.. O OO .e 8 - O O 0 --- 0 O O 0 _ 0 2 4 6 8 10 12 14 baseline length (1000 km) Fig. 3. Daily repeatabilityversusbaselinelength. A linearfit to NN baselinesyields2 mm + 4 ppb. A meanvalueof 9 ppb and 16 ppb was derived for the NS and SS baselines respectively. stationpositionswere heldfixed. All stationpositions,initial satellitepositions,initial satellitevelocities,solarradiation coefficientsfor eachsatellite,wet tropospheric zenithdelays for eachstation,carderphaseambiguities, satelliteclocks,and stationclocks except the one at GOLD were estimated. All other parameters were held fixed. GIPSY processes undifferenceddual frequencycarrierphaseand pseudorange data. The assumednoisewas 1 cm for carder phasedataand 100 cm for pseudorange data. All stationand initial satellite positioncomponents had a priori standarddeviationsof 10 km. Initial satellitevelocitycomponents hada prioristandard deviationsof 10-4 km/sec. White noise clock biaseswere estimatedevery 6 minutes. Undifferenced carrier phase ambiguitieswere estimatedas real valuedmodelparameters. Theelevationanglecutoffwas 15o. The Earth'sdynamicinertial orientationwas describedby modelsof precession andnutationalongwithmeasurements of UT1 andX andY polarmotionobtainedfrom IERS Bulletins B37 and B38. The Williams (1970) solid Earth tide model 3 was used along with a standardpole tide model and the Pagiatakis(1982) oceanloadingmodel. The Lanyi (1984) tropospheric elevationanglemappingfunctionwasused. Wet Fig. 2. Given n globallydistributedstations,the n(n -1)/2 baseline lengths andn geocentric radiiuniquelydefinea closed polyhedron. tropospheric zenith delayswere modeledwith an a priori standard deviation of 50 cm and a random walk constraint of 1 cm variationper hour. A nominaldry troposphericzenith delay of 220 cm was usedat all sites. Ionosphericdelaywas removedby taking a linearcombinationof the dual frequency datameasurements. Earth'sgravityfield wasdescribed by the Analysis GEM-T2 multipoleexpansion (Marshet al. 1990). Onlythe first !2 momentsof GEM-T2 were used. The monopole Analysis was carriedout with the GIPSY (GPS Inferred momentor pointmasstermwascalculatedwith GM(IERS). GEM-T2 is geocentric-Positioning SYstem)software developed at theJetPropulsion Thedipolemomentwaszerobecause Laboratory (Lichten and Border, 1987; Sovers and Border, its originis at the Earth'scenterof mass. All higherorder 1990). That fact to no fiducia! siteswere usedmeansthat no momentsutilized GM(GEM~T2). The IERS and GEM-T2 Herinetal.: Geodesy Without Fiducial Sites 133 valuesfor GM are 398600.440km3/sec 2 and 398600.436 km3/sec 2respectively. Solarradiation pressure onthesatellite wascharacterized by threesolarradiationcoefficients.The xandz-coefficients areproportionality constants whichrelatethe x- and z-solar flux componentsto the x- and z-satellite acceleration components.The y-coefficientrepresents a constantacceleration. Here x, y and z refer to a satellite- centered framewith the z-axispointingradiallytowardthe Earth,thex-axisperpendicular to the z-axisin the Sun-Earth- satelliteplane pointingtoward the Sun, and the y-axis perpendicular tothex- andz-axesin a righthanded sense. Thefollowingsimplifieddescription of modelprediction illustrates the use of models described above. Satellite positions and velocitiesare propagatedforwardin time according to theforcesof gravityandsolarradiation pressure. Receiver positions are adjusted for tidal effects and -6 transformed into earth-centered inertialcoordinates by the precession, nutation,andUTPM values. Satelliteto receiver 0 2 4 6 8 10 12 propagation timeis calculated fromtherelativeearth-centered inertialpositions, clockvalues,andatmospheric delayin the baselinelength(1000 km) context of generalrelativity.Tropospheric delayis calculated fromthe wet and dry troposphericzenith delaysand the Fig.4. GPSbaseline length solutions compared withVLBi tropospheric elevationanglemapping function.Pseudorange solutionGLB659. Stations JPLM,KOKB,PINY, WETB, andcarrierphase predictions arederived fromthepropagation and TROM were used. time. Estimatedparametersare