FORM W.7 PRINTED IN U. 0 . A.O INTER-OFFICE CORRESPONDENCE SHEET SUN O I L C O M P A N Y I SUBJECT: GEOTHERMAL PROJECT DATE$ FROM: G . W. B e r r y OFFICE*B o u l d e r , TO: Mr. R . R . Anderson A p r i l YO, 1967 Colorado Philadelphia Dear S i r : I f o r w a r d t h e a t t a c h e d t h r e e ( 3 ) c o p i e s o f Geothermal P r o j e c t p r o g r e s s r e p o r t "Thermal Data o f t h e B l a c k Rock D e s e r t Area," d a t e d A p r i l 10, 1967, by H a d s e l l , Grose, and B e r r y . Drs. H a d s e l l and Grose a r e c o n s u l t a n t s to Sun on t h i s p r o j e c t , s o t h i s i s a Company r e p o r t . There i s a summary on p . 1 and 2 . Sincerely, G. W. Berry GWB: bn Enc l o s u r e cc: Mr. J . E. G i l b e r t (w/att) DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. THERMAL DATA O F THE BLACK ROCK DESERT AREA HUMBOLDT AND WASHOE C O U N T I E S , NEVADA FRANK HADSELL, L . T . GROSE, AND G . W . BERRY A P R I L 10, 1 9 6 7 Summary : T h i s i s a p : o g r e s s r e p o r t on a n a l y s i s o f therma d a t a from t h e Black Rock Desert o f n o r t h w e s t Nevada. Hot s p r i n g s a t S o l d i e r Meadows, F l y Ranch, G e r l a c h , and P i n t o Mountains w e r e mapped, and w a t e r f l o w s and tempera- t u r e s measured, by G . W. B e r r y and G . R . Downsin 1965 and 1 9 6 6 . These d a t a have been s t u d i e d f u r t h e r by Frank H a d s e l l ( g e o p h y s i c i s t ) and L. T . Grose ( g e o l o g i s t ) a t t h e C o l o r a d o S c h o o l o f Mines and w i t h t h e computer f a c i l i t i e s of t h e S c h o o l o f Mines G r a d u a t e R e s e a r c h C e n t e r , i n an e f f o r t t o d e t e r m i n e g e o t h e r m a l power potentials. Power g e n e r a t i o n by h y p o t h e t i c a l C a r n o t e n g i n e s h a s been c a l c u l a t e d f o r t h e f o u r t h e r m a l a r e a s . Data / from s e v e n p r o s p e c t h o l e s a t P i n t o Mountains have been e x p l o i t e d i n p l o t t i n g g e o t h e r m a l g r a d i e n t s and computing heat flows. I t i s emphasized t h a t t h i s r e p o r t i s t o a l a r g e e x t e n t an exercise i n a r i t h m e t i c and thermodynamics, f r a u g h t w i t h a s s u m p t i o n s t h a t may n o t e n d u r e . A l l of t h e 2 conclusions a r e t e n t a t i v e . However, w e c o n s i d e r t h i s a v a l i d l i n e of p r a c t i c a l r e s e a r c h . To t h e e x t e n t t h a t t h e f i g u r e s and c o n c l u s i o n s are a p p l i c a b l e , t h e y a r e g e n e r a l l y e n c o u r a g i n g i n t h e m s e l v e s and i n comparison w i t h t h o s e o f d e v e l o p e d g e o t h e r m a l a r e a s , as t o t h e g e o t h e r m a l power p o t e n t i a l of Sun a c r e a g e i n t h e B l a c k Rock Desert a r e a . of H o t Springs : Relative M e r i t - Water f l o w s and t e m p e r a t u r e s can be i n t e r p r e t e d b e s t i n t e r m s of an e x t e n s i v e thermodynamic q u a n t i t y which p l a c e s p r o p e r r e l a t i v e emphasis on them. The q u a n t i t y a d o p t e d f o r t h i s s t u d y i s t h e power of a h y p o t h e t i c a l C a r n o t e n g i n e ( F i g u r e l), i d e a l l y o p e r a t i n g between t h e h o t h e a t r e s e r v o i r of a t h e r m a l s p r i n g and a c o o l h e a t r e s e r v o i r a t t h e mean a i r t e m p