UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
Electrical Survey of the Honey Lake Valley,
Lassen County, California and Washoe County, Nevada
by
Herbert A. Pierce and Donald B. Hoover
Open-File Report 88-668
1988
This report is preliminary and has not been reviewed for conformity with U.S.
Geological Survey editorial standards. Any use of trade names in this report
is for descriptive purposes only and does not imply endorsement by the USGS.
^.S. Geological Survey, Box 25046, MS 964, DFC, Lakewood, CO 80225
Introduction
During April 1988 the U.S. Geological Survey (USGS) performed a series of
electrical soundings and telluric traverses in and north of Honey Lake Valley
(fig. 1). Seventeen multi-frequency audio-magnetotelluric (AMT) and seventeen
magnetotelluric (MT) soundings were recorded as well as two telluric traverses
(TT-1 and TT-2, fig. 1) to define the resistivities and changes in resistivity
in and near the basin. The work was done to help determine subsurface geology
and thickness of basin fill. The information will eventually be integrated
into ground water flow models.
The area includes part of northeastern California and northwestern Nevada
in the Basin and Range province. The area is near the boundary between the
northern Sierra Nevada Range, the southern Cascades and the Basin and Range
provinces.
Four USGS-built instruments were used in this survey: the multifrequency AMT receiver (4.5 to 27kHz), an experimental "suitcase" MT receiver
(.001 to 0.5 Hz), the multi-frequency telluric traverse receiver (4.5 to
14kHz), and the 0.025 Hz telluric traverse receiver. The AMT and MT systems
measure naturally occurring electric and magnetic fields from which apparent
resistivities at several frequencies are calculated. The frequency versus
apparent resistivity curves may be inverted to give a resistivity curve as a
function of depth. The telluric systems only measure the natural electric
fields within their frequency range, which indicate relative differences in
resistivity along the traverse. To provide resistivity data on the telluric
lines, three AMT soundings coincident with the telluric lines were measured,
allowing ratioed electric field data to be converted to apparent
resistivities.
The main objectives were to map depth-to-basement and ascertain thickness
of some of the volcanic flows. It was hoped that shallow and deep resistivity
boundaries could be modeled by combining the high (14kHz to 4.5Hz) and low
(.5Hz to .OOlHz) frequency data sets and performing joint inversions.
Magnetotelluric and Audio-magnetotelluric Methods
The MT method is an electromagnetic sounding method that measures
variations in earth resistivity as a function of depth (Keller and
Frischknecht, 1966). The soundings are obtained by measuring the earth's
surface electromagnetic fields at different frequencies. Because lower
frequency electromagnetic waves penetrate further into the earth than higher
frequency waves, measurement of the electromagnetic fields over a broad
frequency range gives information on differences in resistivity with depth.
The audio-magnetotelluric (AMT) method samples the electric and magnetic
fields in the audio-frequency range, about 1 Hz to 27 kHz. This method is
discussed in detail by Strangway and others (1973); the application and
details of the USCS AMT system are given by Hoover and others (1976; 1978) and
Hoover and Long (1976).
Apparent resistivities are calculated from AMT measurements by a method
similar to MT measurements. The AMT system measures both the electric field
(E-field) and the magnetic field (H-field) at each frequency. Amplitudes of
corresponding electric and magnetic field pulses are digitized and apparent
resistivities are calculated using the following Cagniard (1953) equation:
pa=l/5f[E/H] 2
(1)
where pa is apparent resistivity in ohm-m, and f is frequency in Hz.
E-field magnitude in mV/km and H is the H-field in gammas.
E is the
The depth of exploration of the AMI and MT methods is not only a function
of frequency, but also of the resistivity of the volume of earth sampled. For
a homogeneous earth the maximum depth of exploration (D) in meters can be
approximated by a relationship given by Bostik (1977).
D=355/pa/f
(2)
where pa is the half-space resistivity in ohm-m, and f is the frequency in Hz.
All sounding techniques measure the earth laterally as well as vertically
below the measuring station. Thus, in areas of complex geology, onedimensional model interpretations may be significantly biased and may not be
accurate representations of the vertical distribution of resistivity beneath
the sounding site.
Sources of the MT signals are the time-varying portion of the earth's
natural magnetic field which induces current flow in the earth (Keller and
Frischknecht, 1966). Sources of the AMT signals may be either artificial or
natural. The USGS equipment used in this survey is designed for use with
natural sources. The principal source of natural electromagnetic energy in
the audio-magnetotelluric frequency range is electrical discharge during
lightning storms. Typically, the signal strength is low except when generated
by local storms. The low signal strength can result in poor quality data,
especially in the 1 kHz to 4 kHz frequency range where the energy is
attenuated by propagation in the earth-ionosphere waveguide. Figure 2 shows
some of the frequencies and amplitudes for the bands sampled by the four
geophysical receivers. Figure 2 shows a second area of low signal strength at
around 1 Hz. The limitations of natural source AMT exploration are discussed
more fully by Hoover and others (1978).
The AMT soundings used 25 m-long telluric dipoles, and the MT soundings
used 75 m-long telluric dipoles. Both the MT and AMT induction sensors and
receiving systems were built by the USGS geophysics instrument laboratory in
Denver, Colorado.
Telluric traverse method
The telluric traverse (TT) method employs natural earth currents
(telluric currents) at different frequencies to measure, indirectly, changes
in earth resistivity along a traverse. It was used as early as 1921
(Leonardon, 1928) by C. Schlumberger, but until recently has not been used
very much in the United States. Beyer (1977) discusses the method in detail
and presents a series of curves computed for two-dimensional structures. He
concludes that the method is well suited for rapid reconnaissance in regions
of several hundred square-kilometers when searching for targets such as
hydrothermal systems. The method also should be suitable for locating fossil
hydrothermal systems and related mineral deposits, because rock alteration
remains after hydrothermal convection has ceased. We have found that the
technique is also useful in mapping faults and other geologic boundaries.
In applying the technique, a receiving array of three equidistant, inline electrodes is used. This array represents two colinear dipoles sharing a
common central electrode. The potential difference across each dipole is
proportional to the component of the telluric field in the direction of the
array. This configuration permits the simultaneous measurement of the
telluric field at two dipoles in the direction of the traverse. The traverse
is extended by moving the three-electrode array forward one dipole length so
that the forward electrode site becomes the center electrode site for the next
two measurements. This process is repeated for as long as desired.
Telluric measurements are made in a narrow frequency band typically using
micropulsations with periods of about 30 seconds (0.033 Hz), but may be made
over a wide range of frequencies. Because lower frequency electromagnetic
signals penetrate deeper than higher frequency signals, one can, to some
extent, select a maximum depth of exploration. The formula for maximum depth
of exploration is the same as for AMT work (equation 2). Frequencies selected
for this survey were 0.025, 7.5, 27, and 270 Hz. The telluric receivers used
were designed and manufactured by USGS.
Combined telluric and resistivity methods
After the telluric ratios are calculated and the apparent resistivities
are calculated from the corresponding AMT and MT soundings, resistivity values
can be assigned to the telluric ratios and an electrical cross section
constructed. If the traverse is run in the transverse magnetic (TM) mode,
that is, if the profile is perpendicular to the geologic strike and the
structures are assumed to be two-dimensional, then the apparent resistivities
are proportional to the square of the telluric ratios along the traverse.
Data discussion
The data consist of two telluric traverses, and 17 MT and AMT stations.
For each location (fig. 1), an AMT and an MT sounding were made in two
orthogonal directions (typically north-south and east-west). Soundings are
made in 2 directions because real earth resistivities near structures or other
inhomogeneities vary with measurement direction. Presentation of the data
will be MT, AMT, Telluric traverses, and electrical cross sections.
MT data
The scheme for numbering the station locations is MTHOXX. The alpha
characters, MT, designate a magnetotelluric data set, HO stands for Honey
Lake, and XX is a sequential number assigned to the station. Most of the
experimental MT data sets in this study contain large errors in apparent
resistivities, phase, and skew, partly as a result of failed individual
components of the receiver-coils, coaxial lead-in cables, and magnetic
induction pre-amplifiers. Previous MT soundings (Lassen 2 and 4, fig. 1)
supplied by Dal Stanley, U.S. Geological Survey (written communication, 1988)
suggest that noise in these soundings has decreased the apparent resistivities
by an order of magnitude and rendered them unusable (Figure 3).
Appendix 1 shows the rotated (tensor) computer results for the 17 MT
stations and the smoothed AMI values plotted with the MT data. MT data
include apparent resistivities, phase, Z-maximum direction, and skew.
Confidence intervals for all values are shown by error bars. The "X" data
points and associated error bars for apparent resistivity, phase, and Z-maximum direction are for the north-south electric line (dipole)
orientation. The phase values for a layered one-dimensional model generally
fall on the 45 degree line, less than 45 degrees indicates more conductive
rocks and more than 45 degrees more resistive rocks. The tensor results show
the "X" data point rotated in the strike direction.
Appendix 2 contains the unrotated MT data and the actual resistivity
values for the two AMT sounding directions (X^electric field line oriented
north-south, Y=electric field line oriented east-west). The Z-maximuin
directions for the various frequencies are zero because the orthogonal
soundings are not rotated in the strike direction.
Sounding MTH001 is about 100 m north of the Don Dow well (Sect. 36, T29N
R14E). Significant contrast between the resistivities of the sediments and
the basement rocks is necessary in order to map depth-to-basement.
Resistivities of the sediments at MTH001 are about 3 to 18 ohm-in (from
AMTH001, Appendix 3) and resistivities of the basement rocks 10 to 15 ohm-m
(from Wellex log). The small contrast is easily masked by the 4000 feet
(1219 m) of conductive sediments. The Wellex log only penetrated the basement
rocks 160 feet (49 m) and most of that probably is in the weathered zone.
Using equation 2, assuming an average resistivity of 10 ohm-m for the 1219 m
of valley sediments and solving for frequency, the highest frequency that
should sense the top of the basement is .85 Hz. For this study, however, the
frequency range from 0.1 to 1.0 Hz was unreliable for all 17 MT stations for
reasons discussed previously.
Dal Stanley's MT sounding Lassen 2 (figure 3) is a good sounding to
compare with sounding MTH004 (Appendix 3). Lassen 2 shows a curve that
becomes resistive with lower frequencies whereas MTH004 remains conductive
«10 ohm-m). Lassen 2 shows about 1725 m (5660 feet) of sediments atop the
resistive basement rocks near MTH004. MTH004, however, shows conductive
sediments to the maximum depth of penetration 35,000 feet (10.6 kin). This is
inconsistent with known Basin and Range geology.
AMT data
Appendix 3 contains the scalar AMT sounding curves. The station
numbering scheme is the same for the MT stations except that AMT proceeds the
HOXX characters. The apparent resistivities range from about 2 ohm-in to more
than 3200 ohm-m at depth. Generally the curves from Honey Lake Valley display
flat and conductive (about 10 ohm-m) apparent resistivities. The sounding
curves for AMTH003 and AMTH006 located on volcanic rocks display apparent
resistivities of about 30 ohm-n. The sounding curves located on the granites
of the Fort Sage Mountains (AMTH011) are the most resistive (400 to >2000 ohmm). AMTH012, on the volcanic rocks near Fish Springs Ranch, displays apparent
resistivities of about 60 ohm-m.
Telluric traverses
Two north-south trending telluric traverses were recorded with the multifrequency telluric receiver and the 0.25 Hz telluric receiver. The ratios are
tabulated in appendix 4 and the relative telluric voltages are plotted
together on figures 4 and 5 for TT-1 and TT-2 respectively.
Telluric traverse number 1 (TT-1, fig. 4) shows more than 10 to 1 change
in relative voltage from the Fort Sage Mountains on the south to the sediments
in the Honey Lake Valley. The steep gradient from station 0 to 1000 reflects
the fault contact. From station 1000 to 3000 the slope of the curves is not
as great. This gradual slope has four possible causes: a gradual coarse-to
fine-grained rock sequence from the topographically higher mountains north
into the valley, a dilution of conductive saline water in the valley by a
tongue of fresh water from the higher granites, a dry alluvial fan at the base
of the range front, or a "step" in the fault contact at depth that changes the
slope because its expression is masked by conductive alluvial cover. Most
probable is a combination of fresh water from the slopes of the granites in
the coarse-to-fine grained alluvial fan at the base of the mountains. This
interpretation will be discussed further in the electrical cross section.
