NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Geothermal Resources Council, TRANSACTIONS Vol. 7, October 1983 STRUCTURAL CONTROL OF THE BALTAZOR HOT SPRINGS GEOTHERMAL SYSTEM, HUMBOLDT COUNTY, NEVADA J e f f r e y B. Hulen Earth Science LaboratorylUni v e r s i t y of Utah Research I n s t i t u t e 420 Chipeta Way, S u i t e 120 S a l t Lake C i t y , Utah 84108 ABSTRACT and major new photo-1 inears. Groundwater sampl ng and ( i n p a r t i c u l a r ) geothermometry ( K l e i n and Koenig, 1977) t a r g e t e d t h e immediate Bal t a z o r Hot s p r i n g s area as t h e r e g i o n ' s most promising geothermal prospect. Shal low- and intermedi ate-depth thermal g r a d i e n t d r i l l i n g (Langenkamp, 1978; EPPC w e l l l o g d a t a ) d e l i n e a t e d strong heat flow anomal i e s a t B a l t a z o r and t h e Painted H i l l s prospect (Hulen, 1979), about 11 miles/17.7 km t o t h e southwest A r e g i o n a l aeromagnetic survey ( S c i n t r e x , 1972) had shown only broad r e g i o n a l basement c o n f i g u r a t i o n s , o f l i t t l e use i n chara c t e r i z i ng geothermal features. Senturion Sci ences (1977) demonstrated contemporary m i c r o e a r t h quake a c t i v i t y along, among o t h e r s t r u c t u r e s , t h e range f r o n t f a u l t system passing west o f B a l t a z o r Hot Springs, thus enhancing chances f o r discovery there of adequate subsurface permeabi lity. Edqui sJ, (1981) compl eted d e t a i 1ed g r a v i t y p r o f i1 ing, extremely u s e f u l i n s t r u c t u r a l i n t e r p r e t a t i o n o f t h e s u r p r i s i n g l y deep graben beneath B a l t a z o r Hot Spri ngs D i pole-di p o l e r e s i s t i v i t y and s e l f p o t e n t i a l data gathered by Mining Geophysical Surveys, Inc. (1981) f o r EPPC were a l s o i n t e r p r e t ed by Edquist (1981). He c o r r e l a t e d shallow, near-surface r e s i s t i v i t y lows and r a p i d l y changing s e l f - p o t e n t i a l values a t B a l t a z o r w i t h mapped and g r a v i t y - i n f e r r e d f a u l t zones b e l i e v e d t o be t h e prime c o n d u i t s f o r deep thermal f l u i d convection. A mercury-arsenic ' s o i l survey (Truex, 1980) o f t h e B a l t a z o r area revealed no d i a g n o s t i c anomalies e x c l u s i v e l y r e l a t e d t o t h e a c t i v e thermal system. Hul en (1979) produced p r e l i m i nary geol ogy and hydrothermal a l t e r a t i o n maps o f B a l t a z o r and t h e Painted H i l l s . The B a l t a z o r map, t o g e t h e r w i t h r e s u l t s from EPPC's r e c e n t l y completed deep w e l l near B a l t a z o r , form t h e b a s i s f o r t h e d e t a i l e d surface and subsurface geologic i n t e r p r e t a t i o n s presented i n t h i s r e p o r t . The B a l t a z o r Hot Springs KGRA i s centered on a low-yield, (4-28 lpm), sodium-sulfate, 7698"C/167-208"F h o t spring, surrounded by small o p a l i n e s i n t e r mounds and b e l i e v e d t o be p r e s e n t l y p r e c i p i t a t i n g s i l i c a , t h u s suggesting a deep r e s e r v o i r temperature o f a t l e a s t 18OoC/356"F. The p o s i t i o n o f t h e springs, associated c a l c i t e - s i l i c a stockworks, and presumably a deep thermal