adjustedto make model predictions as consistentas possiblewith the datain a least squares sense. divided by the square root of the number of daily measurements. The weightedrmsof (GPS- VLBi)/lengthis Results 2.1 pansper billion,assuming a conservative combinedVLBI andsitetie errorof 5 mm. Thevalueof 2.5 pansper billionis Dailyoutput solutions included a vector of all estimatednot changedby assuminga combinedVLBI andsitetie error parameters anda full covariance matrixof errors.All days greaterthan 5 mm. Figure 5 comparesthe GPS and SV5 were processedexcept 1/31/91, 2/2/91, and 2/13/91. The geocentricradii for six siteswith good ¾LB! or SLR ties: dailypositionestimatevectorsand covariancematriceswere JPLM, KOKB, KOSG, PINY, TROM, and WETB. Error combinedto yield one final positionestimatevector and barsagainrepresent repeatability dividedby thesquarerootof covariance matrix. The cartesian components of eachsite the numberof daily measurements.The weightedrms of position hadlargeerrors,roughly5 m for x andy and4 cm forz, whichwerehighlycorrelated.Baseline lengthsand geocentricradii were calculatedfrom the final estimatevector (GPS - SVS) radii is 3.8 cm. Conclusions andcovariance matrix. Figure3 showsrepeatability asa function of baseline lengthforall 210baselines. Thebaselines Data from GIG '91 have beenanalyzedwith a no-fiducial aredividedinto three types;thosewith both sitesin the strategy. A baselinelengthdaily repeatabilityof 2 mm + 4 northernhemisphere(NN), thosewith one site in each parts per billion was obtained for the NN baselines. hemisphere (NS), andthosewith bothsitesin the southern Comparisonof baselinelengthsfrom GPS and the global hemisphere (SS). The17sitesin thenorthern hemisphereVLBI solutionGLB659(Capretteet al. 1990)showagreement define 136 NN baselines. The 4 sites in the southern of 2.1 partsper billion, assuminga combinedVLBI and site tie error or 5 mm. The NS and SS baselineshad daily hemisphere define6 SSbaselines, leaving 68NSbaselines. A linewasfit totheNN baselines, yielding a dailyrepeatability repeatabilitiesof 9 pansper billion and 16 partsper billion of 2 mm+ 4 partsper billion. A line wasfit to theNN respectively,becausetherewere only four sitesin the southern baselines because thereareenough shortNN baselines to hemisphereand commonsatellite visibility was therefore determine theoffset of2 mm.Themean valueofrepeatability limited at thosesites. The geocentricradius mean daily overlengthwas9 pansperbillionfor NS baselines and16 repeatability for all sites was 15 cm. Comparisonof geocentric radiifromGPSandSV5 (Murrayet al. 1990)show rms agreement of 3.8 cm. Baselinelengthsand geocentric areonlyfoursitesin thesouthern hemisphere andcommon radiiderivedwithouttheuseof fiducialsiteswerebothprecise satellite visibility is therefore limitedatthosesites.Geocentric andaccurate.Given n globallydistributedstations,the n(nradiiuniquelydefinea radiiandtheirdailyrepeatabilities arelistedin Table1. The 1)/2 baselinelengthsandn geocentric with a centerof masswell-definedby geocentric radiusmeandailyrepeatability is 15cmforall sites. rigidclosedpolyhedron radii. Geodeticinformationcanbe obtained by Figure4 compares theGPSandVLBI (GLB659)baselines thegeocentric of thepolyhedron andits changewith defined by 5 siteswithgoodVLBI ties: JPLM,KOKB, examiningthestructure PINY,TROM,andWETB.Errorbarsrepresent repeatabilitytime. Intrinsicpropertiesof the polyhedronsuchas the pansper billion for SS baselines. The NS and SS baselines are not as well determined as the NN baselines because there 134 Herin et al.: Geodesy WithoutFiducial Sites 15 Davidson, J. M., C. L. Thornton., C. J'.Vegos,L. E. Young, and T. P. Yunck, The March 1985 demonstrationof the v fiducialnetworkfor GPSgeodesy:A preliminaryreport, o10 Proceedings of the First International Symposiumon PrecisePositioningwith GPS, 603-612, 1985. , 5 • 0 Herring,ThomasA., DananDong,andRobertW. King, Sub-milliarcsecond determination of polepositionusing global positioningsystemdata, Geophys.Res. Lett, 18, No. IO, 1893, !991. ..... KornreichWolf, S., T. H. Dixon, andJ. T. Freymeuller,The