Probably the most intriguing feature of TT-1 is the moderately sharp rise in
the 0.025 Hz curve between stations 8000 and 8500. This suggests a fault in
the basement 8 km north of the range front fault. The fault is probably the
north boundary of a graben structure about 7 km wide. Another interesting
feature seen in the higher frequency curves (7.5, 27, and 270 Hz) is that the
lowest points on the three curves, measuring only valley fill at maximum
sounding depth of exploration, are directly over the step in the basement.
This suggests some alteration of the valley fill, probably saline fluids
circulating upward from the fault. These fluids may be circulating currently
or may be the remnant of a circulating cell. Another possibility is a
hydrotherinal system, though the data do not confirm this interpretation.
Telluric traverse number 2 (TT-2, fig. 5), located just east of Fish
Springs Ranch, shows the electrical response across a small resistive volcanic
outcrop, a drop into the conductive alkali flat sediments, and a possible
graben structure at depth. The volcanic rocks appear to continue to about
station 2500 with gradually increasing amounts of conductive cover. The
graben structure located between stations 2500 and 6000 is about 3.5 km
wide. As in TT-1, the lowest ratios recorded for the 7.5, 27, and 270 Hz
curves are atop the northern step in the graben structure (between stations
5000 and 7000), suggesting saline fluids mixing in the sediments.
Electrical cross-sections
The electrical cross section for telluric traverse number 1 (fig. 6) runs
north-south along the Cal-Neva road in California. It starts on the granites
of the Fort Sage Mountains and proceeds north 9.5 km onto the Honey Lake
Valley sediments. From stations -250 to 0 the resistive (>1800 ohm-m)
granites are evident. The steep gradient between stations 0 to 500 represents
the range front fault. An interesting feature is the resistive (320 ohm-m)
closed anomaly about 325 m (1000 1 ) deep centered between stations 1500 to
2000. The top of the anomaly is about 175 m (500 f ) below the surface and the
bottom appears to be near 475 m (1500 1 ) below the surface, based on the 56
ohm-m contour. The anomaly appears to tongue out from the granites and pinch
out near station 3000. The graben feature defined by the relative voltage
changes (figure 3, 0.025 Hz curve) is not seen in the resistivity section
because reliable MT resistivities at 0.025 Hz were not available.
The electrical cross section for telluric traverse number 2 (fig. 7) runs
north from the Fish Springs Ranch with station 0 near the 90 degree bend in
the road. The entrance road to the Fish Springs Ranch house is near station
500. The resistive volcanic rocks near the ranch are roughly outlined by the
56 ohm-m line, stations -500 to 1500. As on TT-1, figure 6, a resistive
anomaly extends some distance out into the alkali flat area beneath conductive
overburden to station 2500. Either the volcanics finger out into the
sediments, or fresh water may be entering the saline basin sediments here with
a depth from the surface to the top of the 56 ohm-m line of about 160 m (500
feet). This resistive zone pinches out towards the basin. The graben feature
between stations 2500 and 6000 indicated on the relative voltage plots (fig.
5) is expressed in the AMT section as a conductive zone between stations 2500
and 6000 roughly outlined by the 18 ohm-m line. The graben structure appears
to be slightly wider than 3 km.
Figure 8 is the electrical cross section constructed from the AMT data
starting at the Don Dow well and proceeding north up Highway 395 towards
Karlo. The line crosses volcanic rocks near Viewland that have an apparent
thickness of about 600 m (1970 feet). The north end in the mud flat area and
south end in the Honey Lake Valley are in basins that contain conductive
sediments.
Figure 9 is the electrical cross section constructed from the AMT data
only. The section is roughly parallel to the general strike of the valley.
Station 6 shows a thin 45 m (150 feet) thick layer of volcanic rocks over
sediments. Station 3 in the east-west orientation shows volcanics to a depth
of 250 m (820 feet), assuming that the 32 ohm-m line coincides with the extent
of the volcanics. Stations 16 and 17 show a general thickening of the
volcanic cover to 450 m (1500 feet) and station 16 with 550 m (1800 feet) of
volcanic cover. Between stations 16 and 17 the volcanic cover thins to 225 m
(740 feet). This thinning may be due to a fault, a change in lithology, or
simply less volcanics. Stations 15 and 14 are located in the valley fill and
show low resistivities (3 to 10 ohm-m) typical of fine grained sediments.
Figure 10 is the north-south electrical cross section of the eastern part
of the Honey Lake Valley in Nevada. Stations 14 and 13 are located on the
conductive sediments. Station 12 is located south of the Fish Springs Ranch
due east of Willow Springs. Resistivities at station 12 imply volcanics at
the maximum depth of exploration, about 450 m (1480 feet). From this data
set, thickness of the volcanics at station 12 is determined to be greater than
450 meters, but the total thickness cannot be calculated.
Figure 11 is the AMT electrical cross section north-to-south along the
Cal-Neva road. Station 7 is on volcanic rocks. Stations 8, 9, and 10 are in
the valley fill. Station 11 is on the granites of the Fort Sage Mountains and
displays the most resistive vertical distribution.
Conclusions
Thickness of volcanic rocks in several parts of the basin were calculated
from models based on the results of this study. However, depth to basement
could not be determined because of technical problems encountered with our new
experimental "suitcase" MT receiver.
The telluric methods were used to generally outline the basement and
changes in the fill. Basement depths cannot be calculated from only the
relative telluric voltage changes at 0.025 Hz. The telluric data (electric
field data) suggest that the problem is solvable. In this environment, an MT
data set obtained at the previously occupied 17 sounding sites would give
accurate depth-to-basement values.
Acknowledgments
We would like to thank Doug Maurer (WRD Carson City) for assisting in the
field work, for supplying gravity and magnetic models of the area, and for
supplying the Don Dow Wellex logs. We give special thanks to Dal Stanley,
USGS, for modeling and for supplying unpublished MT data that served as a
critical check on the experimental "suitcase" MT system.
References
Beyer, J. H., 1977, Telluric and d.c. resistivity techniques applied to the
geophysical investigation of Basin and Range geothermal systems, Part
1: The E-field ratio Telluric Method, LBL-6325-1/3: Lawrence Berkeley
Laboratory, University of California, Berkeley.
Bostik, F. X., Jr., 1977, A simple and almost exact method of MT analysis.
Geothermal Workshop Report, University of Utah, U.S. Geological Survey
Contract 14-08-0001-6-359, p. 175-177.
Cagniard, Louis, 1953, Basic theory of the magnetotelluric method of
geophysical prospecting: Geophysics, v. 18, p. 605-635.
Hoover, D. B., Frischknecht, F. C., Tippens, C. L., 1976, Audiomagnetotelluric soundings as a reconnaissance exploration technique in
Long Valley, California. Journal of Geophysical Research, v. 81, p.
801-809.
Hoover, D. B., and Long, C. L., 1976, Audio-magnetotelluric methods in
reconnaissance geothermal exploration. Proceedings, 2nd U.N. Symposium,
Developmental geothermal Resources, p. 1059-1064.
Hoover, D. B., Long, C. L., Senterfit, R. M., 1978, Some results from audiomagnetotelluric investigations in geothermal areas. Geophysics, v. 43,
p. 1501-1514.
Keller, G. V., and Frischknecht, F. C., 1966, Electrical methods in
geophysical prospecting. New York Pergamon Press, p. 197-350.
Leonardon, E. G., 1928, Source observations upon telluric currents and their
applications to electrical prospecting. Terrestral Magnetism, v. 33, no.
2, p. 91-94.
Strangway, D. W. , Swift, C. M., Jr., and Holmer, R. C., 1973, The application
of audio-frequency magnetotelluric (AMT) to mineral exploration:
Geophysics, v. 39, p. 1159-1175.
119°45'
40°45'
120°45'
iLassen 2
VIEW LAND
40°00'
Figure 1. Location map for the MT, AMI, telluric traverses, and resistivity
sections. Dots are AMI and MT stations. Dashed lines are telluric
traverses. Thin lines between capitalized letters, i.e., A-A', are the
end points for the electrical cross section.
to 27 KHz
to 14 KHz
0.001
10
0.01
IOO
000
Figure 2. Typical spectrum of amplitudes of electromagnetic noise in the
extremely low frequency (ELF) range (from Keller and Frischknecht,
1966. Partial frequency ranges of the MT, AMT and TT equipment are also
shown.
10
1000
= 1
1
1 1 II 1 II
1
1 1 M 1 1 II
1
1 M 1 1 1 11
1
1 II 1 1 1 11
1
1 1 1 1 1 1 1|
1
1
1 1 1 1 1±
Lassen 2 E
-
100 M
I
5 -
.
^
-
-
.
A
.
A
^M
f\
:
o
> 10
"
>
H
DM
D
_
-
55
D
D
BI>
I
*
Trangles - TM mode
""
Squares - TE mode
LU
flC
90
1.0
(D
01
A A
A
D D^
D
A D A^
° °A
I
0.1
0.001
IIAA;
100
I
i 10
D
*^A
9
*"
01
CO
^
0.1
1.0
i i i HUMi
i i i milli
I I Mini!
I Miinil
10
100
FREQUENCY (HZ)
i i i iiiuii
1000
^
A AA AA
""
_
I I linn n o.
i i i mmi i i uiia
^
Lassen 4 E
I.
E
A
o
A
D
i ilium 0 ! inniil
0.01
rin nulli
i
:
I
ii mill
^
A
D
A
AA A
A
^D^^D^DAAAA^-.
0
0
DoOpOD
~
D
>
-
z
I
"
CO
LU
cc
Oft
90
A
0.1
0.001
i i I Mini
0.01
i
itnilll
0.1
D
fift
fi o^DnnD°°
01
CO
g S*B'**"
i illlllll
1.0
1 II Illlll
10
-
o
Ol
1
Ml Mill
100
1 MIIIII 0
1000
0.
FREQUENCY (HZ)
Figure 3. MT Soundings Lessen 2 and 4 from unpublished data collected by Dal
Stanley (U.S. Geological Survey, written communication, 1988). These two
soundings were used to check the experimental "suitcase" MT soundings in
appendix 1 and 2.
11
HONEY LAKE LINE 1
STATION NUMBER IN METERS
HONEY LAKE
Figure 4. Telluric traverse 1 (TT-1) with sequential frequency offset by a
factor of 2 to allow discrimination of the curves. Data for the 270 Hz
curve was not recorded until station 3000-3500.
12
10.00
a oo
6.00
STATION NUMBER IN METERS
HONEVLAKE
HONEY LAKE LINE 2
Figure 5. Telluric traverse 2 (TT-2) with sequential frequency offset by a
factor of 2 to allow discrimination of the curves. Note the graben
feature between stations 2500 and 6000 on the .025 Hz curve.
13
HI
_i
HI
I
O
0>
0>
-9000
'
5000
6000
7000
NO VERTICAL EXAGGERATION
4000
*
8000
7=
Figure 6. Electrical cross section along TT-1 contours are a logarythmlc
Interval of four divisions per decade In ohm-m (10, 18, 32, 56, 100....),
3000
STATION SPACING (meters)
TT - 1
9000
NORTH
M
L/i
-7000
-6000
-5000
-4000
-3000
-2000
-1000
O
UJ
SEA
LEVEL
1000
r
z
<D
2000
3000
-500
4000
SOUTH
2000
3000
5000
NO VERTICAL EXAGGERATION
4000
6000
Figure 7. Electrical cross section along TT-2 contours are a logarythmlc
Interval of four divisions per decade In ohn-m (10, 18, 32, 56, 100....).
1000
STATION SPACING (meters)
TT - 2
NORTH
5000 -
VERTICAL EXAGGERATION 20 : 1
SEA
LEVEL
-1000
Figure 8. Electrical cross section from the Don Dow well north towards Karlo
(A-A 1 , fig. 1). Contours are a logarythmic interval of four divisions
per decade in ohm-m (10, 18, 32, 56, 100....).
16
UJ
_l
UJ
<D
cS
_
1000
2000
3000
4000
5000
B
NW
Figure 9. Electrical cross section roughly northwest to southeast (B-B 1 , fig.
1) along the north side of Honey Lake Valley. Contours are logarythmic
apparent resistivities in ohm-m from inverted AMT dat, 4 to a decade (10,
18, 32, 56, 100....).
VERTICAL EXAGGERATION 20 : 1
14
B
SE
NORTH
SOUTH
C1
C
£
4000
111
_i
3000
111
VERTICAL EXAGGERATION 20 : 1
2000
Figure 10. Electrical cross section along the eastern side of Honey Lake
Valley from inverted AMT data (C-C 1 , fig. 1). Contours are a logarythmic
interval of four divisions per decade in ohm-m (10, 18, 32, 56, 100....).
