Hadsell, F., Grose, L.T. and Berry, G. W., 1967, Thermal Data of the Black Rock Desert Area Humboldt and Washoe Counties, Nevada: 22 p.

FORM W.7
PRINTED
IN U. 0 .
A.O
INTER-OFFICE CORRESPONDENCE SHEET
SUN O I L C O M P A N Y
I
SUBJECT: GEOTHERMAL PROJECT
DATE$
FROM:
G . W. B e r r y
OFFICE*B o u l d e r ,
TO:
Mr. R . R . Anderson
A p r i l YO,
1967
Colorado
Philadelphia
Dear S i r :
I f o r w a r d t h e a t t a c h e d t h r e e ( 3 ) c o p i e s o f Geothermal P r o j e c t
p r o g r e s s r e p o r t "Thermal Data o f t h e B l a c k Rock D e s e r t Area,"
d a t e d A p r i l 10, 1967, by H a d s e l l , Grose, and B e r r y .
Drs.
H a d s e l l and Grose a r e c o n s u l t a n t s to Sun on t h i s p r o j e c t , s o
t h i s i s a Company r e p o r t .
There i s a summary on p . 1 and 2 .
Sincerely,
G. W. Berry
GWB: bn
Enc l o s u r e
cc:
Mr. J . E. G i l b e r t (w/att)
DISCLAIMER
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
DISCLAIMER
Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.
THERMAL DATA O F THE BLACK ROCK DESERT AREA
HUMBOLDT AND WASHOE C O U N T I E S , NEVADA
FRANK HADSELL, L . T . GROSE, AND G . W . BERRY
A P R I L 10, 1 9 6 7
Summary :
T h i s i s a p : o g r e s s r e p o r t on a n a l y s i s o f therma
d a t a from t h e Black Rock Desert o f n o r t h w e s t Nevada.
Hot s p r i n g s a t S o l d i e r Meadows, F l y Ranch, G e r l a c h , and
P i n t o Mountains w e r e mapped, and w a t e r f l o w s and tempera-
t u r e s measured, by G . W. B e r r y and G . R . Downsin 1965
and 1 9 6 6 .
These d a t a have been s t u d i e d f u r t h e r by
Frank H a d s e l l ( g e o p h y s i c i s t ) and L. T . Grose ( g e o l o g i s t )
a t t h e C o l o r a d o S c h o o l o f Mines and w i t h t h e computer
f a c i l i t i e s of t h e S c h o o l o f Mines G r a d u a t e R e s e a r c h
C e n t e r , i n an e f f o r t t o d e t e r m i n e g e o t h e r m a l power
potentials.
Power g e n e r a t i o n by h y p o t h e t i c a l C a r n o t e n g i n e s
h a s been c a l c u l a t e d f o r t h e f o u r t h e r m a l a r e a s .
Data
/
from s e v e n p r o s p e c t h o l e s a t P i n t o Mountains have been
e x p l o i t e d i n p l o t t i n g g e o t h e r m a l g r a d i e n t s and computing
heat flows.
I t i s emphasized t h a t t h i s r e p o r t i s t o a
l a r g e e x t e n t an exercise i n a r i t h m e t i c and thermodynamics,
f r a u g h t w i t h a s s u m p t i o n s t h a t may n o t e n d u r e .
A l l of t h e
2
conclusions a r e t e n t a t i v e .
However, w e c o n s i d e r t h i s a
v a l i d l i n e of p r a c t i c a l r e s e a r c h .
To t h e e x t e n t t h a t t h e
f i g u r e s and c o n c l u s i o n s are a p p l i c a b l e , t h e y a r e g e n e r a l l y
e n c o u r a g i n g i n t h e m s e l v e s and i n comparison w i t h t h o s e
o f d e v e l o p e d g e o t h e r m a l a r e a s , as t o t h e g e o t h e r m a l power
p o t e n t i a l of Sun a c r e a g e i n t h e B l a c k Rock Desert a r e a .
of H o t Springs :
Relative M e r i t -
Water f l o w s and t e m p e r a t u r e s can be i n t e r p r e t e d
b e s t i n t e r m s of an e x t e n s i v e thermodynamic q u a n t i t y which
p l a c e s p r o p e r r e l a t i v e emphasis on them.