r e s e r v o i r a t Baltazor, i s c l e a r l y c o n t r o l l e d by t h e i n t e r s e c t i o n o f a n o r t h e a s t e r l y - t r e n d i ng Basin and Range f a u l t trough w i t h an older, northwest-trendi n g normal f a u l t system. O f numerous e x p l o r a t i o n techniques appl l e d a t Baltazor, thermal g r a d i e n t d r i l l i n g , mapping of geology and a l t e r a t i o n , geothermometry, d e t a i l e d g r a v i t y and d i p o l e - d i p o l e r e s i s t i v i t y have been most u s e f u l i n a p p r a i s i n g t h e geothermal resource p o t e n t i a l . Baltazor i s i n d i c a t e d by these techniques, -- and by probable t o remain an enactive s i l i c a precipitation couragi ng prospect: A t l e a s t one a d d i t i o n a l deep d r i l l h o l e i s warranted. The t a r g e t f o r t h i s h o l e i s a f r a c t u r e - c o n t r o l l e d r e s e r v o i r i n Miocene v o l canics and p r e - T e r t i a r y metamorphic rocks a t depths g r e a t e r than 2000 f t (610 m) beneath B a l t a z o r Hot Springs. . - - -- . INTRODUCTION The B a l t a z o r Hot Springs KGRA, near Denio, Humboldt County, Neiada (Fig. l ) , has been i n t e n s i v e l y explored since 1977 by Earth Power Product i o n Company (EPPC)., under t h e terms of t h e Department o f Energy's I n d u s t r y Coupled Program. These e x p l o r a t i o n e f f o r t s have c l e a r l y demonstrat e d B a l t a z o r t o be a s t r u c t u r a l l y - c o n t r o l l e d system heated by deep c i r c u l a t i o n along permeable f a u l t zones. This paper w i l l discuss t h e n a t u r e o f these s t r u c t u r a l c o n t r o l s , as revealed by v a r i o u s e x p l o r a t i o n techniques and deep d r i l l i n g , and w i l l assess t h e p r o s p e c t ' s remaining resource p o t e n t i a1 GEOLOGIC SETTING . A t t h e northwestern margin o f t h e Basin and Range province, t h e B a l t a z o r Hot Springs KGRA and v i c i n i t y exemplify t h e r e g i o n a l geology o f n o r t h western Nevada. The Pueblo Mountains, west o f B a l t a z o r (Fig. l ) , are a typical, northerlytrending, t i l t e d f a u l t block range. East of t h e Pueblos, Continental Valley, which hosts B a l t a z o r Hot Springs, i s an e q u a l l y t y p i c a l , deeply a l l u v i a t e d graben v a l l e y , i n t h i s case s u r f i c i a l l y b l a n keted w i t h l a c u s t r i n e sediments. The Pueblo PREVIOUS WORK D i v e r s e e x p l o r a t i o n methods have been a p p l i e d w i t h v a r y i n g success i n appraisal of t h e geotherm a l p o t e n t i a l o f t h e B a l t a t o r Hot Springs KGRA and v i c i n i ty. Photogeol o g i c mappi ng by Gardner and Koenig (1978) d e l i n e a t e d p r e v i o u s l y mapped f a u l t s 157 Hul en I a a Ia EXPLANATION I (Permian - C r e t a c e o u s ) 7 Alluvium and older alluvium (Quaternary) Qlo contact: definite,approximate FZI,Fa Lacustrine and older lacustrine deposits (Quaternary) 0' Landslide debris (Quaternary) a F e l s i c ash Flow tuff a n d tuffaceous sediments ( M i o c e n e ) u It s : d e f i nit e, a ppr o x ima t e, in f er red, c o n c e a l e d Calcareous a n d opaline sinter %Calcite @Pervasive .