18
SOUTH
NORTH
D'
D
5000
4000
3000
UJ
I
UJ
2000
VERTICAL EXAGGERATION 20 : 1
1000
Figure 11. Electrical cross section across the Honey Lake Valley roughly
parallel to the Cal-Neva road from inverted AMI data (D-D 1 , fig. 1).
Contours are a logarythraic interval of four divisions per decade in ohm-m
(10, 18, 32, 56, 100....).
19
Appendix 1
20
MTH001 LOCflL H-ref
21:33:03
RPPRRENT RESISTIVITY
12 May
1988
10000 t=
(4-000
CO
10
en
o_
Q_
en
1
1
i
.001
1 1 1
l^hil
.01
. 1
1
10
100
1000
10000
HERTZ
21 :33:03
MTH001 LOCflL H-ref
IMPEDflNCE PHflSE
1 1 Cl
100
*"
L
|
>
^f
i
1,
on
E
70
m^
:
V
E
M
.\ ,
en 50
m
f
E
RPI
w CJ
f5l
UJ C
60
CO
12 May 1988
\
E
d-40
5
E
^
r -
30
«J CJ
y
20
>
10
>*
0
-1 CT
.001
.01
1
10
HERTZ
21
100
1000
10000
MTH001 LOCRL H-re-F
21:33:03
Z MflXIMUM DIRECTION
12 May 1988
180
135
90
0
LJ
-90
-135
-1
.001
.01
.1
MTH001 LOCRL H-ref
SKEN
1
10
HERTZ
100
1000
10000
21:33:03 12 May 1988
1.1
E
I
=
Q
. w
[
"\
E
.7
~^T
UJ
^
P
E
fs
- >-
=
q
CD - 5
c)
E
.4
E
3
o
ci
E
p
b
E
. 1
|
0
.0 01
.211
1
1
1
0
HERTZ
22
1230
10 00
10E
MTH002 LOCRL H-ref 21:10:24 12 May 1988
flPPRRENT RESISTIVITY
10000
pr
fJ-000
LO
10
CE
o_
0_
CE
I
1
1
.001
f
.1
1 1
.01
11
i i 11
1
i i i i tin
10
100
i i i i nit
i i 1 1
1000
10000
HERTZ
MTH002 LOCflL H-ref
IMPEDflNCE PHflSE
i i tj
\
E
q-
I l*~
RPI
<bJ <LJ
i
80
E
rt
70
i
n:
12 May 1988
=
100
ra
LJ ^
60
LO
OI50
2 1 : 10:24
'
v
i
N
>^
>
'
:
0_ 40
E
30
O EJ
S<-
7
I-
20
X
10
X
>,
I-l
0
-1 n
.001
.01
1
1
10
HERTZ
23
100
1000
10000
MTH002 LOCflL H-ref 21:10:24 12 May 1988
Z MRXIMUM DIRECTION
180
135
90
0
*
«
X
-135
180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH002 LOCRL H-ref
SKEW
21:10:24 12 May 1988
1. 1
1
.9
.8
.7
O -r-
CD
.4
.3
.2
. I
.001
.01
.1
1
10
HERTZ
100
1000
10000
MTH003 LOCRL H-ref
21:52:47
RPPRRENT RESISTIVITY
12 May
1988
10000 i=
f-1000
00
LQ
UJ
$$*
10
'«
cn
Q_
Q_
cn
I
. I
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH003 LOCRL H-re-F
IMPEDRNCE PHRSE
21 :52:47
12 May
1988
110
100
90
80
70
ff
60
LQ
OI50
Q_
30
20
10
0
-10
.001
.01
.1
1
10
HERTZ
25
100
1000
10000
MTH003 LOCRL H-ref
21:52:47
Z MRXIMUM DIRECTION
12 May 1988
1OU
"*
135
loo
-
90
oCJ
"Z.
o^45D
1
1
-
LJ 0
LJ
CK
S-45
J=J^ D
-
1
QCT
O CJ
-135
-1RR
*
~
-
1
X
5
X
i.
X
>:
gt
*
;
-
.001
1
.01
1
1 1 1 1 II
i
i i i 1 111
.1
i
i i i 1 111
1
10
i
i i i 1 111
100
i
i i i 1 111
i
i i i 1 1n
1000 10000
HERTZ
MTH003 LOCflL H-ref
SKEN
21:52:47
12 May 1988
.1
I
.9
.8
.7
CD -5
.4
C)0
.3
.2
. I
001
.01
.1
1
10
HERTZ
26
100
1000
10000
MTH004 LOCRL H-re-F
15:23:01
RPPRRENT RESISTIVITY
13 May
1988
10000 r=
00
LQ
10
X*
¥
CC
D_
D_
GE
I
. I
.001
I I Mill
I
I I II
.01
. 1
1
10
100
1000
10000
HERTZ
15:23:01
MTH004 LOCflL H-re-F
IMPEDflNCE PHRSE
13 May 1988
1 l tJ
=
100
|
90
i
80
E
70
LoJ 60
LQ
OZ50
IE
Q-40
E
i
>l ,
T3
^r
E
E
SF
*-
i
30
\
E
t
V
>
f
'
Tl
X^N
>'
"i '
-_
--
">
B
20
:
--
10
:
>;
0
=
-10
.0 01
.01
.1
i
10
HERTZ
27
100
1000 10000
MTH004 LOCRL H-ref
15:23:01
Z MRXIMUM DIRECTION
13 May 1988
180
135
90
LJ
UJ
2*
0
-135
-180
.001
.01
.1
1
100
10
1000
10000
HERTZ
MTH004
SKEW
LOCRL H-ref
15:23:01
13
May
1988
k
1.1
:
1
=
.9
c )t
=
.8
)
E
.7
:
IS .6
UJ
CO -5
=
:
.4
.3
:>
i
1$
T(
-^
fj
.2
. 1
0
.0 01
.01
.1
1
10
HERTZ
28
100
1000
10000
MTH005 LOCRL H-re-F
15:45:24 13 May 1988
RPPRRENT RESISTIVITY
10000 t=
LO
* ***
10
nr 3Zr"3Z~~5p
cn
D_
DCE
1
. 1
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH005 LOCflL H-re-F
IMPEDflNCE PHflSE
15:45:24
13 May 1988
1 i Cl
I
100
RPI
vJ U
\
E
80
E
70
=
f^ (Tl
UJ 60
LO
OI50
m
E
V
/
'
E
Q-40
E
>C
30
%7 HJ
^m
20
1
^ X
i
E
;
i
^
s
f
E
10
>
E
'
0
E
rT
1n
.001
.01
\
'
10
100
1000
10000
MTH005 LOCRL H-ref
Z MflXIMUM DIRECTION
15:45:24
13 May
1988
1 OCJ
-
135
^
90
g<5
i i
1
LJ
LJ
C£
1
-
0
x±7
-
' AC
a 45
*
-90
***, fS
>$£
w» U
\F
£
-
-135
i
-1 RR
.001
i i 1 1 1 ii
i
i i 1 1 111
i
i i i 1 1 ii
.1
.01
i i i 1 111
1
10
HERTZ
MTH005 LOCRL H-ref
SKEW
1.1
i
15:45:24
i
i i i 1 1 ii
100
i
i i 1 1111
i
i t 1 1 111
1000 10000
13 May 1988
=
1
C)
E
.9
E
.8
:
C)
.7
=
IS .6
LU
:
LQ -5
:
.4
'j
:
(to ~
C)
.3
i-
.2
(, 5
. 1
0
.0 01
3)
.01
. 1
e)
1
10
HERTZ
30
100
1000
100
MTH006 LOCRL H-ref
15:51:25
RPPflRENT RESISTIVITY
10000
13 May
1988
FT
X
t-1-000
LQ
*
10
en
o_
CL
en
.1
.001
I
I I I MM
.01
I
I I I I
.1
1
10
HERTZ
15:51 :25
MTH006 LOCRL H-ref
IMPEDRNCE PHRSE
100
1000
10000
13 May 1988
110
100
70
LQ
CH50
l*^
30
20
10
0
-10
.001
.01
.1
1
10
HERTZ
31
100
1000
10000
MTH006 LOCRL H-ref
Z MRXIMUM DIRECTION
15:51:25
13 May
1988
180
135
90
0
UJ
dT 45
4V
-90
-135
-1
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH006 LOCRL H-ref
SKEN
15:51:25
13 May 1988
1.1
r
1
:
. Q
«J
c)
|
E
.7
E
~*5T
C
bJ
^
-
l_4_
')
(
c)
)
c)
E
LO -5
.4
~
[
:
3
*J
j
.2
E
. 1
CT
:
001
.01
.1
1
10
HERTZ
32
100
1000
10000
1 X
1
1
1
l.._^
XN
1
1
^
CD
£3
|
1
YA
x-V-
H>
v '
1
I
mi 1 1 i i
H- H
IIIILJ 1 1
D
3
h
1
X
X
*
x*xf
x"
J**
'
1
1
inn i i i
O
O
H
1
Hill 1 1
CD
-«
1
XN
Illl 1 1
*
1
1
-
-
-
-
E
=
-
102
1000
100
.001
10
1
.1
.01
HERTZ
1988
LOCf1re2:-0lPL0
16:H-MTH007
May
13
PHfIMPEDlfSNCE
XN
'
N
'
1
.
X\
X
1
i
'
\
iiniiiii
V
V>
>-x
-H
cD
of)
Illllllll
CD
Ca
UT
Xr
101 n i
-H-
CD
CJD
iiniiiii
C3
r^
iiniiiii
CD
0D
Illllllll
CD
ar)
Illllllll
V -1
CD
CD
Illllllll
D
H
H
C3
nJ
1-
1
v
'
C3
^-<
.
2
Q
Q
(3
(3
Q
i
: CJ
:
-
|
'
;
i
(3
(3
CD .
^ -i
iiniiiii
h- *]
«
0 i
M- 0
C3
-i
N
_L
1
U
MTH007 LOCRL H-ref
16:12:00 13 May 1988
Z MRXIMUM DIRECTION
180
135
90
'45
o
LJ
LJ
0
-30
-135
-180
.001
.1
.01
1
10
100
1000
10000
HERTZ
MTH007 LOCflL H-re-F
SKEN
16:12:00 13 May 1988
1.1
c)
E
1
=
q
O
=
j
-p
I c)
.7
C)
c)
|
~"<3T
C
UJ
^ - ,-5
en
.4
3
. w
.2
. 1
n
001
.01
. 1
1
10
HERTZ
34
100
1000
10000
MTH008 LOCflL H-re-F
16:26:52 13 May 1988
RPPRRENT RESISTIVITY
10000 1=
f-1-000
CO
UJ
I10
I
I
I
UJ
en
o_
D_
en
i
.i
.001
*
i ii
.01
. i
i
10
100
1000
10000
HERTZ
MTH008 LOCRL H-re-F
IMPEDflNCE PHRSE
16:26:52
13 May 1988
110
100
80
70
cn
30
20
10
0
-10
.001
.0
1
1
10
35
100
1000
10000
MTH008 LOCRL H-ref
16:26:52 13 May 1988
Z MRXIMUM DIRECTION
180
135
90
0
LU
i i AC
C=T 45
-90
-135
.001
.01
1
. 1
10
100
1000
10000
HERTZ
MTH008 LOCflL H-ref
SKEN
16:26:52 13 May 1988
c)
1.1
=
1
()
E
c)
q
<j
E
c )-
E
.7
"^
UJ
c
^:
en - -5
_§]
:
=
c)
E
.4
\
3
*j
p
c.
E
c)
c)
E
.1
=
a
001
.01
.1
i
10
HERTZ
36
100
1000
10000
MTH009 LOCRL H-ref
16:39:44
RPPRRENT RESISTIVITY
13 May
1988
10000 r=
(JJ300
en
10
cn
o_
Qcc
1
.1
I
.001
I I Mill
__I
I I
.1
.01
1
10
100
1000
10000
HERTZ
16:39:44
MTH009 LOCRL H-ref
IMPEDflNCE PHflSE
13 May 1988
1 1 KJ
E
V
V
/
X
;
;
100
E
V
90
O CJ
E
80
E
70
\
=
V
f* O
LJ 60
CO
cn50
ni
<
N,
:
t
>
\
^40
N,
.
^
E
30
w CJ
' \
> .%.