The q u a n t i t y
a d o p t e d f o r t h i s s t u d y i s t h e power of a h y p o t h e t i c a l
C a r n o t e n g i n e ( F i g u r e l), i d e a l l y o p e r a t i n g between t h e
h o t h e a t r e s e r v o i r of a t h e r m a l s p r i n g and a c o o l h e a t
r e s e r v o i r a t t h e mean a i r t e m p e r a t u r e of t h e a r e a .
The
e n g i n e i s imagined t o e x t r a c t h e a t from t h e h o t r e s e r v o i r
a t a r a t e e q u a l t o t h e r a t e a t which h e a t i s t r a n s f e r r e d
from t h e h o t s p r i n g t o a s u r f a c e s t r e a m a t mean ambient
t e m p e r a t u r e by normal f l o w of w a t e r ,
Q1,
less t h e rate
a t which t h i s w a t e r t r a n s f e r s h e a t back i n t o t h e g r o u n d ,
Q2.
The e n g i n e i s t h e n imagined t o c o n v e r t t h e
t h e o r e t i c a l maximum o f t h e e x t r a c t e d h e a t i n t o m e c h a n i c a l
energy.
The e x i s t e n c e of t h i s maximum i s an e x p r e s s i o n
o f t h e s e c o n d l a w o f thermodynamics.
I n t h i s h y p o t h e t i c a l problem t h e s e l e c t i o n o f Q a s
t h e h e a t f l o w i n t o t h e C a r n o t e n g i n e i s a r b i t r a r y , made
3
CARNOT
ECHANICAL ENERGY
H€AT
W
Q-W
ENGINE
W
CK
4
a
W
W
I
Q = Q I - Q 2
a.
PROPORTIONAL TO
T -T'
v)
0
z
r
L
l-
HOT
SPRING
a
z
4
T
l-
a
W
r
AMBIENT
WATERS
T'
Figure 1
4
5
l a r g e l y on t h e b a l a n c e d f l o w o f w a t e r i t p r o v i d e s ; a
l a r g e r p o r t i o n o f Q,
c o u l d be assumed.
The e f f i c i e n c y , e , o f a C a r n o t e n g i n e o p e r a t i n g
between h e a t reservoirs w i t h t e m p e r a t u r e s T and T ' i s
e xp re s s e d
e = 1
-
T'/T
and t h e m e c h a n i c a l e n e r g y o u t p u t , W , of t h e e n g i n e i s t h e n
W = Qe = Q (1 - T ' / T ) .
I f c i s t h e a v e r a g e s p e c i f i c h e a t between T and T ' and
m i s t h e m a s s of water t r a n s f e r r e d , t h e n ,
(1 =
c m (T
-
and
(T
T')
-
TI)*
W = c m
T
and
(T
-
TI)
255
+
5/9
P = 0.081 G (
)
T
,
where P i s power i n k i l o w a t t s , G i s f l o w of w a t e r i n
g a l l o n s p e r m i n u t e , T i s t e m p e r a t u r e of t h e h o t s p r i n g
i n d e g r e e s F a h r e n h e i t , and T ' i s t h e mean a i r temperat u r e of t h e area i n degrees Fahrenheit.
The g r a p h o f F i g u r e 2 p e r m i t s o n e t o o b t a i n t h e
C a r n o t power o u t p u t f o r any s p r i n g by a s i n g l e m u l t i p l i c a tion.
6
U.
S . Weather Bureau d a t a f o r n o r t h w e s t e r n Nevada
show mean a n n u a l t e m p e r a t u r e s o f 48.2'F
n e a r t h e Black Rock Desert.
t o 53.4'F
i n and
Downs and B e r r y ( 1 9 6 6 )
Conservatively, we
e s t i m a t e d 51'F
f o r S o l d i e r Meadows.
h a v e u s e d 54'F
f o r a l l of t h e area i n t h i s s t u d y .