effectsof trackingnetworkconfigurationon GPS baseline estimatesfor the CASA UNO experiment,Geophys.Res. rO -5 Lett, 17, No. 5, 647-650, 1990. Lichten,S. M., andJ. S. Border,Strategies for highprecision Global Positioning System orbit determination,J. Geophys.Res., 92, 12751-127662, 1987. Lanyi, G. E., Tropospheric Delay Effects in Radio Interferometry,Telecommunications and Data Acquisition Progress Report 42-78, Jet PropulsionLaboratory, o -10 -15 JPLM KOKB KOSG PINY TROM WETB Pasadena,CA, 152-159, 1984. site name Fig.5. GPSgeocentric radiussolutions compared withSV5. differencebetweentwo geocentricradii, the openingangle betweentwo geocentricradii, and the perpendicular distance Larson,K. M., F. H. Webb, andD.C. Agnew, Application of the Global PositioningSystemto CrustalDeformation Measurement, part II: the Influence of Errors in Orbit Determination Networks, J. Geophys. Res., In Press, 1991. Malla, R. and S. Wu, GPS Inferred Geocentric Reference from a baseline to the center of mass are all well determined. Frame For Satellite PositioningAnd Navigation, Bull. Satelliteorbitsarealsowelldetermined.Baseline repeatability Geod. 63, 263~279, 1989. of 2 mm + 4 partsper billion requiresvery preciseorbits. Marsh, J. G., F. J. Lerch,B. H. Putney,T. L. Felsentreiger, Initial consistency checkshavebeenmadeby mappingGPS B. V. Sanchez, S. M. Klosko, G. B. Patel, J. W. Robbins, orbitsfromoneday to anotherandcomputing nnsdifferences. R. G. Williamson, T. L. Engelis, W. F. Eddy, N. L. Thistestof orbitconsistency showsa meansinglecomponent Chandler,D. S. Chinn, S. Kapoor, K. E. Rachlin, andL. rms of 40 cm for February9 and 10. E. Braatz,The GEM-T2 GravitationalModel, J. Geophys. Res., 95, 22043-22071, 1990. The polyhedronhas its own scale and origin. Fiducial networksare not necessaryto providean originand scalefor Murray, M. H., R. W. King, and P. J. Morgan, SV5: A global GPS measurements.Any center of massand scale terrestrial reference framefor monitoring crustaldeformation informationinherentin a given fiducial networkmay not be consistentwith the centerof massand scaleimplied by the satelliteforcemodel,radiopropagation model,andGPSdata. if the coordinates of two fiducials had been fixed in the above analysis,thenthetwo fiducialgeocentric radiiandonefiducial baselinewould havelead to systematicerrorsunlesstheywere consistentwithin 15 cm and 2 mm + 4 parts per billion respectively. The no-fiducial approachalso avoids the problemof usingseveraldifferentfiducialnetworksduringan experiment because of missingdataat particularfiducialsites. RegionalGPScampaigns canutilize the no-fiducialapproach byincludingdatafromglobaltrackingsitesin theiranalysis. with the Global PositioningSystem,(Abstract)EOS Trans, AGU, v. 71, 1274, 1990. Pagiatakis,S. D., OceanTide Loading,Body Tide andPolar Motion Effects on Very Long Baseline Interferometry, Technical Report No. 92, Department of Surveying Engineering, University of New Brunswick, Fredericton, N.B., Canada, 1982. Sovers, O. J., and J. S. Border, Observation Model and Parameter Partials for the JPL Geodetic GPS Modeling Software "GPSOMC", JPL Pub. 87-21, Rev. 2, Jet PropulsionLaboratory,Pasadena, CA, 1990. Williams, J. G., Solid Earth Tides, IOM 391-109 (JPL internal document),Jet PropulsionLaboratory,Pasadena, Acknowledgements. This researchwas carried out by the let Propulsion Laboratory,CaliforniaInstituteof Technology, under contractwith the National Aeronauticsand Space Administration. We thank the numerous institutions and individualswho helped make the GIG '91 experiment successful. References Caprette,D. S., C. Ma, andJ. W. Ryan,CrustalDynamics Project Data Analysis -- 1990, NASA Technical Memorandum 100765, 4-1, 1990. CA, 1970. Willy Bertiger,Geoff Blewitt, AdamFreedman,Michael Herin, Ken Hurst, SteveLichten, Ulf Lindqwister,Yvonne Vigue, Frank Webb, Tom Yunck, andJamesZumberge,Jet PropulsionLaboratory,MS 238-625,4800 Oak GroveDrive, Pasadena,CA 91109 (ReceivedAugust16, 1991; RevisedNovember7, 1991; AcceptedNovember27, 1991)
© Copyright 2026 Paperzz