>;
E
^
20
>
10
0
-1 n
.001
.01
1
10
HERTZ
37
100
1000
10000
MTH009 LOCRL H-ref
16:39:44 13 May 1988
Z MRXIMUM DIRECTION
180
90
0
UJ
-90
-1
-1
.001
.01
.1
1
10
100
1000 10000
HERTZ
MTH009 LOCRL H-ref
SKEN
16:39:44
13 May 1988
1. 1
C)
8
.7
UJ
.6
LQ
0
.001
.01
.1
1
10
HERTZ
38
100
1000
10000
MTH010 LOCflL H-re-F
16:52:31
flPPRRENT RESISTIVITY
13 May 1988
J CldCICI
!
f-1-000
=
\ 1
>
1
1
\
-
LJ J rant
,_} 00
LD
UJ
t^ 10
UJ
cn
D_
n
cc
E
""
^
E
-
_
^4
^^ \x
^
yfc 7^ *** '^
VL X**
M^^
* **¥
i
I
5
i
-2
k.
^
J
i i i HIM
1
.001
IJJ 1 1 1 1 14
.01
-Irt MM
|
.1
1
1 1 1 MM
1
1
10
1 1 1 MM
100
1
1 1 1 III!
1000
1
1 1 HIM
10000
HERTZ
MTH010 LOCRL H-re-F
IMPEDRNCE PHflSE
16:52:31
13 May 1988
1 i U
|
100
E
^
I
90
v CJ
i
80
E
70
f* O
rl
=
UJ 60
in
E
m
E
>
\/
'
X
^1
CH50
.>
1
'
x'
E
30
W CJ
2 ^t
E
'
20
E
10
E
0
E
-10
.0 01
.E31
1
10
1
hlERT^
7
39
IE30
10 00
102300
MTH010 LOCRL H-re-F
16:52:31
Z MflXIMUM DIRECTION
13 May 1988
i OCJ
135
-
90
o 45
i i
hLJ
UJ
C£
0
1 ' Ad
Q 45
J,
3£
2L
***> i*r-^
-90
-135
i i i 1 1 1 it
~1 fin
.001
i
i i 1 1 11H
i i 1 1 111
.01
1
10
HERTZ
.1
MTH010 LOCRL H-re-F
SKEN
1.1
1
q
. *j
i i 1 1 1 111
16:52:31
100
i i i 1 1111
1000
10000
13 May 1988
~
E
-
E
E
.7
-^
c
C)
UJ
C)
Ul - 5
.4
c)
3
w
.2
T?
C>
I
-
. 1
a
.001
.01
1
10
HERTZ
40
100
1000
10000
MTH011 LOCRL H-ref
17:05:51
RPPRRENT RESISTIVITY
10000
=
X
1-1-000
LQ
00
I
10
CC
Q_
Q_
CH
13 May 1988
1
. 1
.001
.01
1
.1
10
100
1000
10000
HERTZ
17:05:51
MTH011 LOCRL H-ref
IMPEDRNCE PHRSE
13 May 1988
i 1 KJ
:
100
90
80
E
E
E
70
E
UJ 60
LQ
cn50
m
"*
E
\b
^\
5
r ^
E
0-40
j
30
::_£_A
|
0
Tl
. -1
E
20
10
\
E
T
\
i
-10
.0 01
i'
s'
^^
.01
.1
1
i
10
HERTZ
41
100
1000
10000
MTH011 LOCflL H-ref
Z MflXIMUM DIRECTION
17:05:51
13 May
1988
160
135
90
0
**
-90
-135
-180
.001
.01
. 1
1
10
100
1000
10000
HERTZ
MTH011
SKEN
LOCRL H-ref
17:05:51
13 May
1988
1. I
.8
3 .6
LJ
CO - 5
.001
.01
.1
1
10
HERTZ
42
100
1000
10000
MTH012 LOCflL H-ref
17:14:24 13 May 1988
flPPRRENT RESISTIVITY
10000
CT
1-1200
LQ
K
10
CE
D_
D_
1
i i i i mi
1
.001
t i n
.01
I 1 1 nil
.1
1
1 t 1 III!
1
10
1
1 1 1 Illl
100
1
1 1 HIM
1
1000
1 1 1
10000
HERTZ
MTH012 LOCRL H-ref
IMPEDflNCE PHflSE
17: 14:24
13 May 1988
i 1 U
100
E
=
90
^/ CJ
i
80
E
70
i
C fil
UJ 60
LQ
OZ50
m
I
1
:
1
"!*' ; f
E
Q-40
^ ^ *i"
if>rj
E
30
T
<_/ CJ
E
am
20
:
10
E
0
E
-i n
.001
.01
.1
1
1
10
HERTZ
43
100
1000
10000
MTH012 LOCflL H-ref
17:14:24 13 May 1988
Z MRXIMUM DIRECTION
180
135
90
0
*
****
~90
-180
.001
.01
.1
MTH012 LOCRL H-ref
SKEW
1
10
HERTZ
17:14:24
100
1000
10000
13 May 1988
i. i
i
i
E
.9
E
.8
r
E
.7
IS .6
LoJ
E
E
Ul - 5
5
.4
",-JB #
.3
.2
. 1
0
.0 01
.01
.1
i
10
HERTZ
44
100
1000
10000
MTH013 LOCRL H-ref
18:53:57 13 May 1988
RPPRRENT RESISTIVITY
hl-000
acn
10
* ***
1F
cn
D_
o_
cn
.i
.001
.01
. i
i
10
100
¥
1000
10000
HERTZ
18:53:57
MTH013 LOCRL H-ref
IMPEDRNCE PHRSE
13 May 1988
I I U
E
100
90
|
^
V
E
--
E
s '
80
70
_
Tl
^
|
X f
:> ;
UJ 60
cn
E
E
\
E
30
j
20
*I J.
j
10
0
E
-10
.0 01
>,
.01
.1
1
10
HERTZ
45
100
1000
10000
MTH013 LOCRL H-ref
18:53:57
Z MRXIMUM DIRECTION
13 May 1988
180
135
90
0
UJ
i i AC=T 45
-90
-135
-180
.001
.01
.1
1
10
100
1000 10000
HERTZ
MTH013 LOCRL H-ref
SKEW
18:53:57
13 May 1988
1. 1
.8
.6
en -5
.001
.01
. 1
1
10
HERTZ
100
1000
10000
MTH014 LOCRL H-ref
19:09:03
RPPRRENT RESISTIVITY
13 May
1988
10000 f=
|-LJ300
LH
10
UJ
en
D_
D_
cr
¥
1
*
X-
TT
. 1
.001
.01
1
.1
10
100
1000
10000
HERTZ
19:09:03
MTH014 LOCRL H-ref
IMPEDflNCE PHRSE
13 May 1988
i ia
=
100
\/
i
V
\
-/
'
90
W £J
i
ora
oW
"«
E
70
\'
I
era
LJ G0
LH
OI50
m
-^
^^
I
E
E
)»
^
^40
i
30
v CJ
E
20
i
10
>'
E
0
E
1n
.001
^
.01
c
.1
1
10
HERTZ
100
1000
10000
MTH014 LOCflL H-ref
19:09:03 13 May 1988
2 MflXIMUM DIRECTION
i OKJ
-
135
4 ^ %J
-
90
w? KJ
-
1
1
1
LJ>
LJ
I
0
-
V
,
1a' 45
H:3
-
«4
K ^K^
-90
^J vJ
^^
-135
.
-1RCT
.001
1
.01
1
I
I I I II
.1
MTH014 LOCflL H-ref
SKEN
i 1 111
t i i 1 1111
i i i 1 1 111
1
10
HERTZ
100
1000
i i i 1 1 1 it
10000
19:09:03 13 May 1988
1. 1
.8
.6
LD
0 F
.001
. . ......I . . ......I
.01
.1
10
1
HERTZ
Aft
100
1000
10000
MTH015 LOCRL H-ref 21:21:41
RPPRRENT RESISTIVITY
13 May 1988
10000 t=
n
1-1-000
CD
10
¥-
o:
01
o_
a. i
CE
.1
.001
.01
.1
1
10
100
1000
10000
HERTZ
21:21:41
MTH015 LOCRL H-ref
IMPEDRNCE PHRSE
1 1 U
E
100
E
-1-
Is
/
13 May 1988
^
}
RR
O CJ
j
E
80
E
V
70
,
5
i
rj
LJ c*
60
:r
cn
OI50
31
d-40
>;
^
30
w CJ
20
10
0
-in
.001
.01
.1
1
10
HERTZ
AQ
100
1000
10000
MTH015 LOCRL H-ref 21:21:41
Z MRXIMUM DIRECTION
13 May 1988
180
135
90
0
LJ
-90
-135
-180
.001
.01
.1
MTH015 LOCRL H-re-F
SKEN
1
10
HERTZ
21:21:41
11111 _i
100
1000
10000
13 May 1988
1. I
.8
.6
Ul
0 F
.001
" "'
.01
' """'
. 1
10
1
HERTZ
50
100
1000
10000
CD
CD
cn
X
(0
^r
OJ
« i
OJ
IQ) >
i- I l
I H
I 01
CE U
U QL
O
_l K
Z
CD U
CK
o cr
i Q.
z: cr
H Q.
1 XX
*
1
h->
1
I.,,, y
Illl 1 1 1
h- K
1
inn i i i
1
*"
i-X
>k
'*
xtfc
)K
*
*
|
1
\
X)f
*
XH-
*
*
*
*
1
I
1
\
s~
Mill 1 1
B< ~~"
1
^
1
XX
x
-
-
=
=
^V
t
_
_
IH>)
inn i i i
; fc
H
1
I
1
Mill 1 1
MX
X
\
1
7^
A3IAI1SIS3H
LXJ
« 1
(3
"*
Q
Q
CSD
(3
CD
CD
CD
«i
21
«
1
h-
pj
<"
^
LJU
*""*
_J U
Z
CD CE
Q
O U
T n
o u
CE Q.
u
1 U
I Lfl
CE
(U
OJ
~T~
I
«
2 N
««
<
£
Q
Q
i
niiiiiii
rj
'
=
^
h >Q-
H
1'
H
v ^
^
1
Illllllll
w
*h
*"
-1
^~
h-h
^ X
XX
niiiiiii niiiiiii Illllllll
3SbHd
V *.
sv~
-1 1
Illllllll Illlllll
-AA
:
.
CJ
Q
CSD
CSD
»i
Q
C3
^^
NJ
1 >J
h-
LJ
- n:
i
Q
Q
MTH016 LOCRL H-ref 21:32:41
Z MflXIMUM DIRECTION
13 May 1988
180
135
90
'45
o
0
LJ
o:
-90
-135
-1
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH016 LOCRL H-ref
SKEN
i . i
E
21:32:41
13 May 1988
-p
1
\
r r1
q
w
\
-, c )
-$c
I
"c
.7
"^ c
UJ
^ LO - 5
§
c)
"ffij_E
)
:
=
=
*~
4
3
O
2
^
. 1
n
.001
.01
.1
1
10
HERTZ
100
1000
10000
MTH017 LOCflL H-ref
21:40:48
RPPRRENT RESISTIVITY
13 May
1988
10000 e=
|J-000
en
10
UJ
CK
cc
o>
D_
cc
I
i i i inn
.001
1
1 1
1 -071
.01
.1
1
i i i i INI
1 1 1
1
10
100
111 inn
1000
i i i i mi
10000
HERTZ
21 :40:48
MTH017 LOCflL H-ref
IMPEDflNCE PHflSE
13 May 1988
1 1 KJ
I
100
\
90
Ou
E
80
V
E
f
70
c* n
i
UJ 60
en
en 50
E
IE
Q_4 0
\
30
^ CJ
\
E
t
:
T J 1?
^'
>j
^5
/
'
/
v
20
E
10
E
0
-i n
E
001
-^it.01
>
\ ,-
,
"1
\
1
10
HERTZ
53
100
1000
10000
MTH017 LOCRL H-ref 21:40:48 13 May 1988
Z MflXIMUM DIRECTION
180
135
90
0
LJ
-90
-135
-180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH017 LOCRL H-ref
SKEN
1.1
r
21:40:48 13 May 1988
-e T
i
E
c)
|
ft
=
.7
-^
c
UJ
^ _
LQ - 5
:
:
- c)
D 1-
-1-
C
E
.4
3
o
.p
c.
. 1
n
.001
.01
.1
1
10
HERTZ
54
100
1000
10000
Appendix 2
55
MTH001 LOCflL H-ref
14:58:33 20 May
RPPflRENT RESISTIVITY
1988
10000 f=
fj-000
00
en
UJ
K
10
CH
QQ-
I
cn
.i
I
. 001
I I Mill
I
I I I
.01
1
. 1
10
100
1000
10000
HERTZ
MTH001 LOCflL H-ref
IMPEDflNCE PHflSE
14:58:33
20 May
1988
1 i CJ
:
100
=
E
80
E
V
:
'»
70
f
*LJ
r*
UJ f^
60
E
V
.
en
OI50
y-
m
*P ZE
0-40
\
>
1
30
^? CJ
*n m
20
1 00
0
^j
-1 0
.001
.01
.1
1
56
10
100
1000
10000
MTH001 LOCRL H-ref
14:58:33 20 May 1988
Z MRXIMUM DIRECTION
135
90
o 45
0
LjJ
i i AC=T 45
-90
-135
-1
.001
1
10
HERTZ
.1
.01
MTH001 LOCflL H-ref
SKEN
100
1000
10000
14:58:33 20 May 1988
1.1
1
|
=
q
w
t. )
=
.7
"^ c
UJ
^ CO - 5
|
C)
--
:
:,
:
.41
E
4
~
-t J
<)
3
<J
2c.