e r a t u r e of t h e a r e a . The e n g i n e i s imagined t o e x t r a c t h e a t from t h e h o t r e s e r v o i r a t a r a t e e q u a l t o t h e r a t e a t which h e a t i s t r a n s f e r r e d from t h e h o t s p r i n g t o a s u r f a c e s t r e a m a t mean ambient t e m p e r a t u r e by normal f l o w of w a t e r , Q1, less t h e rate a t which t h i s w a t e r t r a n s f e r s h e a t back i n t o t h e g r o u n d , Q2. The e n g i n e i s t h e n imagined t o c o n v e r t t h e t h e o r e t i c a l maximum o f t h e e x t r a c t e d h e a t i n t o m e c h a n i c a l energy. The e x i s t e n c e of t h i s maximum i s an e x p r e s s i o n o f t h e s e c o n d l a w o f thermodynamics. I n t h i s h y p o t h e t i c a l problem t h e s e l e c t i o n o f Q a s t h e h e a t f l o w i n t o t h e C a r n o t e n g i n e i s a r b i t r a r y , made 3 CARNOT ECHANICAL ENERGY H€AT W Q-W ENGINE W CK 4 a W W I Q = Q I - Q 2 a. PROPORTIONAL TO T -T' v) 0 z r L l- HOT SPRING a z 4 T l- a W r AMBIENT WATERS T' Figure 1 4 5 l a r g e l y on t h e b a l a n c e d f l o w o f w a t e r i t p r o v i d e s ; a l a r g e r p o r t i o n o f Q, c o u l d be assumed. The e f f i c i e n c y , e , o f a C a r n o t e n g i n e o p e r a t i n g between h e a t reservoirs w i t h t e m p e r a t u r e s T and T ' i s e xp re s s e d e = 1 - T'/T and t h e m e c h a n i c a l e n e r g y o u t p u t , W , of t h e e n g i n e i s t h e n W = Qe = Q (1 - T ' / T ) . I f c i s t h e a v e r a g e s p e c i f i c h e a t between T and T ' and m i s t h e m a s s of water t r a n s f e r r e d , t h e n , (1 = c m (T - and (T T') - TI)* W = c m T and (T - TI) 255 + 5/9 P = 0.081 G ( ) T , where P i s power i n k i l o w a t t s , G i s f l o w of w a t e r i n g a l l o n s p e r m i n u t e , T i s t e m p e r a t u r e of t h e h o t s p r i n g i n d e g r e e s F a h r e n h e i t , and T ' i s t h e mean a i r temperat u r e of t h e area i n degrees Fahrenheit. The g r a p h o f F i g u r e 2 p e r m i t s o n e t o o b t a i n t h e C a r n o t power o u t p u t f o r any s p r i n g by a s i n g l e m u l t i p l i c a tion. 6 U. S . Weather Bureau d a t a f o r n o r t h w e s t e r n Nevada show mean a n n u a l t e m p e r a t u r e s o f 48.2'F n e a r t h e Black Rock Desert. t o 53.4'F i n and Downs and B e r r y ( 1 9 6 6 ) Conservatively, we e s t i m a t e d 51'F f o r S o l d i e r Meadows. h a v e u s e d 54'F f o r a l l of t h e area i n t h i s s t u d y . Summary d a t a f o r h o t s p r i n g s o f t h e f o u r l o c a l i t i e s a r e l i s t e d i n T a b l e 1. The w a t e r f l o w i s from f i e l d d a t a by B e r r y and Downs ( 1 9 6 6 ) . C a l c u l a t i o n s o f mean w a t e r t e m p e r a t u r e ( f l o w o f a l l h o t s p r i n g s mixed) and C a r n o t power are by H a d s e l l , w i t h computer. TABLE 1 Water flow, gpm S o l d i e r Meadows Mean w a t e r temperature , OF Carnot power, kw 2842 110 2540 934 10 0 660 538 205 2693 t o t a l 1472 138 3353 Gerlach 253 175 855 P i n t o Mountains 142 189 595 F l y Ranch - F l y Ranch Western natural - Geothermal w e l l F l y Ranch - The premium which t h e C a r n o t power f i g u r e of m e r i t p l a c e s on h i g h t e m p e r a t u r e i s e v i d e n t i n comparison o f 7 t h e S o l d i e r Meadows and G e r l a c h a r e a s . The w a t e r f l o w o f G e r l a c h i s l e s s t h a n o n e - t e n t h t h a t o f S o l d i e r Meadows, b u t , b e c a u s e o f h i g h e r t e m p e r a t u r e , t h e C a r n o t power i s more t h a n o n e - t h i r d . A t W a i r a k e i , New Zealand, a w e t steam f i e l d , d r i l l i n g h a s i n c r e a s e d mass f l o w 3 t o 5 t i m e s and t h e h e a t f l o w 2 t o 3.5 t i m e s , Grindley, 1965). from n a t u r a l ( M c N i t t , 1 9 6 3 , p . 