~ -- Rhyolite and rhyolite flow breccia (Miocene) Figure 1. YAttltudes -/- - chalcedony chalcedony Intermediate d e p t h drill hole 0 vein - calcite stockworks D e e p test well Geologic map of t h e B a l t a t o r Hot Springs KGRA and v i c i n i t y , Humboldt County, Nevada. 158 .) Hulen Mountains are formed of a deeply dissected, h i g h l y v a r i a b l e Pliocene-Pliocene v o l c a n i c and v o l c a n i c l a s t i c sequence r e s t i n g w i t h profound unconformi t y on Permian-Triassic ( ? ) metavolcanic and metasedimentary rocks i n t r u d e d by intennedia t e compos i t i o n p l u t o n s o f Jurassic-Cretaceous age (Fig. 1; Willden, 1964; Rowe, 1970; Burnham, 1971). Immed i a t e l y above t h i s eroded basenlent near B a l t a z o r i s a t h i c k sequence o f Miocene p o r p h y r i t i c b a s a l t flows, flow-breccia, and tephra beds Tocally i n t e r r u p t e d by v o l c a n i c l a s t i c sediments, a i r - f a l l t u f f s and ash-flow t u f f s . I n t h e upper p o r t i o n o f t h i s sequence, a t h i n d a c i t e (?) ash-flow t u f f and a dense hornblende a n d e s i t e flow, along w i t h an i n t e r v e n i n g b a s a l t i c a n d e s i t e flow, form an e a s i l y mappable marker in t e r v a l (Figs. 1-3). The basal t sequence i s disconformably o v e r l a i n by a c l i f f forming r h y o l i t e , a l s o Miocene, which i n t u r n i s o v e r l a i n by Miocene f e l s i c ash-flow t u f f s and v o l c a n i c l a s t i c sediment s. - ' The Pueblo Mountains a r e t i l t e d g e n t l y westward and bounded on t h e east by a major normal range-front f a u l t system. Maximum displacement i n t h i s system i s i n t e r p r e t e d by Edquist (1981) t o have'occurred along a f a u l t (F3) concealed by a l luvium and t r e n d i n g n o r t h e a s t j u s t west o f B a l t a z o r Hot Springs (Figs. 1, 3). A l l u v i a l depth east o f f a u l t F3 i s modeled on t h e b a s i s o f g r a v i t y data by Edquist t o be as much as 2000 f t (610 m). Low- t o moderate-angle f a u l t s F 1 and F6 i n t h e range west o f f a u l t F3 probably were caused by r a n g e - f r o n t oversteepeni ng r e s u l t i n g from F1 f a u l t i n g . The complexity o f F 1 and F6 immediately n o r t h o f w e l l 45-14 (Fig. 1) i s almost c e r t a i n l y due t o i n t e r a c t i o n o f these f a u l t s w i t h f a u l t F2, a northwest-southeast-trending s t r u c t u r e o f minor normal d i spl aceinent which, p r o j e c t e d southeastward, passes d i r e c t l y beneath B a l t a z o r Hot Springs. THERMAL PHENOMENA AND HYDROTHERMAL ALTERATION Bal t a z o r Hot Springs, w i t h measured temperat ures va ryi ng between 76OC/167OF and 98OC/208"F, produces, e s s e n t i a l l y from a s i n g l e o r i f i c e , s o d i um s u l f a t e waters a t r a t e s f l u c t u a t i n g between 4 and 128 lpm ( K l e i n a?d Koenig, 1977). S i l i c a and Na-K-Ca geothermometers i n d i c a t e present subsurface temperatures o f a t l e a s t 16OoC/32O0F ( K l e i n and Koenig, i b i d . ) . Ooze c o l l e c t e d from t h e edge of t h e B a l t a z o r Hot Springs pool i s revealed by Xr a y d i f f r a c t i o n (XRD) a n a l y s i s t o c o n s i s t l a r g e l y o f opal