. 1
0
.0 01
.E
1
1
1
1
0
HERTZ
57
12)0
10 00
100
MTH002 LOCRL H-re-F
15:20:08 20 May 1988
RPPRRENT RESISTIVITY
10000 cr
(-1-000
00
LO
10
CK
!s
cn
D_
CL
cn
1
1
.001
^f
i ii
1 1 M
--V
I
I ill I
.01
I Illllll
.1
1
10
HERTZ
MTH002 LOCRL H-re-F
IMPEDRNCE PHRSE
i i Cl
100
15:20:08 20 May
1000
I I I 11
10000
1988
=
100
E
^'
-> r
90
w CJ
i
80
s. f
E
70
r* o
UJ 60
LH
CH50
1C
0-40
*
i
\
V
^'
E
=
1
30
^ CJ
?i
>:
/
V/
_> ^
>
E
20
i
=
dr-^
10
:
»
\-
0
j
-1 n
.001
.01
>
.1
1
10
HERTZ
58
100
1000
10000
MTH002 LOCRL H-ref
15:20:08 20 May 1988
Z MflXIMUM DIRECTION
180
135
90
O
0
-90
-135
-180
.001
.01
1
. 1
10
100
1000
10000
HERTZ
MTH002
SKEN
LOCRL H-ref
15:20:08
20 May
1988
1.1
\
i
C j>
E
.9
:
.8
j
c)
.7
f»
I
IS .6
UJ
CD - 5
C)
_c 1
f )_
\
E
:)
.4
.3
|
E
.2
. 1
c)
|
=
0
. 0 01
.01
.1
1
10
HERTZ
59
100
1000
10E
MTH003 LOCRL H-ref
15:28:58
RPPRRENT RESISTIVITY
10000
20 May
1988
R
-
f-4-000
5
-
LQ
UJ
X
* >
10
D_
D_
cc
i v .
-
cn
s»
s s-« ....
1*
\
X
1
-
X
r i
.01
i i i inn
1
.001
?*i \ MM
1 1 HIM
.1
1
1 1 1 MM
1
1
10
1 1 1 MM
100
1
1 1 Mill
1000
1
1 1 Hill
10000
HERTZ
MTH003 LOCRL H-ref
IMPEDRNCE PHflSE
1 i U
100
15:28:58
20 May
1988
=
E
90
^fv
E
V
on
'
>
E
70
-f
"1 >
±J- fl
=
c fa
UJ 60
LD
nr 50
1C
<^40
E
>
'
'
^
E
ij/
rK
E
30
^ CJ
I
?I-i
E
I>:
i
--
20
'
10
I
0
-1 Pi
i
.001
.01
.1
1
10
HERTZ
60
100
1000
10000
MTH003 LOCflL H-ref
15:28:58 20 May 1988
Z MRXIMUM DIRECTION
180
135
90
C_J
UJ
0
-90
-135
-180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH003 LOCRL H-re-f
SKEW
15:28:58 20 May 1988
X . 1
E
1
=
q
. <3
=
E
.7
"^
LtJ
^
c
cn - -5
E
:
E
.4
E
3
w
E
.2
. 1
Pi
E
AJ i
i
i
c£c>' c )
ij
E
.001
.01
1
10
HERTZ
61
100
1000
10000
MTH004 LOCflL H-ref
15:39:25
RPPflRENT RESISTIVITY
20 May
1988
10000 t=
jJ-000
00
LO
UJ
10
**
¥
en
o_
Q_
cc
K
1
I
. 1
.001
I I I Mil
I
I I I MM
.01
. 1
1
10
100
1000
10000
HERTZ
15:39:25 20 May 1988
MTH004 LOCflL H-re-F
IMPEDflNCE PHflSE
1 1 U
i
100
E
90
*J CJ
\ ^
i
80
:
70
_x
"
c> r>
UJ 60
LO
cn50
HI
Q> 4 0
-« '
__
= -
I Z>
±1
> O
30
wl CJ
V
/
^
k.
20
10
0
)
^
-1 n
.001
.01
.1
1
10
HERTZ
62
100
1000
10000
MTH004 LOCflL H-ref
15:39:25 20 May 1988
Z MRXIMUM DIRECTION
IOKJ
135
-
90
-
o 45
i i
1
(_j>
UJ
C£
/ v
%Jl iL
W 20
^>FX>
**
0
i^
-
-^i
a 45
1
' >IG
90
w CJ
-135
1 an
_
1 11
.001
.01
.1
i 1 1 1 1 111
1
1 1 1 1 11
10
HERTZ
MTH004 LOCflL H-ref
SKEW
i.i
1
1
1
1 1 1 1 1 11
100
1000
1
1 1 1 111
10000
15:39:25 20 May 1988
=
I
c)
=
(1
q
. <^
i
=
.7
E
"^ c
UJ
^ _
CD - 5
c)
E
!>~1
c
.4
3
^
xcE(
3>i
c)
. p
c,
.1
CT
001
.01
.1
1
10
HERTZ
63
100
1000
10000
MTH005 LOCRL H-ref
15:56:12 20 May 1988
RPPRRENT RESISTIVITY
1 &&&&
"""
1-1-000
1
1
1
1
r>
1
2
LD
UJ
-
^ 10
'
UJ
-
OZ
Q_
Q_
cn
K
c . *,,^
^
it
V/
T~
K
X
T~
5* ^L ^f-
x/
x^
^7
if
1
I
3
-
rr
1
1
.001
1 1 Milt
1
"x
1
1 -li-l 1 III
.01
X /
1
i i 1 1 mi
1 1 1 II
.1
1
10
i i i i mi
100
i i i inn
1000
1
1 1 Mill
10000
HERTZ
MTH005 LOCRL H-ref
IMPEDRNCE PHRSE
i i KJ
15:56:12 20 May 1988
=
100
E
SPI
^w
80
^ f
E
E
70
ra
UJ ^
60
LQ
OZ50
HI
Q-40
=
->
,
V.
\
\
30
v CJ
I ]
a.
. «
>
20
n"i
p3:,
r
,
S
0
.001
>
)
10
.01
f
S
*
\
-1 a
/
E
.1
> '>
*?
'
;
1
10
HERTZ
64
100
1000
10000
MTH005 LOCRL H-ref
15:56:12 20 May 1988
Z MRXIMUM DIRECTION
135
30
0
-90
-135
-180
.001
.01
. 1
1
10
100
1000
10000
HERTZ
MTH005 LOCRL H-ref
SKEN
15:56:12 20 May 1988
1 . 1
i
q
j
|
=
E
j
.7
""^
C
LJ
^
-
\
c)
\
CO - 5
I
~
4
\
i
.q
«j
=
.2
E
. 1
n
C)
i IT
I r }r
"T~
C*>')
j
001
.01
.1
i
10
HERTZ
65
100
1000
10000
MTH006 LOCRL H-ref
16:06:37
RPPflRENT RESISTIVITY
20 May
1988
10000
V
Y
(4-000
00
LQ
*!*
10
K
-r >
OZ
D_
D_
OZ
.1
.001
1
1 1 1
.01
.1
1
10
100
1000
10000
HERTZ
MTH006 LOCRL H-ref
IMPEDRNCE PHRSE
16:06:37
20 May
1988
i i CJ
E
100
i
\
'
90
O tJ
on
:
\
^
70
\
E
> '\
ra
LJ c
60
LQ
0150
in
'
>
1
E
>k
E
Q-40
>
E
J
\
^
30
& t->
>
<<
=
V
\e
20
i
10
r
0
-1 n
^
f
E
.001
.01
.1
1
10
HERTZ
66
100
1000
10000
MTH006 LOCRL H-re-F
16:06:37 20 May 1988
Z MRXIMUM DIRECTION
180
135
90
45
0
UJ
Q- 45
-90
-135
-1
.001
.1
.01
1
10
100
1000 10000
HERTZ
MTH006 LOCRL H-re-F
SKEW
i.i
16:06:37 20 May 1988
=
c)
i
j
q
w
c)
j
E
.7
~^
- c)
E
c)
K
LJ
^ - c-5
cn
=
C)
-"
=
.4
E
f1
:>
3
» w
=
.2
E
. i
n
:
001
.01
.1
i
10
HERTZ
67
100
1000 10000
MTH007 LOCRL H-ref
16:16:17 20 May 1988
RPPRRENT RESISTIVITY
1-1-000
LQ
K
* £*
*
^
*
10
OZ
CL
CL_
CC
1
. 1
.001
.01
.1
1
10
100
1000
10000
HERTZ
16: 16: 17 20 May 1988
MTH007 LOCRL H-ref
IMPEDRNCE PHRSE
1 I Cl
100
E
V
/
V
,
f
i
90
wJ CJ
)
E
80
70
E
t^ nt
UJ 60
LQ
OZ 50
in
>
E
>O
'
>(
\
E
Q_40
E
30
w CJ
E
20
=
10
-^
NI f
0
>
c\
E
-1 PI
.001
.01
.1
1
10
HERTZ
68
100
1000
10000
MTH007 LOCRL H-ref
16:16:17 20 May 1988
Z MRXIMUM DIRECTION
180
135
90
£-£
0
.,45
-90
-135
-1
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH007
SKEN
LOCRL H-ref
16:16:17
20 May
1988
i. i
i
i
c)
=
g
^
=
c k *=
[ r)
r
.7
I
"^T
C
f)
-c )
UJ
^ -5_
en
4
. "T
3
. %j
p
^
. i
\
0
.0 01
.2
n
m
1
1
10
HERTZ
69
12}0
10 00
100
MTH008 LOCRL H-ref
16:25:04
RPPRRENT RESISTIVITY
20 May
1988
10000 i=
-
I
l_]_000
2
I
\,
\
£
-
->
i'
:**
^
X
10
cn
o_
N| "
V/
5
LO
sf
*¥
V
*
*%*
*
-
D_
CE
>'
--
-
,I
.001
/
1
1 1 1 III!
.01
1
1 1 1 MM
|
.1
-)
/
1 Mil
1
1
1 1 1 MM
1
10
1 1 1 Mil
100
1
1 1 1 Mil
1000
1
1 1 1 III!
10000
HERTZ
MTH008 LOCRL H-ref
IMPEDRNCE PHRSE
16:25:04
20 May
1988
110
100
90
80
70
60
CO
CH50
a_ 40
30
20
10
0
-10
.001
.01
. 1
1
10
HERTZ
70
100
1000
10000
MTH008 LOCflL H-ref
16:25:04 20 May 1988
Z MflXIMUM DIRECTION
1OKJ
-
135
1 W *J
-
90
^/ CJ
-
^45
o^
D
i i
1
LJ> 0
LiJ
Q£
|1=1* 45
*3
£
M^
> S(.
i
>£>O r^
^^ xlx f
^
>^
^
-
90
^/ CJ
-
-135
i
1 RPI
.001
i i i 1 1n
\
\
1
1 1 1 II
.1
.01
1 1 1 1 1 II
1
10
1
1 1 1 1 1 II
100
1
1
1 1 1 111
1000
1
1 1 1 1 1 II
10000
HERTZ
MTH008 LOCflL H-ref
SKEW
1.1
16:25:04 20 May 1988
E
C)
1
=
. q
*j
C)
i
C)
=
.7
"^ .6
UJ
^ CO -5
=
-i-
c)
:
4
\
\
. ~
4
\
c)
3
*s
C)
.2
. 1
0
.0 01
.2)1
.
1
1
10
HERTZ
71
12)0
10 30
100
MTH009 LOCRL H-re-F
16:33:23 20 May
RPPRRENT RESISTIVITY
10000
1988
pr
^
(4-000
-
LH
UJ
\^S
10
v/
v/
Q_
01
-¥
-
01
o_
SS**
TV
\/
:>
I
~
i i i inn ' |
.001
: ><
1 1 || ||
.01
| 1 Mil
|
.1
1
1 1 1 III!