Summary d a t a f o r h o t s p r i n g s o f t h e f o u r l o c a l i t i e s
a r e l i s t e d i n T a b l e 1.
The w a t e r f l o w i s from f i e l d
d a t a by B e r r y and Downs ( 1 9 6 6 ) .
C a l c u l a t i o n s o f mean
w a t e r t e m p e r a t u r e ( f l o w o f a l l h o t s p r i n g s mixed) and
C a r n o t power are by H a d s e l l , w i t h computer.
TABLE 1
Water
flow,
gpm
S o l d i e r Meadows
Mean w a t e r
temperature ,
OF
Carnot
power, kw
2842
110
2540
934
10 0
660
538
205
2693
t o t a l 1472
138
3353
Gerlach
253
175
855
P i n t o Mountains
142
189
595
F l y Ranch
-
F l y Ranch
Western
natural
-
Geothermal w e l l
F l y Ranch
-
The premium which t h e C a r n o t power f i g u r e of m e r i t
p l a c e s on h i g h t e m p e r a t u r e i s e v i d e n t i n comparison o f
7
t h e S o l d i e r Meadows and G e r l a c h a r e a s .
The w a t e r f l o w
o f G e r l a c h i s l e s s t h a n o n e - t e n t h t h a t o f S o l d i e r Meadows,
b u t , b e c a u s e o f h i g h e r t e m p e r a t u r e , t h e C a r n o t power i s
more t h a n o n e - t h i r d .
A t W a i r a k e i , New Zealand, a w e t steam f i e l d , d r i l l i n g
h a s i n c r e a s e d mass f l o w 3 t o 5 t i m e s and t h e h e a t f l o w
2 t o 3.5 t i m e s ,
Grindley, 1965).
from n a t u r a l ( M c N i t t , 1 9 6 3 , p .
39;
A t The G e y s e r s , C a l i f o r n i a , a d r y
steam f i e l d , d r i l l i n g ( t o 1963) h a s i n c r e a s e d mass f l o w
a b o u t 20 t i m e s and h e a t f l o w a b o u t 1 7 0 t i m e s from
n a t u r a l ( M c N i t t , 1963, p.
39).
I n thermal areas
t h r o u g h o u t t h e w o r l d , w i t h o u t e x c e p t i o n , h e a t f l o w s have
been s u b s t a n t i a l l y i n c r e a s e d by d r i l l i n g .
A t F l y Ranch, t h e Western Geothermal w e l l , o n l y
805 f t t o t a l d e p t h , h a s i n c r e a s e d t h e t h e r m a l a r e a mass
f l u x 58 p e r c e n t and t h e C a r n o t power o u t p u t 4 0 0 p e r c e n t .
The C a r n o t power f i g u r e s may be u s e f u l i n d i c a t o r s
of r e l a t i v e m e r i t , b u t t h e y c a n n o t now b e e q u a t e d t o
g e o t h e r m a l power p o t e n t i a l .
Such c o r r e l a t i o n s h o u l d
a w a i t development of a c a t a l o g u e o f case h i s t o r i e s .
I f , however, one i n s i s t s on comparing C a r n o t power
w i t h power s o l d a t a bus b a r , h e m i g h t p r o c e e d as
follows.
E m p i r i c a l l y i t i s sound t o assume an i n c r e a s e
i n h e a t f l o w by development d r i l l i n g , a f a c t o r of
1 7 0 t i m e s a t The G e y s e r s .
To i n t e r p r e t t h i s i n c r e a s e
i n t e r m s of C a r n o t power an a s s u m p t i o n must b e made
8
c o n c e r n i n g t h e e f f i c i e n c y o f a r e a l power p l a n t
r e l a t i v e t o a h y p o t h e t i c a l Carnot engine.
Being i n v o l v e d
o n l y w i t h o r d e r s of magnitude i t i s r e a s o n a b l e t o assume
t h a t t h e e f f i c i e n c y a d v a n t a g e g a i n e d by d r i l l i n g t o h i g h
t e m p e r a t u r e s i s j u s t o f f s e t by t h e i n h e r e n t l y h i g h
e f f i c i e n c y of a Carnot engine, 1 0 t o 2 5 p e r c e n t i n t h i s
case.