w i t h minor c r i s t o b a l i t e and quartz, sugg e s t i ng r e s e r v o i r temperatures o f a t l e a s t 18OOC 1971). Frothy-appearing o p a l i n e (White e t a1 s i n t e r mounds s c a t t e r e d i n t h e immediate v i c i n i t y o f t h e s p r i n g s (Fig. 1 ) a t t e s t t o past r e s e r v o i r temperatures a t l e a s t t h i s high. ., Range-front normal f a u l t s and t h e s o l e of a recent l a n d s l i d e west o f B a l t a z o r (Fig. 1 ) a r e p e r v a s i v e l y a1t e r e d by s i 1 i c a - b e a r i n g (chalcedony, c r i s t o b a l i t e and minor t r i d y m i t e as shown by XRD) c a l c i t e veins and v e i n l e t s , l o c a l l y accompanied by bleaching .of t h e i r h o s t rocks. The veins, from l e s s than 4 i n / l O cm t o a t l e a s t 10 f t / 3 m i n t h i c k n e s s (mapped v e i n i n Fig. l), range i n t e x - t u r e from massive t o vuggy and d e l i c a t e l y banded. C r o s s - c u t t i n g r e l a t i o n s h i p s and b r e c c i a t i o n i n t h e v e i n s suggest several a l t e r n a t i n g episodes o f carbonate d e p o s i t i o n and s i l i c i f i c a t i o n . A few small (<6 f t / 1 . 8 m) surface mats and mounds of mixed s i 1iceous and calcareous s i n t e r a r e s c a t t e r ed across t h e s u r f a c e o f t h e l a n d s l i d e , probably i n d i c a t i n g t h e associated c a l c i t e s i l i c a veins t o have been former feeder channels f o r thermal s p r i ngs. - Other a l t e r a t i o n i n t h e B a l t a z o r area cannot be a t t r i b u t e d t o t h e a c t i v e geothermal system. Base metal s u l f i d e m i n e r a l i z a t i o n and associated a l t e r a t i o n i n Permian Cretaceous basement rocks i s c l e a r l y Pre-Tertiary. F a u l t s F 1 and F6, p a r t i c u l a r l y near t h e h o t springs, commonly contain, as i d e n t i f i e d by XRD, c a l c i t i c and h e m a t i t i c j a s p e r o i d (chalcedony) , l o c a l l y bearing small (<2 in/5 cm) pods o f b r i g h t yellow-green pure smectite, almost c e r t a i n l y n o n t r o n i t e . - DEEP DRILLING RESULTS Well 45-14, c o l l a r e d about one m i l e l l . 7 km southwest o f B a l t a z o r Hot Springs (Figs. 1-3) pene t r a t e d a.lluvium t o a depth o f 160 f t / 4 9 m, a t h i c k T e r t i a r y v o l c a n i c sequence t o 2180 f t / 6 6 4 m, then p r e - T e r t i a r y i n t e r s t r a t i f i e d c h l o r i t e - s e r i c i t e s c h i s t and i n t e r m e d i a t e metavolcanic rock t o t h e base o f t h e sampled i n t e r v a l a t 3590 ft/1094 m; t o t a l depth i s 3640 f t / 1 1 0 9 m. The rocks penet r a t e d i n t h e w e l l , most w i t h d i s t i n c t i v e gammar a y s i g n a t u r e s (Fig. 2) can be r e a d i l y c o r r e l a t e d w i t h s u r f a c e rocks. A prominent f a u l t between 1780 and 1790 f t . (543 and 546 m) separates mass i v e b a s a l t from u n d e r l y i n g interbedded t u f f s , sediments and t h i n b a s a l t flows. This f a u l t i s i n t e r p r e t e d t o be F1. A major f a u l t (F7; Fig. 3) p r e - d a t i n g F 1 (and F6) i s i n f e r r e d from t h e f o r e shortening o f t h e b a s a l t sequence i n 45-14 (1700 f t / 5 1 8 m) r e l a t i v e t o i