1
1 1 1 Mil
1
10
HERTZ
1
100
MTH009 LOCRL H-re-F
16:46:50 20 May
RPPRRENT RESISTIVITY
10000 r=
E
i i i inn
1 1 Mill
1000
10000
1988
\'
v
f
(-1-000
-
00
LQ
UJ
=
\
'
10
nn
2
01
Q_
Q_
cn
^
N ' -,
I
\/
\^
n^ NX
y
yx
\s
\y
y
-¥
\/
Xr
_*
:I
>
\
t
;5 j
1
001
1 1 Mill
.01
1
| |
.1
;
1 MM
1
1 1 1 Mil
1
10
HERTZ
72
1
1 1 1 Mil
100
1
1 1 1 MM
1000
1
1 1 1 Mil
10000
MTH009 LOCRL H-ref
16:46:50 20 May 1988
Z MRXIMUM DIRECTION
1 ou
135
~
-
90
-
o 45
\ i
1
CJ
LJ
C£
1
-
f
0
-
vx
^^ \U \
Ktt)|C> ^
*r
/\
' AC:
Q 45
qpl
w» U
135
X ^J iJ
1
1 Rft
.001
1
1 1 1 1 II
1
1
1
1 1 1 1 11
.01
. 1
1
1
1 1 1 1 II
10
1
100
1
1 1 1 111
1000
1
1
1 1 1 1 II
10000
HERTZ
MTH009 LOCRL H-ref
SKEW
16:46:50 20 May 1988
i . I
1
q
i
E
. o
E
c)
:
.7
c 'c )
r
~5T
K
UJ
^
«.
E
CO - 5
E
4
~
^
J
j
3
. -j
c)
p
f
. 1
PI
.001
'?
.01
c )J
C ?c )
.1
1
10
HERTZ
73
100
1000
10000
MTH010 LOCRL H-ref
17:01:39 20 May 1988
RPPRRENT RESISTIVITY
(4-000
in
1.
10
UJ
GC
Q_
Q_
cn
L
1
.i
.001
.1
.01
1
10
100
1000
10000
HERTZ
MTH010 LOCRL H-ref
IMPEDRNCE PHRSE
17:01:39 20 May 1988
1 1 KJ
:
100
E
9R
w? CJ
\
:
80
E
>*
70
|
Lj60
LG
OZ50
1C
Q_40
30
<^/ cj
20
>
' L>
St
-
E
-> : >
E
{
E
/
^,
^
y
--
)
'
V
T
L>
\
3c
E
10
=
0
-1R
E
001 .01
.1
i
10
HERTZ
74
100 1000 10000
MTH010 LOCflL H-ref
17:01:39 20 May 1988
Z MRXIMUM DIRECTION
135
90
0
LJ
-90
-180
.001
.01
. 1
1
10
100
1000
10000
HERTZ
MTH010 LOCflL H-ref
SKEN
17:01:39 20 May 1988
1.1
1
q
E
E
. w
I
E
.7
~~^~
L_U
^
E
--
i
0
c
c.
CO - 5
--
E
c)
.4
E
J^c
3
*J
.2
()
E
CD gj.
)
"
E
. 1
0
001
.01
.1
i
10
HERTZ
75
100
1000
10000
MTHOl 1 LOCRL H-re-F
17:11:57 20 May 1988
RPPRRENT RESISTIVITY
10000 t=
1-4-000
*
en
10
cn
o_
Q_
cn
.1
.001
.01
.1
1
10
100
1000
10000
HERTZ
17: 1 1 :57 20 May 1988
MTHOl1 LOCRL H-ref
IMPEDRNCE PHRSE
1 1 CJ
E
100
f
90
*J CJ
E
80
E
70
i
:
nt
UJ f
60
LH
E
cn 50
-
I
:
30
w CJ
E
20
k *
E
10
E
%
vk
y
0
i'
-1 n
001
^
m
i i:
-HE-
E
IE
C^-40
X*5
.01
.1
1
10
HERTZ
76
100
1000
10000
MTH011 LOCRL H-ref
17:11:57 20 May 1988
Z MRXIMUM DIRECTION
180
135
90
0
* te*»
UJ
Q- 45
~90
-135
-180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTHOll LOCRL H-rcf
SKEN
17:11:57 20 May 1988
1. i
.8
3 .6
UJ
CO - 5
0
.001
.01
.1
1
10
HERTZ
77
100
1000
10000
MTH012 LOCflL H-re-f 20:15:50
RPPRRENT RESISTIVITY
10000
7 Jul
1988
cr
1-1-000
00
***%
en
UJ
K
10
oz
o_
o_
oz
5:
.i
.001
.01
.1
1
100
10
1000
10000
HERTZ
MTH012 LOCflL H-ref
IMPEDflNCE PHflSE
1 1 CJ
100
20:15:50
7
Jul
1988
i
E
90
w CJ
O fa
I
00
E
70
i
fa
bJ c60
cn
x. .
E
OI50
DZ
0-40
=
>
r ¥± ' ;
*
?
1--
T
30
w CJ
20
10
0
.0 01
.C31
P
1
1
10
78
IE30
10 00
10G300
MTH012 LOCRL H-re-F
20:15:50
2 MRXIMUM DIRECTION
7
Jul
1988
180
135
90
0
LJ
C£
c±r
-90
-135
-1
.001
.01
. 1
1
10
100
1000
10000
HERTZ
MTH012 LOCRL H-re-F
SKEN
20:15:50
7 Jul
1988
1. i
I
.9
.8
.7
UJ "
LO -5
.4
.3
.2
. 1
001
.01
.1
1
10
HERTZ
79
100
1000
10000
MTH013 LOCflL H-re-F
15:53:47 25 Ju
nPPRRENT RESISTIVITY
1988
(4J300
LQ
UJ
10
1,
cn
Q_
D_
cn
x^
1
001
.1
.01
1
10
HERTZ
MTH013 LOCflL H-re-F
IMPEDflNCE PHflSE
100
15:53:47 25 Ju 1
1000
10000
1988
i i <j
100
|
|
RP)
<J u
|
>
70
\
/
-\1-
80
s
\
f
\
I[^I
\
i
--
i
>',
\
/
r
, >L
'/
C* (Tl
LJ 60
LQ
OI50
in
E
CL 40
i
30
w Cl
T-
>
f
s'
"" ^
,>
1
\
H
^
20
j
10
\.
:
0
E
-10
.0 01
.En
*
1
1
10
h1ERT2
80
7
IE30
10 00
10C300
MTH013 LOCRL H-ref
15:53:47 25 Ju 1
Z MRXIMUM DIRECTION
1988
180
135
90
45
0
UJ
-90
-135
-180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH013 LOCRL H-ref
SKEN
i . 1
E
C
1
15:53:47 25 Ju1
1988
)
=
. g*j
=
I
.7
\
UJ
\
CO - 5
:
.4
3
I
-
:
:)
E
--
I
0
.0
)^
E
. «2
.
C
01
.2n
-i- ;
C
i
i
i0
81
1250
10 00
i0e
MTHO14 LOCRL H-ref 20:52:57
RPPRRENT RESISTIVITY
7 Jul
1988
J CJKJUU
I-L000
1
1
>
1
1
I !
E
-
1
\/
LQ
UJ
>
-
-'
"
'
-*-
* * ¥*
10
:z: "
UJ
5
\'
Q_
en
X-
\/
-^f- \s
^^
t"
v/ \/
^
^
X **
** K *
cr
Q_
¥
\/
y
^
I
=
\'
>
. i
1
.001
1
1 1 Mill
|
.01
1 |lll
I
| ,| III
.1
1
1
1 1 1 Illl
10
i i i i mi
100
1
1 1 Mill
1000
1
1
1 1 Illl
10000
HERTZ
MTH014 LOCRL H-ref
IMPEDRNCE PHRSE
20:52:57
7 Jul
1988
1 i Cl
=
100
/
'
§
RR
<J O
E
ora
80
E
'
V
' /
> <
>
'
V
70
=
, ,60
Lu
LO
E
1C
C^40
E
oi50
>
\
30
«J£J
20
10
0
'
-1 CT
001
.01
><
>
.1
1
10
HERTZ
82
100
1000
10000
MTH014 LOCRL H-ref 20:52:57
Z MflXIMUM DIRECTION
7 Jul
1988
180
135
90
0
~90
-135
.001
.01
. 1
1
10
100
1000
10000
HERTZ
MTH014
SKEW
LOCnL H-ref
20:52:57
7 Ju1
1988
.9
.7
CO - 5
I
.001
.01
.1
1
10
HERTZ
83
100
1000
10000
MTH015 LOCRL H-ref
16:11:59 25 Ju 1
RPPRRENT RESISTIVITY
1988
J tJKJCICI
1-1000
1
1
>
» i
r >
~
1
-
CO
UJ
-
"s f
\
!k
"
T >
1
10
n
^1
UJ
~
("V"
cn
1
\y \x
> mt
^
cn
D_
D_
" -
L.
^
>
^ **%
*- -t- K ^^^
K
KK
'\
* ¥ K^
x H
v/ **
TV
'
E
s
_
i
1
.001
1 1 Mill
|
.01
.1
i mi
i i 1 1 mi
1
10
i i i i mi
100
1
1 1 Mill
1000
1
1 1 Mill
10000
HERTZ
MTH015 LOCRL H-ref
IMPEDRNCE PHRSE
1 1 CI
16: 1 1 :59 25 Ju1
1988
>'
=
100
E
90
O CJ
E
80
E
70
s
i
'
o ra
LJ 60
CO
m
E
S '
E
" >,
\
--
'
>N '
/
^
30
O CJ
E
> '"
20
i
10
E
0
=
1 i/i
.001
.
.01
10
84
100
1000
10000
MTH015 LOCflL H-ref
Z MflXIMUM DIRECTION
16:11:59
25 Ju1
1988
I Q<J
-
135
-
90
-
o 45
1
1
1
(_; 0
T-
_
^'
LJ
i
i _.
-
a 45
i
J
-
90
Ou
-
-135
1 RR
.001
i
i i 1 11n
.01
.1
1
10
100
1000
i
i i 1 11n
10000
HERTZ
MTH015 LOCflL H-ref
SKEN
16:11:59 25 Jul
1988
1. 1
.8
LJ
.6
LQ
.001
.01
.1
10
1
HERTZ
8-5
100
1000
10000
MTH016 LOCflL H-ref
16:22:01 25 Ju1
flPPRRENT RESISTIVITY
1988
10000 t=
\.
\
f
-
>
\x
\/ -^
LQ
13
-
S* **** K¥ ^" % XX*
"
10
-
CC
Q_
0CC
^
N
,
1
i i i inn
.1
.001
>;
i
1 i nn
1
.01
i i 1 1 mi
1
. 1
10
i i i i nil
100
i i 1 1 nn
1000
i i i i nn
10000
HERTZ
16:22:01 25 Ju1
MTH016 LOCRL H-ref
IMPEDRNCE PHflSE
1988
1 1 CI
E
100
90
O CJ
E
E
V
80
,
E
70
iLLJi 60
CD
cn50
in
\. ,
E
*
:
\'
E
Q-40
>k
:
30
w> CJ
E
\
20
,
'
10
>
0
>
-1 n
.001
.01
'"
>
1
10
HERTZ
86
100
1000
10000
MTH016 LOCflL H-ref
16:22:01 25 Ju1
Z MRXIMUM DIRECTION
1988
180
90
O
C_J
UJ
0
-135
-180
.001
.01
.1
1
10
100
1000
10000
HERTZ
MTH016
SKEN
LOCflL H-ref
16:22:01
25 Jul
1988
i . i
i
|
=
.9
=
c>
:>
.8
o
02<
r$
^
=
C)
.7
:
31 .6
UJ
CO - 5
.4
.3
.2
. i
0
.0 01
.01
.1
1
10
HERTZ
87
100
1000
10000
MTH017 LOCRL H-ref
16:32:25
RPPRRENT RESISTIVITY
10000
1988
25 Ju 1
F=r
(J-000
LQ
UJ
*
10
cn
D_
D_
cn
1
.i
.001
.01
.1
1
10
100
1000
10000
HERTZ
16:32:25 25 Ju1
MTH017 LOCRL H-ref
IMPEDRNCE PHRSE
1988
i i KJ
i
100
N,
/
|
9H
%J u
'»
i
80
/
i
70
:
f>
UJ C
60
LQ
OI50
31
Q-40
'
E
E
E
,1
>
'
/
[> ,> ~ v
)
s
30
^ CJ
20
^
10
\
\
0
1n
.001
/ .