39; A t The G e y s e r s , C a l i f o r n i a , a d r y steam f i e l d , d r i l l i n g ( t o 1963) h a s i n c r e a s e d mass f l o w a b o u t 20 t i m e s and h e a t f l o w a b o u t 1 7 0 t i m e s from n a t u r a l ( M c N i t t , 1963, p. 39). I n thermal areas t h r o u g h o u t t h e w o r l d , w i t h o u t e x c e p t i o n , h e a t f l o w s have been s u b s t a n t i a l l y i n c r e a s e d by d r i l l i n g . A t F l y Ranch, t h e Western Geothermal w e l l , o n l y 805 f t t o t a l d e p t h , h a s i n c r e a s e d t h e t h e r m a l a r e a mass f l u x 58 p e r c e n t and t h e C a r n o t power o u t p u t 4 0 0 p e r c e n t . The C a r n o t power f i g u r e s may be u s e f u l i n d i c a t o r s of r e l a t i v e m e r i t , b u t t h e y c a n n o t now b e e q u a t e d t o g e o t h e r m a l power p o t e n t i a l . Such c o r r e l a t i o n s h o u l d a w a i t development of a c a t a l o g u e o f case h i s t o r i e s . I f , however, one i n s i s t s on comparing C a r n o t power w i t h power s o l d a t a bus b a r , h e m i g h t p r o c e e d as follows. E m p i r i c a l l y i t i s sound t o assume an i n c r e a s e i n h e a t f l o w by development d r i l l i n g , a f a c t o r of 1 7 0 t i m e s a t The G e y s e r s . To i n t e r p r e t t h i s i n c r e a s e i n t e r m s of C a r n o t power an a s s u m p t i o n must b e made 8 c o n c e r n i n g t h e e f f i c i e n c y o f a r e a l power p l a n t r e l a t i v e t o a h y p o t h e t i c a l Carnot engine. Being i n v o l v e d o n l y w i t h o r d e r s of magnitude i t i s r e a s o n a b l e t o assume t h a t t h e e f f i c i e n c y a d v a n t a g e g a i n e d by d r i l l i n g t o h i g h t e m p e r a t u r e s i s j u s t o f f s e t by t h e i n h e r e n t l y h i g h e f f i c i e n c y of a Carnot engine, 1 0 t o 2 5 p e r c e n t i n t h i s case. I f , t h e n , The G e y s e r s i n c r e a s e i n h e a t f l u x i s r e p r e s e n t a t i v e and t h e e f f i c i e n c y a s s u m p t i o n i s v a l i d , o n e c o u l d i n c r e a s e t h e C a r n o t power numbers o f T a b l e 1 by two o r d e r s o f magnitude ( 1 O O X ) and g e t a g e o t h e r m a l power p o t e n t i a l f o r S o l d i e r Meadows o f 254,000 kw. Although t h i s r k a n e n c o u r a g i n g number, i t s h o u l d b e emphasized a g a i n t h a t i t i s d e r i v e d w i t h h i g h l y t e n u o u s assumptions. T h i s d i s c u s s i o n i s l i m i t e d mainly t o a n a l y s i s of t h e h e a t and mass f l u x o f t h e h o t s p r i n g s . There i s additional n a t u r a l heat f l o w i n the l o c a l thermal areas from t h e r e l a t i v e l y d r y ground between s p r i n g s . S t o r e d h e a t a l s o may be v e r y i m p o r t a n t . Steamboat S p r i n g s , Nevada, i s a t h e r m a l a r e a a t t h e e a s t f o o t of t h e S i e r r a Nevada, a r o u g h l y comparable g e o l o g i c a l l o c a t i o n t o t h e w e s t e r n Black Rock Desert. ( 1 9 6 4 , p. White 4 0 7 ) h a s c a l c u l a t e d t h e s t o r e d h e a t i n an a r e a of 1 . 