t s thickness j u s t a m i l e (1.6 km) t o t h e n o r t h and two m i l e s (3.2 km) e a s t (2700 f t / 8 2 3 m). A l t e r a t d o n o f t h e rocks i n w e l l 45-14 i s minimal. Trace t o minor amounts o f t h e yellow-green smecti t e described e a r l i e r a r e e r r a t i c a l l y scat t e r e d i n t h e i n t e r v a l between 400 f t / 1 2 2 m and 1000 f t / 3 2 8 m, along w i t h t r a c e s of c a l c i t e , goet h i t e and chalcedony. The b a s a l t sequence i s e s s e n t i a1 l y una1tered, except f o r 1oca1 t r a c e s of c e l a d o n i t e , smectite, c a l c i t e , and various t e o 1i t e s . Local q u a r t z - p y r i t e c h a l c o p y r i t e v e i n l e t s i n t h e Permian-Triassic ( ? ) metamorphic sequence a r e undoubtedly p r e - T e r t i a r y i n age. - An equi 1 ib r i um temperature prof il e f o r 45-14 (Fig. 3) shows t h r e e d i s t i n c t i v e segments -- an isothermal i n t e r v a l a t about 43OC/109OF between 100 ft/30.5 m and 640 f t / 1 9 5 m; an i n t e r v a l w i t h a temperature g r a d i e n t of about 130°C/km t o a depth of 2100 f t / 6 4 0 m; and a conductive, low-gradient (38OC/km) i n t e r v a l from 2100 f t / 6 4 0 m t o t h e b o t tom o f t h e w e l l , a t which t h e maximum temperature o f 119.67°C/247.400F was recorded. The deep, cond u c t i v e , low g r a d i e n t i n t e r v a l i s c o n f i n e d almost e n t i r e l y t o p r e - T e r t i a r y metamorphic rocks, and 159 . Hul en It, CY nL E x P L A N ATION A- zg LITHOLOGY , G A M M A RAY. API UNITS TEMPERATURE. OC 3 120 '0 2 I Rhyolite and rhyolite flow breccia - W 55 F A a H o r n b l e n d e andesite O D a c i t e (?>ash-flow tuff Olivine-augite basalt (flows, _- -250 a In W IW 2 -500 - 200 I I- flow-breccias, tephra beds) ! lnterbedded basalt and ! tuffaceous sediments ! Intermediate metavolcanic rocks ':@Chlorite ++ ! NS F i g u r e 2. ! I -serici te schist Fault zone I I I ! I I *VA..VA ! . I 100 No sample I 20 TEMPERATURE OF L i t h o l o g y , gamma r a y and temperature l o g s f o r deep t e s t w e l l 8245-14, B a l t a z o r Hot Springs KGRA, Humboldt County, Nevada. Temperature logs f o r 821500-1 and 821500-2 a r e shown f o r comDari son. Gamma-ra.y l o q- b.y - Gearhart (1983) Temperature data from Southwest D r i 11ing and E x p l o r a t i o n Co. (198f). . probably i n d i c a t e s these rocks t o be impermeable. The i n t e r m e d i a t e l e v e l h i g h e r g r a d i e n t i n t e r v a l c o u l d r e f l e c t g e n e r a l l y lower thermal c o n d u c t i v i t i e s o f associated b a s a l t s . The i s o thermal p o r t i o n of t h e p r o f i l e i n d i c a t e s cool water i n f l u x i n f r a c t u r e d h i g h - l e v e l v o l c a n i c units. t r a t e d by 45-14 (Fig. 3) apparently do n o t p r e s e n t l y form p a r t of t h e B a l t a z o r geothermal r e s e r voir. This may be due t o h i g h - l e v e l s e a l i n g along f a u l t s west o f F3 along t h e western margin o f t h e deep f a u l t t r o u g h discussed above. Evidence o f such s e a l i n g i s t h e pervasive, recently-devel oped c a l c i t e - s i 1 i c a stockwork a t t h e range f r o n t j u s t northwest and west o f t h e h o t s p r i n g s (Fig; 1). DISCUSSION AND CONCLUSIONS The B a l t a z o r Hot Springs area remains an encouraging moderate- t o high-temperature geotherIf, as i n d i c a t e d by XRD, mal e x p l o r a t i o n t a r g e t . B a l t a z o r Hot Springs i s p r e s e n t l y p r e c i p i t a t i n g a t least silica, r e s e r v o i r temperatures of 180°C/3560F can be reasonably a n t i c i p a t e d . Adequate p e r m e a b i l i t y can be expected i n f r a c t u r e d volcanics and metavolcanics, and perhaps i n overl y i n g rock rubble, beneath about 2000 f t / 6 1 0 m. F a u l t F3 (Figs. 1, 3), concealed by alluvium, i s probably t h e p r i n c i p a l c o n d u i t along which thermal f l u i d s now ascend. The high-temperature " s p i k e " i n d r i l l h o l e BZ1500-1 (Fig. 2) may represent eastward channeling of these f l u i d s i n t o a subsurface a l l u v i a l aquifer, o r may i n d i c a t e a concealed The temperature decrease f a u l t s u b s i d i a r y t o F3. beneath t h e '%pike'', and associated low thermal gradient, probably i n d i c a t e s t h e t r o u g h - f ill i n g sediments below t h e " s p i k e " t o be r e l a t i v e l y impermeable. The l o c a t i o n o f t h e B a l t a z o r Hot Springs thermal area i s almost c e r t a i n l y c o n t r o l l e d by t h e intersection of n o r t h e a s t e r l y - t r e n d i ng normal f a u l t s w i t h an o l der, n o r t hwest-trendi ng h i g h angle f a u l t system. The main f a u l t o f t h i s system (F2; Fig. l ) , i n f a c t , p r o j e c t s southeastward, beneath younger f a u l t blocks and alluvium, t o a pos i t i o n almost d i r e c t l y beneath t h e present h o t spring location. The i n t e r a c t i o n o f these two f a u l t systems would c r e a t e a zone o f h i g h f r a c t u r e pemieabi 1 it y , a1 l o w i ng deep c i r c u l a t i on and r e s u l t a n t h e a t i n g o f f l u i d s ( f a c i l i t a t e d by t h e abnorm a l l y high r e g i o n a l thermal g r a d i e n t s o f t h e B a t t l e Mountain h e a t - f l o w h i g h ; Sass e t al., 1971), f o l l o w e d by r a p i d convection o f these heated f l u i d s t o shallow depths. Additional res e r v o i r P e r m e a b i l i t y could be developed i n rock r u b b l e accumulated i n t h e deep f a u l t t r o u g h beneath B a l t a z o r Hot Springs, from t h e breakage, i n t o t h e trough, o f h i g h - l e v e l low-angle f a u l t b l o c k s exposed n o r t h o f w e l l 45-14 (Figs. 1,3). The depths a t which commercially a t t r a c t i v e h i g h e r temperatures might be encountered i s conjectural. Simple downward p r o j e c t i o n of t h e apparently conductive g r a d i e n t s (35-38OC/km) As demonstrated by d e e p - d r i l l i n g , these low angle f a u l t blocks, t h e lower of which was pene- 160 Hul en F i g u r e 3. I n t e r p r e t i v e 3-D geologic s e c t i o n AA'-BB' encountered i n t h e lower p o r t i o n s o f 8245-14 and 821500-1, however, y i e l d s temperatures o f 15O0C/3O2"F a t about 5800 f t / 1 7 6 8 m and 18OoC/356"F a t about 8500 f t / 2 9 9 1 m. Presumably, convection would r e s u l t i n these temperatures p r e v a i l i n g a t shallower depths. ACKNOWLEDGEMENTS This study was funded by t h e Department of Energy, D i v i s i o n o f Geothermal Energy under Contract No. DE-AC07-80ID12079. Discussions w i t h Bruce S i b b e t t and Dennis Nielson were p i v o t a l i n structural interpretations. 