.01
.1
\ ,
1
10
HERTZ
88
100
1000
10000
MTH017 LOCflL H-ref
16:32:25 25 Ju1
Z MRXIMUM DIRECTION
1988
180
135
90
O
45
0
cT
-135
-180
.001
.01
.1
1
10
100
1000 10000
HERTZ
MTH017
SKEW
1.1
LOCRL H-ref
16:32:25
25 Ju1
1988
E
I
=
.9
=
.8
=
.7
IS .6
LoJ
Ul - 5
[
r
:
.4
1
:
.3
$
c
I?
J
c)
=
.2
=
t i_
. i
E
0
.0 01
.01
. 1
1
10
HERTZ
89
100
1000
102
Appendix 3
90
..,
0*418
X-EW
STA* AHOOl
100000
I
10
10000
,:
.,
0
x
1 ' "" '
10000
.X,,
.-&= IS-
. _^-. - I, . . . ,
6
-
-
o
0
"
i
0
U
v
in
is
1000
100
FREQUENCY (hertz)
*
ij x 8
0
5*
«~«
0
x
10
in
x i
0
in
PROJECT- HONEY LAKE
00
y
v
x X
in
Si
VO
3XS
5
3
CoRAPPARENT
EhS»I*
S-iTmIVt*IrTcY!
.
>
!
*8
5
g~
iftfm
*^*^^***
10000
000
0
r
IS
10000
x x
^
^*
IM
^3
jj
(>.
«-4
O
^5
^f
~fl^_
¥
__*
X
y
o
,
0*;:
y
p
R5fc
Q
,
.
...
«
j
-__
0
in
«.-w
in
-57 *
_g
.
10
,......,-.
_
2
:
PROJECT- HONEY LAKE
or
-^-.
., Y.
^A"
Ifc,. >t", .
_._.
RSfc
fl^ ^.. , ,
,
2
o
1000
100
FREQUENCY (hertz)
0
X-| 0-.,w
B . 0...... .0
X
1
CJ
»»
Bj
W
O
^5
1
.-1
^
100000
1
10
^r^0
100
^**i^^^
1000
0-NS
X-EV
STA# AH003
1
1
8
»*
u
^^^
£
>
I-4
I
^»
s*
10000
0
x
k
IM
1
H
A
o
A>
U
8
8
t>
rs
^
CM
10000
o
X**-
3-(
**
8
X
n
8
8
S
Fs
^
<M
A
8
5
-«
-5
y
-e
K
a
10
L*
X- 0
w
o-i
2
in
r4
«
*
in
J
'
1
"- - - " ' -
PROJECT- HONEY LAKE
^
o
R !? Ri
1000
100
FREQUENCY (hertz)
S
^
ISTIVI
.00000
** O
QO
8O
O ^
**
10000
.a
10000
0
9
Ri
2
10
in
in
PROJECT- HONEY LAKE
EESEE^E
1000
100
FREQUENCY (hertz)
Err:
8 8
Ui
VO
o
x
u>
5
£
ft
CoRAPPARENT
EhSoIS-TMIVtaITrdY
>
i
88
55-
irmn
10000
'
000
m
~
(5
-.
X
tr
.
TT"
__~_..
3
.
i ,
o
,
. .. . . .... ^ , ^. ..... .. .
__
,
...
. _ ._
~~
Jv
~-
in
~^ii
^
-
V
1
1
j
i
<
^
--. . . . .
..
~~n " ' ' " ' ' " * ' -- - - - "
10
%r~~
i
~
in
PROJECT- HONEY LAKE
*-j^*~"-
;
-J
-- --;.
S
« s ° °
. ...
S « R
1000
100
FREQUENCY (hertz)
-r
1
j
*"
r^rq -
o
. _
""
f? * B 3
0
-rp-^: $
"ft
- - ""
. ~ . i
R 5 55
8888
10000
0
~*
VO
1
" ' ""
_.. ,., , ,
^* "
100000
0-NS
X-EW
STAf AH006
^k*
^^
1-4
fc
( J04MI-MJO)
XI
i
t
10000
**%*^^^r i
1
0
I. .
9
X
P*
10000
o
. ., .X
INI
II
,.
0
jf
*<f
.-».
<M
.
.
"
i-j-
Vii
-A-- -
0
~. -
«
,
m
x
0
I
jT
A
°
. -i . .I* . .
-.«.
-rn.mr
X
%«
o
»r
-
1000
100
FREQUENCY (hertz)
___-......
v-*
10
«
.
X
M
.
_._!. _--
in
.
.. **-
in
~~
_-.-*,- -1
PROJECT- HONEY LAKE
,...,,.,., ,..,. ,, , x
o o
2
" - * "~-~~"""""
8 8 R 3 15 !? !vi
~ . .. i .1.1 ,. , i. ...... _. .
_~
.
1
L6
O) X
APPARENT RESISTIVITY CohamiQtQrc)
** l_»
M |
P""*
>-
i-*
O
8
§
i
27000
: cc '
N*
14000
P
i
7500
<K
4500
2700
1400
-*
5
§
<
>;
:
750
450
3
ex
270
c>
140
.A
3
iK
75
45
14
<3
27
:«)
X
*
3
i3
K
7.5
4.5
X
00
vo
.
100000
1
"
»!
3
innn
I
3
0«NS
X-EV
STA# AH008
1
HC
RENT
RESIkSTIVI
<TY
ohm-wQt«r i
^
10000
0
A
T
i\i
f^
10000
^
9-
~*
in
^»
f^
^
in
^i
cj
IM
t>
^5
Q)
.
X/\
o
y
A
^§ g
0
-a
o5
2
J
10
-
0
in
^
0
x^
in
^
PROJECT- HONEY LAKE
»2
R !? 55
X_ -*
§
1000
100
FREQUENCY (hertz)
.. ... -
«-
5?
O
n
1
VO
100000
1
10
100
0-NS
X-EW
STAf AH009
^
»I
</>
fc
>
»-»
t
*
P
1000
10000
-X-
10000
(3
j3
-x-
IL
10
in
*
in
PROJECT- HONEY LAKE
o . a -x-
1000
100
FREQUENCY (hertz)
0
^c-
K?
O
o
3
.
,
.
100000
1
10
100
*«"«
1000
0-NS
X-EW
STAf AH010
H>
5
t-4
£
£
>
1-4
J!
I
XN
innnn i
...
,.,
X_
«
IN
iM
8
8
^t
F*
05
O
^5
jn
^3
^S
10000
. . .JL
0
5
^
<M
ix
'3
(5
*-
^
C3
^j
&~\
X
J
0
U
O
1|
2
10
8
in
i^
-.
X
/\
in
^
PROJECT- HONEY LAKE
H
Q
K U? fc
1000
100
FREQUENCY (hertz)
^
9
»-«
- -«- .
8
8
S
K
<«
(M
1
0-NS
X-EW
STA*
~
100000
s
8
1000
10000
10000
tr
I mJ
' i?
1000
100
FREQUENCY (hertz)
#-
10
X
in
. in**
tx
PROJECT- HONEY LAKE
i
.
^*
«-*
to
o
1"
100000
1
D
100
1000
0-NS
X-EV
STA# AH012
1
RESItRENTSTIYI
£
1
xs
10000
x
v>
!\i
0
V
IS
10000
fl
Y
^
^
CM
«-*
^
0~
V
/\
V
fc
u
y\
^
2
10
*
o
\f
in
h!
a
in
4
.. .
PROJECT- HONEY LAKE
o Q o
k
A
15 !?
1000
100
FREQUENCY (hertz)
"- "
3-«
i v
_Jt
JT
O"11 ""1 ^"
8
8* S
F*
CM
1
O-NS
X-EW
RESIAPPARENTSTIVI
(TY
ohm-motors'
^
AH013
'
55-
innn
!
B
10000
000
IN
iM
X
0
111 1
10000
X
0
3
~+
X
0
100
A
u
in
10
x-> -*0
0
2
X
in
PROJECT- HONEY LAKE
mft . gA
R $ fc
L_
X-H
A
3
FREQUENCY (hertz)
1000
0
X
8 8 R
1
100000
1
»
irmn
(1
*+ 8
0-NS
X-EW
STAf AH014
1
S
l-l
»«
>
1-4
CTY
ohm-«Qtar«:
^
10000
u
*Y
&
8
x
0
Is
10000
n
=
§
^r
CM
«-«
n ]
0
X2
0
-*
u
.
Q
x
2
10
1
u
§
o*
in in
r^ W
PROJECT- HONEY LAKE
0
X
R 3 &
1000
100
FREQUENCY (hertz)
X
S
«-
0
v
g
81** 8"t CMS
1
Ln
o
100000
1
o
o»-» o++
0-NS
X-EW
STA* AH015
1
R(toREhSmIENT
S-mTQIVtaITr*Y)
!*
innnn
»
gX
IN!
_ji
_e
F*.
*
(M
883
8 8 i%
10000
0
I
-«
8
3
g
X
9
X |
-
9
!?
Ri
g
10
&~ -8
in
^
in
^
e
=
v
X i -x *
2
PROJECT- HONEY LAKE
°
~
x x x
IC
1000
100
FREQUENCY (hertz)
1
X
8
8
R
F-^
CM
1
j
100000
1
10
100
STAf AH016
x-ew
0»NS
£
1000
10000
«
CM
.
**
f\
x
10000
,. tr
X
U
«-
^"^
t^
jn
CJ
fj
in
G)
^*
is.
CO
f^
^f
a
JL,
-^
F*
in
1000
100
FREQUENCY (hertz)
8
A
A
IM
y
c
8
^t
«
K
s a s 5
n
^
in
in
0
in
10
-9
x -* x
«-
*+
PROJECT- HONEY LAKE
r
CM
t^
APPARENT RESISTIVITY Cohn-mQtors)
"1 *"A
i-»
» *
»-»
O
8
1
1
>:
27000
z >:
14000
C
N
:
7500
4500
2700
1400
H*
§
750
450
>:
270
c<
140
a
75
3 C)
45
a;
27
M*
3
M
«^
*
D
X3
14
c
7.5
4.5
3
107
<%
CoR*ERShImENTSTeIVtoITreY
1
1
10000 1
1000
*Q
** O
1
100000
0-NS
X-EV
STAf AH007
I
CM
5
«-
o-
N
i
10000
-xT
S
CVJ
S
r-.
5
0
x
"
B
in
i^
0- -Q
2
0
x
X
10
*
V
15 9 fc
9- i
*-
g § 8 2
0
V
6
1000
100
FREQUENCY (hertz)
to
*
X
»
PROJECT- HO»EY LAKE
1
oo
o
r+
i»
601
APPARENT RESISTIVITY Coh«-net«r«>
-*
0
i
8
1
1
27000
M
tf
A 4fc^fe^fe
14000
O
7500
4500
2700
1400
750
>
c
450
;< 1
27
Cl
45
c »; <
75
i1
140
>
e
8
270
14
»
4.5
i *: c
7.5
?
o
100000
1
O
STA* AH009
x-ew
0-NS
1
K*
100
£
RESIWENTSTIYI
1000
~
10000
V
!>*
M
*
-o
0
x
V
n
jj_
\£
X
it
\r
"n
u
1000
100
FREQUENCY (hertz)
X
*
IS*
]|
"V
^
10
_fl_8
X -x
e-
7"
2
in in
PROJECT- HONEY LAKE
e
*
% $ 1 § K !? fc
X- _j(
1ii S
10000
9
**
-
1
-
1
100000
(^ NS
X-EV
STAf AH010
1
3
100
£
RESIiRENTSTIVI
1000
~
^P^FV%r
10000
.
x
_0
!\i
'
ft
p*
10000
0
«^(.
^4
O
^3
05
e
**
in
O
fj
(M
K
C?
fj
-
-
i
A
-
........I...,--
.
"" v
A '
0
8 § § 3
e%^*
&«
o
2
10
.
.
1
.y.-.-..
........ **
in
r: v
in
PROJECT- HONEY LAKE
N^^.
R !? fc
1000
100
FREQUENCY (hertz)
«-«
^
C5
cj
ill
l
kk
**
+*
ii ; ii
ii
M
APPARENT RESISTIVITY <oh»-Mtare>
++
»*
o
3
o
^A
w
8
o
^
27000
»
iii >i
ai
ia>
X
rf
c
14000
H
:
o
'
7500
<
4500
2700
1400
>
*\ i(( >i
i
ri
2KJ
i
i
^
|,
750
i« sp
o
I
>
450
<
a
4
3
3>
270
140
M
C
>
75
<
< >x
45
><>
i
x
F
1
27
o
14
0
i9
l
K
k
7.5
C
X
4.5
O
»
»
I
1
^
ft
APPARENT RESISTIVITY Coter-mtort)
o
8
§
!i
14000
C
27000
3»
«
0
7500
4500
2700
1400
750
450
Ci >:
270
iD *c
8
140
o
75
:<
D
3C
G
X
c
45
27
14
4.5
11
7.5
3 3
»
1
100000
*» o
100
1000
0-NS
X-EW
STA# AH013
1
RESIUfcSNTTIVl
£
\
4
~
1
*^^^^^^F
10000 i
i\i
-0
X
e
0
0
s X?