9 s q u a r e m i l e s a t Steamboat, 1 . 9 m i l e s deep, a t a p p r o x i m a t e l y 1 . 6 x 1OI8 c a l . This i s equivalent t o t h e n a t u r a l h e a t flow a t t h e p r e s e n t r a t e f o r 7000 9 years. I t i s a minimum f i g u r e b e c a u s e much e x c e s s h e a t i s s t o r e d a t g r e a t e r d e p t h and below t h e s u r f a c e o f surrounding area. Thompson and White ( 1 9 6 4 , p . 4 8 ) h a v e e s t i m a t e d t h a t h e a t f l o w i n t h e same 1 . 9 s q u a r e m i l e s of Steamboat thermal area i s 7 x lo6 cal/sec, equivalent t o h e a t from 1 0 0 t o n s o f c o a l o r 5 0 0 b b l o f o i l p e r day. Power P l a n t R e q u i r e m e n t s : To a r r i v e a t an i d e a of g e o t h e r m a l r e s o u r c e r e q u i r e ments w e have a r b i t r a r i l y assumed a 300,000-kw p l a n t , w h i c h , u s i n g a rough rule-of-thumb capacity of 1 kw p e r c u s t o m e r , would s u p p l y a c i t y a b o u t t h e s i z e o f D a l l a s o r Denver. G i l b e r t and B e r r y ( 1 9 6 4 ) c o n c l u d e d t e n t a t i v e l y t h a t , f o r such a p l a n t , t h e land requirement i s i n t h e a c r e s , and t h e w a t e r r e q u i r e m e n t on t h e range of 500-5000 o r d e r o f 2 0 , 0 0 0 a c r e - f t p e r y e a r f o r d r y steam and 5 0 , 0 0 0 a c r e - f t p e r y e a r f o r w e t steam. I n t h e i r inventory of t h e w a t e r r e s o u r c e s of t h e Sun a c r e a g e a r e a i n w e s t e r n B l a c k Rock D e s e r t , G i l b e r t and B e r r y e s t i m a t e d t h e p e r e n n i a l y i e l d a t 24,500 a c r e - f t ( W e s t a r m o f B l a c k Rock Desert, G r a n i t e B a s i n , High Rock Lake, Summit Lake, Hualapai F l a t ) . T h i s i s l e g a l l y t h e maximum t h a t can now b e consumed a n n u a l l y . The water f l o w s l i s t e d i n T a b l e 1 are f o r f o u r l o c a l h o t s p r i n g a r e a s and c e r t a i n l y are minimum f i g u r e s . There i s c o n s i d e r a b l e a d d i t i o n a l w a t e r d i s c h a r g i n g i n t h e subsurfiace i n t h e s e areas, and 10 t h e r e a r e s e v e r a l a d d i t i o n a l areas o f s p r i n g and w e l l discharge. However, a t S o l d i e r Meadows,the measured 2 8 4 2 gpm i s 4575 a c r e - f t p e r y e a r , o r a b o u t 1 0 p e r c e n t of e s t i m a t e d w e t steam requirement. Although w a t e r consumption can u n d o u b t e d l y be lowered by i n j e c t i o n , r e c i r c u l a t i o n , and h e a t e x c h a n g e r s , t h e a v a i l a b i l i t y problem i s v e r y r e a l . Prospect H o l e s : A s a f i r s t s t e p i n a n a l y s i s of d a t a from p r o s p e c t h o l e s d r i l l e d a t P i n t o Mountains and S o l d i e r Meadows, t e m p e r a t u r e i n s t r u m e n t a t i o n was t e s t e d a t t h e C o l o r a d o S c h o o l of Mines g e o p h y s i c a l l a b o r a t o r y . F i e l d procedure h a s been t o r u n t h e r m o c o u p l e s i n t o t h e h o l e s a s soon a s d r i l l i n g h a s been completed and back f i l l t h e h o l e s as completely a s p r a c t i c a b l e . Thermocouples a r e Leeds & N o r t h r u p c o p p e r c o n s t a n t a n (32OF), no. 2 4 , enamel and g l a s s insulated, with Quiktip connectors. Readings have been Northrup p o r t a b l e m i l l i v o l t m a d e w i t h a Leeds & p o t e n t i o m e t e r no. 8696. Two t h e r m o c o u p l e s w e r e b o i l e d i n t h e l a b o r a t o r y f o r n e a r l y two months, w i t h p e r i o d i c measurements of t h e r m a l emfs. One o f t h e t h e r m o c o u p l e s had p r e v i o u s l y been u s e d a t P i n t o Mountains f o r several months. T e s t s i n d i c a t e t h a t w i t h t h i s equipment tempera- t u r e o f b o i l i n g w a t e r can b e measured w i t h an a c c u r a c y b e t t e r t h a n l0C (1.8'F) i f t h e t e m p e r a t u r e of t h e c o o l c o n t a c t i s known t o t h i s a c c u r a c y . N o d r i f t of 11 measurements w a s o b s e r v e d , i n d i c a t i n g j u n c t i o n c h a r a c t e r i s t i c s w e r e n o t a p p r e c i a b l y changed by b e i n g i n b o i l i n g water f o r n e a r l y t w o months. There i s s i g n i f i c a n t u n c e r t a i n t y i n t h e f i e l d measurements, p e r h a p s a s much a s 5'F, because t h e c o o l j u n c t i o n , t h e p o t e n t i o m e t e r t e r m i n a l , may n o t have r e a c h e d t h e r m a l e q u i l i b r i u m a s r a p i d l y as t h e mercury thermometer l a i d a l o n g s i d e . Improvement can b e made by p l a c i n g t h e c o o l j u n c t i o n i n an i c e - w a t e r b a t h , o r , where t h i s i s i m p r a c t i c a l , making t h e c o o l j u n c t i o n m o r e l i k e t h e h o t so t h e h e a t c a p a c i t y i s lower t h a n t h a t of the potentiometer terminal. Thermal c o n d u c t i v i t i e s u s e d i n t h i s s t u d y a r e from t a b l e s by C l a r k ( 1 9 6 6 ) , u s i n g f i e l d l i t h o l o g i c l o g s by G . R. Downs. They are n o t p r e c i s e d e t e r m i n a t i o n s . L a b o r a t o r y measurements o f t h e r m a l c o n d u c t i v i t i e s o f h o l e s a m p l e s w i l l g r e a t l y enhance t h e r e l i a b i l i t y o f such c a l c u l a t i o n s i n t h e f u t u r e . Temperature measurements made i n t h e P i n t o Mountains a r e a and t h e i n t e r p r e t e d t e m p e r a t u r e d i s t r i b u t i o n s and v e r t i c a l h e a t f l u x e s a r e given i n Figures3-9. From t h e s e it i s e v i d e n t t h e area i s t h e r m a l l y anomalous. The "normal" t e m p e r a t u r e g r a d i e n t o f t h e o u t e r 6 . 2 m i l e s of t h e s o l i d e a r t h i s 1.125'F/100 f t (probably t o o l o w i n o r o g e n i c a r e a s and t o o h i g h f o r s t a b l e continental areas) (White, 1965, p. 1 4 ) . Pinto TEMPERATURE IN OF Figure 3 TEMPERATURE IN OF Figure 4 .. . . - . . . . . . . Figure' 5 TEMPERATURE IN OF 15 Figure 6 TEMPERATURE IN 16 O F i i .Figure 7 TEMPERATURE IN OF 17 i i Figure 8 TEMPERATURE IN 18 OF 0 L Figure 9 19 to Mountains p r o s p e c t h o l e s RD 1-6 have g r a d i e n t s 7'F 47'F/100 f t , 6 t o 4 2 t i m e s h i g h e r t h a n ''normal." The c u r r e n t e s t i m a t e o f g l o b a l a v e r a g e h e a t f l o w 2 cal/cm s e c , and f o r g e o t h e r m a l c o n s i d e r a - is 1.5 x t i o n s h e a t flow i n t h e range of 0 . 