11l u s t r a t i o n s were prepared by Connie Pixton. The manuscript was prepared by H o l l y Baker. REFERENCES Burnham, R., 1971, The geology o f t h e southern p a r t * o f t h e Pueblo Mountains, Humboldt County, Nevada: Oreg. S t a t e Univ., M.S. Thesis. through B a l t a z o r Hot Springs and deep w e l l 8245-14. Edquist, R. K., 1981, Geophysical i n v e s t i g a t i o n s o f t h e B a l t a z o r Hot Springs KGRA and t h e Painted Hi1 1s thermal area, Humboldt County, Nevada: Univ. Utah Rsch. Inst., E a r t h Sci. Lab,, Rept. No. 54. Gardner, M. C., and Koenig, 3. B., 1978, Photogeol o g i c i n t e r p r e t a t i o n o f t h e Baltazor-McGee geothermal prospects, Humboldt County , Nevada: Berkeley, Calif., Geothermex, Inc., Consulting Rept. f o r E a r t h Power Production co 0 Gearhart, 1983, Gamma-ray and compensated neutron l o g s f o r w e l l 45-14. Hulen, J. B., 1979, Geology and a l t e r a t i o n of t h e B a l t a z o r Hot Springs and Painted H i l l s t h e r mal areas, Humbol d t County, Nevada : Uni v Utah Rsch. Inst., E a r t h Sci. Lab, Rept. No. 27 . 161 Hul en and Koenig, 3. B., 1977, Geothermal Klein, C. W., i n t e r p r e t a t i o n o f groundwaters, Continental Lake r e g i on, Humbol d t County , Nevada : Berkeley, Calif., Geothermex, Inc., Consulti n g Rept. f o r E a r t h Power Production Co. Langenkamp, D. , 1978, Temperature gradient map o f t h e Baltazor-McGee Mountain area, Humboldt County, Nevada: E a r t h Power Prod. Co. Map. Lawrence, R. D., 1976, S t r i k e - s l i p f a u l t i n g t e r minates t h e Basin and Range province i n Oregon: Geol. SOC. Amer. Bull., vol. 87, p. 846-850. M i n i ng Geophysical Surveys, Inc. , 1980, Resi st i v i t y and s e l f - p o t e n t i a l survey, B a l t a r o r McGee geot h e m a l prospects, Humbol d t County, Nevada: Consulting Rept. f o r E a r t h Power Prod. Co. . Rowe, W. A., 1971, Geology of t h e south-central Puebl o Mountai ns, Oregon-Nevada : Oreg S t a t e Univ., M.S. Thesis. Sass, 3. H., Lachenbruch, A. H., Munroe, R. J., Greene, G. W., and Moses, T. H., 1971, Heat flow i n t h e western United States: Jour. Geophys. Research, v. 76, p. 6376-6413. S c i n t r e x Mineral Surveys, Inc., 1972, Aeromagnetic map of t h e Baltazor-McGee geothermal prospects: Consulting Rept. f o r E a r t h Power - Prod. Co.' Senturion Sciences, Inc., 1977, Northwestern Nevada microearthquake survey report: Consulting Rept. f o r E a r t h Power Prod. Co. Southwest D r i l l i n g and E x p l o r a t i o n Co., 1983; E q u i l i b r i u m temperature data f o r we1 1 45-14. Truex, P. S., 1980, Geochemical s o i l survey, B a l t a z o r thermal area, Nevada: Consulting Rept. f o r E a r t h Power Prod. Co. White, D. E., M u f f l e r , L. J. P., and Truesdell, A. H., 1971, Vapor-domi nated geothermal systems compared w i t h hot-water systems: Econ. Geol., V. 66, p. 75-97. Willden, R., 1964, Geology and mineral deposits o f Humboldt County, Nevada: Nev. Bur. Mines and Geol., B u l l . 59. 162
© Copyright 2026 Paperzz