Q
X
8 3 §
R « Ki
in
V
10
PROJECT- HONEY LAKE
0
2
in
r!
a B «- =4=,
^B
.
" . ,-.,,....
f\
ox-
3
1000
100
FREQUENCY (hertz)
Hit
10000
0
X
-
1
II
SIT
APPARENT RESISTIVITY <otw-MUr*>
»*
++
^
o
c
8
i
i
27000
X
3 :<
0
14000
<
7500
4500
2700
1400
750
N
o
450
270
CC
8
a
i
a
i
m
D
c
i
140
X
75
1C
45
* 4
1 \
27
A
14
<
7.5
<K
cK
4.5
100
£
1
100000
0-NS
X-EW
STAf AH015
1
i 10
1
M
fc
>
-I
1000
*%^«r%*
XN
«^%
10000 j
,.J1
X
ivi
-*
-8
"
^
P
h»
10000
0
1
iQ
O
rj
Cj
K
<\I
C3
^J
^r
**
CD
Jj
X
6
8
X
*
9-
X
x
s
B
10
^*^
^^
8
V
to
J
-x *
tn
r!
Q~ _g
X
2
PROJECT- HONEY LAKE
°
x
x
R !8 R5
1000
100
FREQUENCY (hertz)
X
8 3 § S
1
1
100000
0-NS
X-EV
STA* AH016
1
-o
100
£
RESISTIVI
WENT
1000
<g
10000
r-
~*
10000
B
-x
-B
x
e
"^
^l.
a0
£
in
!: ^
to
10
k
x J x
.^b.
Q
2
PROJECT- HONEY LAKE
^H
flM
15 $ fc
0_
!L_ _H
£ 2 § S
1000
100
FREQUENCY Chortz)
=a=
Hi!
x
««.,.,,...1 ,,,,l «n..1 _e
i
i\i
1
:00
100000
1
i-» 0
100 :
*»^**p
1000
STAf AH017
x-ew
0-NS
1
RESItRENTSTIVI
^
3
^^
^
x
10000
n- ~o
X~
1000
100
FREQUENCY (hertz)
x/\ a"
T
10
ny
PROJECT- HONEY LAKE
Xu BX BM
-a
is
1
Appendix 4
119
TELLURIC TRAVERSE DATA
HONEY LAKE, LINE 1
500m DIPOLES
STATION
NUMBER
0
0
0
500
500
500
1 000
1 000
1000
1 500
1500
1500
2000
2000
2000
2500
2500
2500
3000
3000
3000
3500
3500
3500
4000
4000
4000
4500
4500
4500
5000
5OOO
5000
5500
5500
5500
6000
6000
6000
6500
6500
6500
7000
7000
7000
7500
FREQUENCY
in Hz
.
RATIO
7o2s" """760
7 . 500
27. 000
. 025
7.500
27. 000
.025
7 . 500
27. 000
. 025
7.500
27. 000
. 025
7 . 500
27. 000
. 025
7.500
27. 000
.025
7.500
27. 000
. 025
7 . 500
27. 000
. 025
7 . 500
27. 000
. 025
7. 500
27 . 000
. 025
7 . 500
27. 000
. 025
7.500
27 . 000
. 025
7.500
27. 000
. 025
7.500
27 . 000
. 025
7.500
27. 000
f~)\sr
_ O_ ji-^J
.41
.42
.40
-45
.42
.42
.58
.51
. 90
.98
.85
.84
.66
.82
.87
.95
. 80
1 . 04
.94
1 . 02
.81
. 93
.96
1 . 02
1.01
1 . 02
.88
.91
1 . 02
1 . 00
1.01
1 . 01
.96
.97
.96
1. 15
1 . 00
.96
.84
. 93
.96
1 . 00
.94
.99
1. 15
NUMBER STANDARD
of OBS. ERROR
________
. 020
5
. 005
5
. 007
10
. 040
7
.021
5
. 018
. 070
6
5
. 086
5
. 160
10
. 060
5
.013
5
. 014
9
. 050
5
. 026
5
. 035
11
. 030
5
. 029
5
. 043
9
. 040
7
. 063
5
. 057
7
. 030
5
. 007
. 019
5
10
. 010
6
. 006
5
. 04 1
11
. 020
5
. 062
5
. 016
9
. 020
5
. 006
5
. 018
12
. 010
. 005
5
. 017
5
11
. 020
.013
5
5
. 024
8
. 030
5
. 020
5
. 019
11
. 010
7
. 027
5
. 018
10
. 010
120
D I POLE
POSITION
-500
-50O
-500
0
0
0
500
500
500
1000
1000
1000
1500
1500
1500
2000
2000
2000
2500
2500
2500
3000
3000
3000
3500
3500
3500
4000
4000
4000
45OO
4500
4500
5000
5OOO
50OO
5500
5500
5500
6000
6000
6000
6500
6500
65OO
7000
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
RELATIVE
VOLATGE
0
0
0
500
500
500
1000
1 000
1000
1 500
1500
1 500
2000
2000
2000
2500
2500
2500
30OO
3000
3000
3500
3500
3500
4000
4000
4000
4500
4500
4500
5000
5000
5000
5500
5500
5500
6000
6000
6000
6500
6500
6500
7000
7000
7000
7500
1 . 00
1 . 00
1 . 00
.60
.41
.42
.24
. 18
. 17
. 10
. 11
. 09
.09
. 10
.08
.08
.07
. 06
.07
.06
.05
.07
.06
.05
. 06
.06
.05
. 06
.06
.05
.05
. 05
.05
.05
.05
.05
.05
. 05
.05
. 06
.05
.05
.05
.05
.05
.05
O
O
O
O
-rH
in o -=f
in *r in =* in N =* =* o O=* O
*~| O
oooo
oooooooooooooo
O1 O O O1 O O O O O O O' O1 O O
in in o o o in in in o o o in \n yi
NNCQCQCQCQCQCQChChChChChCh
oooooooooooooo
4J4J4J4J4J4J4J4J4J4J4J-M4J4J
oooooooooooooo
oooooooooooooo
o o in in in o o o in in in o o o
h- Ch O CO Ch O -r-1 -rn O CM O
\n CM -i TH CM -< =* KI - CM IN.
O O O O O O O O O O O
Ch KI -5T Ch
O O O -rn
<i o yj -o o in in o in in
«-« O CD <i
Ch O C--I Ch
O O u") O O UT O O in o o in o
O O CM O O CM O O CM O O CM O
in o o \n o o in o o in o o in
r-CM
CM
CM
o
in tn o o o \n \n in o o o
f^f^OOCOCDCOCOCOChChCh
TELLURIC TRAVERSE DATA
HONEY LAKE, LINE 1
500m DIPOLES
STATION
NUMBER
3500
4000
4500
5OOO
5500
6000
6500
7000
7500
8000
8500
9000
FREQUENCY
in Hz
270. 000
270. 000
27O. 000
270. 000
270. 000
270. 000
270. 000
270. 000
270. 000
270. 000
270. ooo
270. 000
270. 000
TANDARD
RROR
1. 02
93
1. 03
. 95
1. OS
96
. 99
. 97
1. 03
88
1. 09
1. 27
5
5
5
5
5
5
5
5
5
5
. 010
. 006
. 008
. 013
. 007
.012
. 004
.011
. 014
.019
. 008
. 025
122
D I POLE
POSITION
3000
3500
4000
4500
5000
55OO
6000
6500
7000
7500
8000
8500
9000
to
to
to
to
to
to
to
to
to
to
to
to
to
RELATIVE
VOLATGE
3500
4 OOO
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
1 . 00
1 . 02
.94
.98
« 92
.99
,96
.94
.91
.94
.83
.91
1. 15
TELLURIC TRAVERSE DATA
HONEY LAKE, LINE 2
500m DIPOLES
STATION
NUMBER
0
0
0
0
500
500
500
5OO
1000
1 OOO
1 OOO
1-000
1 500
1500
1 5OO
1 500
2 OOO
2000
2000
2000
2500
2500
2500
2500
3000
3000
3 OOO
3000
35OO
3500
35OO
3500
4000
4000
4000
4000
4500
4500
4500
4500
5000
5000
5000
5000
5500
5500
FREQUENCY RATIO
in Hz
_ 025""~T722
7. 50O
27. 000
270. OOO
025
7. 500
27. 000
270. 000
« 025
7. 50O
27. 000
270. 000
025
7. 500
27. 000
270. 000
, 025
"7
500
27. OOO
270. OOO
« f-\ f-^ cr
7. 500
2 / o 000
270. 000
« 025
7. 500
27. OOO
270. 000
. 025
7. 50O
27. 000
270. OOO
« 025
7. 500
27. 000
270. 000
025
7. 500
27. 000
270. 000
. 025
7. 500
27. 000
270. 000
. 025
7. 500
V
1.25
1 . 33
1. 18
1 . OO
.82
.87
.87
1.37
.90
. 93
. 90
.57
. 73
.74
.69
.96
.95
.98
.89
.46
.80
.90
.88
.61
.89
1 . 06
1 . 06
. 93
.97
.89
.89
1.39
.98
.97
1 . 06
.99
1. 16
1 . 00
.96
.79
.64
.62
.57
1.86
. 90
NUMBER STANDARD
of DBS. ERROR
__
. Too
6
6
7
9
5
5
-7
10
7
-?
7
10
7
7
~7
9
8
7
7
8
7
7
8
8
4
7
7
11
7
8
7
12
7
7
7
8
9
5
6
8
7
6
5
8
7
. 042
. 035
. 121
. 040
. 025
. 024
.016
. 040
. 038
. 040
. 029
. 040
.041
. 03 1
.019
. 020
. 058
.017
. 039
. 060
. 028
.016
.016
. 130
. 020
. 038
. 012
. 080
.011
.021
.019
. 060
.018
.017
.017
. 020
. 044
. 009
. 025
. 080
. 030
. 034
.016
. 070
.015
123
D I POLE
POSITION
-500
-50O
-500
-5OO
0
0
0
0
500
50 O
500
500
1 OOO
1 OOO
1 000
1 000
1500
1500
1 500
1 500
2000
200O
2000
2000
2500
2500
2500
2500
3000
3000
3000
3000
3500
3500
3500
3500
4000
4000
4000
4000
4500
4500
4500
4500
5000
5000
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
RELATIVE
VOLATGE
0
O
0
0
500
500
500
500
1 OOO
1 OOO
1 000
1 000
1 500
1 500
1 500
1500
2000
2000
2000
2000
2500
25OO
2500
2500
3000
3000
3000
3000
3500
3500
350O
3500
4000
4000
4 OOO
4000
4500
4500
45OO
4500
50OO
5000
5000
5OOO
5500
5500
1 00
1 . 00
1 . 00
1 » OO
1 22
1 « 25
1 . 371
1 . 18
1 . 22
1 . 03
1 . 16
1 . O3
1 . 67
. 92
1 08
. 92
95
« 67
80
. 64
. 91
. 64
. 78
. 57
. 42
. 51
. 71
. 50
. 26
. 46
. 74
. 53
. 24
. 44
. 67
. 47
. 33
. 43
. 65
. 50
. si 50
. 65
« 48
. 26
32
O
O I*- 00 0* sf Q KI i>
3- CM =* IN KI CM -43 CN
O
O
O 03 !N K<
CM N KI KI
oooooooooooooo
in in o o o o in in in in o o o o
oooooooooooooo
4J4J4J4J4J4J4J4J4J4J4J4J4J4J
O O1 O O O1 O1 O1 O O1 O! O1 O1 O1 O1
>0
N O 0"* TH 03
O M IjT W *t
oooooooooooooo
o o in in in in o o o o in in in in
in in UT in in in >o <i >o >o <i >o <i <i
O O O
in
in o. ~'"\ I»o" <> i«'"i
r.'
IN
0> Ul N -43
£> N
03 >0 N >0
43 ^ O 0>
03 N KI i>
o o in o o o in o o o in o o o
o o o in o o o in o o o in o o
N
IN N
IN
N
N N O
« N
IN
O O M O O O LN O O O CN O O O
N O
EN N
IN
oooooooooo
oooooooooo
in in o o o o in in in in
CM
© Copyright 2026 Paperzz