8 - 2 .O 2 cal/cm sec x s h o u l d b e c o n s i d e r e d i n t h e "normal" r a n g e ( W h i t e , 1 9 6 5 , p. 14). Values f o r t h e v e r t i c a l component of h e a t f l u x i n t h e P i n t o Mountains p r o s p e c t h o l e s a r e 2 t o 2 cal/cm s e c , a s much a s 3 2 t i m e s " n o r m a l . " 48 x W e have g e o l o g i c e x p l a n a t i o n s f o r some o f t h e variations i n heat flux. Although RD 5 i s anomalously warm, it i s the coolest hole i n the area. Location i s on t h e r i d g e between West and E a s t S p r i n g s i n T e r t i a r y " v o l c a n i c s , I ' whereas a l l t h e o t h e r s i x h o l e s are t o p o g r a p h i c a l l y l o w e r , i n and n e a r t h e h o t s p r i n g a r e a s , and i n and n e a r t h e m a j o r normal f a u l t zones boundi n g t h e P i n t o Mountains s t r u c t u r a l b l o c k , o r b l o c k s . The h i g h e s t v e r t i c a l components o f h e a t f l u x a r e i n RD 1, 6 , and 7 , West S p r i n g a r e a . RD 1 i s l o c a t e d on t h e s u r f a c e t r a c e o f a normal f a u l t d i p p i n g w e s t a b o u t 70°, and RD 6 and 7 are t o p o g r a p h i c a l l y and s t r u c t u r a l l y lower, i n t h e a l l u v i a l g r a v e l s w e s t of t h e fault trace. The d e c r e a s e i n h e a t f l u x below 50 f t i n RD 6 and 7 p r o b a b l y i n d i c a t e s a f l o w , o r a t l e a s t t h e e x i s t e n c e , o f h o t w a t e r a t d e p t h s o f 50 t o 80 f t . We c a n n o t now r u l e o u t e r r o r i n p l a c e m e n t of t h e r m o c o u p l e s i n RD 7 . 20 P r o s p e c t h o l e s RD 3 and 4 a r e l o c a t e d w e s t o f t h e e a s t - d i p p i n g normal f a u l t a t E a s t S p r i n g s , i n " v o l c a n i c s " o f t h e upthrown b l o c k . Although t h e r m a l l y anomalous, I t h e h e a t f l u x i s n o t a s h i g h a s i n h o l e s b a s i n w a r d of t h e West S p r i n g . The t h e r m a l d a t a c l e a r l y s u p p o r t t h e t h e s i s t h a t mountain f r o n t normal f a u l t s are t h e c o n d u i t s f o r t h e h o t ascending w a t e r s of t h e Great Basin thermal areas. A t S o l d i e r Meadows 30 t e m p e r a t u r e h o l e s w e r e d r i l l e d , one t o 1 0 0 f t and t h e o t h e r s t o 2 0 f t o r l e s s . Although anomalous t e m p e r a t u r e s a r e i n d i c a t e d , d a t a from t h e s e s h a l l o w h o l e s w i t h o n l y bottom-hole thermocouples a r e of very l i m i t e d use i n thermal c a l c u l a - tions. W e c a n n o t now make m e a n i n g f u l d e d u c t i o n s from them. The c u r v e s o f F i g u r e s 3-9 show t e m p e r a t u r e s a t t h e w a t e r t a b l e a b o u t 20°F h i g h e r i n a r e a s o f h i g h t h a n i n a r e a s o f low v e r t i c a l f l u x . Such t e m p e r a t u r e a n o m a l i e s w i l l n o t of c o u r s e p e r s i s t u n d i m i n i s h e d t o t h e s u r f a c e , b e c a u s e r e g i o n s of h i g h v e r t i c a l f l u x must a l s o have a h i g h v e r t i c a l component o f t h e g e o t h e r m a l g r a d i e n t . Nevertheless, we believe the p o s s i b i l i t y t h a t these temperature anomalies a r e m a n i f e s t a t t h e s u r f a c e t o a d e g r e e d e t e c t a b l e by means o f i n f r a r e d r a d i o m e t e r s , above n o i s e o f e m i s s i v i t y e f f e c t s and v a r i a t i o n s i n 21 d e p t h t o water t a b l e , i s worth f u r t h e r i n v e s t i g a t i o n . A p l a n f o r t h i s surveying i s under d i s c u s s i o n w i t h Geophoto S e r v i c e s (Texas I n s t r u m e n t s ) . The t e n t a t i v e s c h e d u l e i s t o have a ground s u r v e y a t S o l d i e r Mead.ows made by a Geophoto e x p e r t and G . W . Berry d u r i n g about a month o f t h e f a l l of 1967, u s i n g t h e r m i s t o r s a t t h e s u r f a c e and d e p t h s of a few i n c h e s , and a hand-held i n f r a r e d radiometer. This fieldwork i s p r e r e q u i s i t e f o r a i r b o r n e i n f r a r e d s e n s i n g which h a s been u n d e r d i s c u s s i o n w i t h Geophoto and t h e p a r e n t Texas Instruments f o r t h e p a s t t h r e e years. S e l e c t e d References: B e r r y , G . W . , and Downs, G . R . , 1 9 6 6 a , F l y Ranch h o t s p r i n g s : Sun O i l C o . Map, Aug. 2 5 , 1 9 6 6 . With separate spring data tabulations. B e r r y , G . W . , and Downs, G . R . , 196633, G e r l a c h h o t springs: Sun O i l C o . Map, Auq. 2 5 , 1 9 6 6 . With separate spring data tabulations. B e r r y , G . W . , and Downs, G . R . , 1 9 6 6 c , P i n t o Mountains h o t s p r i n g s area: Sun O i l C o . Map, Aug. 25, 1 9 6 6 . With s e p a r a t e s p r i n g and p r o s p e c t hole d a t a t a b u l a - tions. and Downs, G . R . , 1966d, S o l d i e r Meqdoys Sun O i l Co. Map, Auy. 2 5 , 1 9 6 6 . W i t h s e p a r a t e s p r i n g and t e m p e r a t u r e hole d a t a t a b u l a tions. Berry, G.,W., area: C l a r k , S . P . , J r . , 1 9 6 6 , Thermal c o n d u c t i v i t y , i n C l a r k , S . P . , J r . , e d . , Handbook of p h y s i c a Geo1:Soc. American Men. 9 7 , c o n s t a n t s , rev: e d . : p. 459-482. Downs,'G. R . , and B e r r y , G . W . , 1 9 6 6 , N o r t h w e s t Nevada Sun 0 i l . C o . R e p t . , Mar. 1, 1966, temperatures: 2 P* 22 E l d e r , J . W . , 1965, P h y s i c a l p r o c e s s e s i n geothermal a r e a s , i n W. H. K . L e e , e d . , Terrestrial h e a t flow: Am. Geophys. Union Geophys. Mon. S e r . N o . 8 , p . 211-239. G i l b e r t , J . E . , and B e r r y , G . W . , 1 9 6 4 , Geothermal project progress report: C o r d e r 0 Mining Co. R e p t . , P a l o A l t o , A p r i l 1 0 , 1 9 6 4 , 1 3 p. G r i n d l e y , G . W . , 1965, The g e o l o g y , s t r u c t u r e , and e x p l o i t a t i o n of t h e Wairakei geothermal f i e l d , Taupo, New Zealand: N e w Zealand G e o l . Survey B u l l . n . s . 75, 1 3 1 p . K e l l e r , G . V . , and P r i t c h a r d , J . I . , 1 9 6 6 , R e p o r t o n e l e c t r i c a l g e o p h y s i c a l i n v e s t i g a t i o n s of h o t - s p r i n g s areas ( F l y Ranch and G e r l a c h , Nev.): Sun O i l Co. R e p t . , Denver, O c t . 1 7 , 1 9 6 6 , 15 p . , app. A-C. J . R . , 1 9 6 3 , E x p l o r a t i o n and development of g e o t h e r m a l power i n C a l i f o r n i a : C a l i f o r n i a Div. Mines and Geology Spec. Rept. 75, 45 p . McNitt, Thompson, G . A . , and W h i t e , D . E . , 1 9 6 4 , R e g i o n a l g e o l o g y of t h e Steamboat S p r i n g s a r e a , Washoe County, Nevada: U . S . Geol. Survey P r o f . P a p e r 458-A, 52 p . W h i t e , D . E . , 1 9 5 7 , Thermal waters of v o l c a n i c o r i g i n : G e o l . SOC. America B u l l . , v. 6 8 , p . 1637-1658. White, D . E . , 1 9 6 4 , P r e l i m i n a r y e v a l u a t i o n of g e o t h e r m a l a r e a s by g e o c h e m i s t r y , g e o l o g y , and s h a l l o w drilling: U n i t e d N a t i o n s Conf. N e w S o u r c e s o f Energy, Rome 1 9 6 1 , P r o c . , v. 2 , GeothermaL Energy I: p. 402-408. White, D . E . , 1965, Geothermal e n e r g y : Survey C i r c . 5 1 9 , 1 7 p . U. S. G e o l . Zemansky, M. W . , 1 9 5 7 , Heat and t h e r m o d y n a m i c s , 4 t h e d . : N e w York, McGraw-Hill, 4 8 4 p. PINTO MOUNTAINS PROSPECT HOLES *ELEV. TOTAL DEPTH FEET COMP. LITHOLOGY DATE 1966 100 17 61 111 161 209 6-10 6-10 6-10 6-10 6-10 71.,q 87.5 95.0 104.5 112.0 6-11 6-11 6-11 6-11 6-11 63.0 76.0 92.0 100.0 107.0 6-15 6-15 6-15 6-15 6-15 73.0 86.5 102.5 108.5 115.0 7-1 7-1 7-1 7-1 7-1 0-100 s a n d & clay D r i l l e d w i t h mud, l o s t circ. 9 8 , 22 60 97 6-16 6-16 6-16 72.5 94.0 102.0 1 6-18 6-18 6-18 72.5 95.0 102.0 7-1 7-1 7-1 73.0 87.5 86.0 7-21 7-21 7-21 76.1 4135 21'0 6-15 . 1 RD5 4 2 8 4 0-200 s a n d & clay 200-210 granodiorite Drilled w i t h mud 6-2 1 0-20 coarse Drilled w i ' t h g r i t , sandmud stone, & clay 20-363 clay, sticky, interbedded w i t h sandstone & s i l t y clay 363 . 7 n A r m moo- 1966 D r i l l e d w i t h mud & water stood a t RD4 4139 T V ' ~ 0-190 s a n d & clay 1 9 0 - 2 0 0 granodiorite, w eathered 2 0 0 - 2 1 1 granodiorite 6-11 RD3 4 1 4 3 DATE 1966 7-21 7-21 7-21 6-9 I T3 TCOF 80.0 94.0 100.0 211 9.'. DATE 1966 7-1 7-1 7-1 RD2 4 1 1 8 '. TC'F 77.0 91.7 101.0 0-55 sand clay 2,5 i. DATE 1966 6-15 6-15 6-15 6-3 J TCOiFi 1 6-11 74.0 6-11 93.0 6-11 101.5 55 I.- DATE 1966 Drilled w i t h a i r , 12.5 stopped b y 30 w a t e r (40) 53 RD1 4103 - THERMO- COUPLE FEET 76.0 87.3 95.0 65.0 79.0 92.0 104.0 108.0 7-21 7-21 7-21 7-21 7-21 66.0 82.0 92.0 99.3 103.5 ? ? r1 22 55 105 155 203 6-16 6-16 6-16 6-16 6-16 72.G 81.0 90.0 93.5 104.5 6-18 6-18 6-18 6-18 6-18 68.0 77.0 86.0 94.0 104.0 7-1 7-1 7-1 7-1 7-1 65.0 74.5 86.0 93.4 102.5' 7-21 7-21 7-21 7-21 7-21 64.0 72.1 78.3 95.0 103.5 23 63 139 213 288 361 6-22 6-22 6-22 6-22 6-22 6-22 69.0 69.0 78.0 78.0 86.0 79.5 6-25 6-25 6-25 6--2 5 6-25 6-25 63,s 64.0 76.0 82.5 83.5 69.0 7-1 7-1 7-1 7-1 7-1 7-1 60.0 64.0 70.5 78.5 74.5 85.5 7-21 7-21 7-21 7-21 7-21 7-21 58.0 64.1 73.0 77.5 82.0 83.2 101.5 137.0 146.5 150.0 7-1 7-1 7-1 7-1 100.5 138.0 143.5 150.5 7-21 7-21 7-21 7-21 103.0 136.4 147.0 153.6 I I I I RD6 4 0 6 8 \ 136 6-22 7.- L\ G t L 1; LP ' sand & clay 10-82 c l a y , sandy 82- 84 b a s a l t boulder 84-85 granodiorite boulder 85-95 b a s a l t boulders & white clay 95-136 b a s a l t , weathered 0-10 Drilled w i t h mud 22 60 95 134 6-24 6-24 6-24 6-24 103.2 135.0 146.5 149.5 6-25 6-26 6-26 6-26 I * E l e v a t i o n s i n P i n t o Mountains area, based on assumed 4 1 0 0 . 0 0 a t S t a t i o n e a s t of w e s t s p r i n g ; , subject t o c o r r e c t i o n PINTO MOUNTAINS I PROSPECT HOLES ELEV. TOTAL COMP. LITHOLOGY DEPTH DATE FEET 1 9 6 6 RD7 4 0 6 4 370 I '2,> G1 ' ij 7 \P' 6-25 0-340 c l a y , sandy & gritty 340-350 boulders 350-370 basalt , weathered THERMOCOUPLE FEET D r i l l e d w i t h mud 20 50 90 293 368 . .. DATE 1966 TCOE 6-26 9i.a 6-26 1 u . a 6-26 1 i i . a 6-26 77.0 6-26 71.0 1 DATE TCOF , 1 ,, I 7-1 7-1 7-1 7-1 7-1 '. 93.0 118.5 117.0 97.0 75.5 - DATE TCOF 1966 ' 1966 . . 7-21 9 5 . 0 7-21 119'.3 7-21 1 1 6 . 0 7-21 75.3 7-21 70.3 DATE 1966 TCOF DATE 1966 TCOF
© Copyright 2026 Paperzz