I f , t h e n , The G e y s e r s i n c r e a s e i n h e a t f l u x i s
r e p r e s e n t a t i v e and t h e e f f i c i e n c y a s s u m p t i o n i s v a l i d ,
o n e c o u l d i n c r e a s e t h e C a r n o t power numbers o f T a b l e 1
by two o r d e r s o f magnitude ( 1 O O X )
and g e t a g e o t h e r m a l
power p o t e n t i a l f o r S o l d i e r Meadows o f 254,000 kw.
Although t h i s r k a n e n c o u r a g i n g number, i t s h o u l d b e
emphasized a g a i n t h a t i t i s d e r i v e d w i t h h i g h l y t e n u o u s
assumptions.
T h i s d i s c u s s i o n i s l i m i t e d mainly t o a n a l y s i s of t h e
h e a t and mass f l u x o f t h e h o t s p r i n g s .
There i s
additional n a t u r a l heat f l o w i n the l o c a l thermal
areas from t h e r e l a t i v e l y d r y ground between s p r i n g s .
S t o r e d h e a t a l s o may be v e r y i m p o r t a n t .
Steamboat
S p r i n g s , Nevada, i s a t h e r m a l a r e a a t t h e e a s t f o o t
of t h e S i e r r a Nevada, a r o u g h l y comparable g e o l o g i c a l
l o c a t i o n t o t h e w e s t e r n Black Rock Desert.
( 1 9 6 4 , p.
White
4 0 7 ) h a s c a l c u l a t e d t h e s t o r e d h e a t i n an a r e a
of 1 . 9 s q u a r e m i l e s a t Steamboat, 1 . 9 m i l e s deep, a t
a p p r o x i m a t e l y 1 . 6 x 1OI8 c a l .
This i s equivalent t o
t h e n a t u r a l h e a t flow a t t h e p r e s e n t r a t e f o r 7000
9
years.
I t i s a minimum f i g u r e b e c a u s e much e x c e s s h e a t
i s s t o r e d a t g r e a t e r d e p t h and below t h e s u r f a c e o f
surrounding area.
Thompson and White ( 1 9 6 4 , p . 4 8 ) h a v e
e s t i m a t e d t h a t h e a t f l o w i n t h e same 1 . 9 s q u a r e m i l e s
of Steamboat thermal area i s 7 x
lo6
cal/sec,
equivalent
t o h e a t from 1 0 0 t o n s o f c o a l o r 5 0 0 b b l o f o i l p e r day.
Power P l a n t R e q u i r e m e n t s :
To a r r i v e a t an i d e a of g e o t h e r m a l r e s o u r c e r e q u i r e ments w e have a r b i t r a r i l y assumed a 300,000-kw
p l a n t , w h i c h , u s i n g a rough rule-of-thumb
capacity
of 1 kw p e r
c u s t o m e r , would s u p p l y a c i t y a b o u t t h e s i z e o f D a l l a s
o r Denver.
G i l b e r t and B e r r y ( 1 9 6 4 ) c o n c l u d e d t e n t a t i v e l y
t h a t , f o r such a p l a n t , t h e land requirement i s i n t h e
a c r e s , and t h e w a t e r r e q u i r e m e n t on t h e
range of 500-5000
o r d e r o f 2 0 , 0 0 0 a c r e - f t p e r y e a r f o r d r y steam and 5 0 , 0 0 0
a c r e - f t p e r y e a r f o r w e t steam.
I n t h e i r inventory of
t h e w a t e r r e s o u r c e s of t h e Sun a c r e a g e a r e a i n w e s t e r n
B l a c k Rock D e s e r t ,
G i l b e r t and B e r r y e s t i m a t e d t h e
p e r e n n i a l y i e l d a t 24,500 a c r e - f t
( W e s t a r m o f B l a c k Rock
Desert, G r a n i t e B a s i n , High Rock Lake, Summit Lake,
Hualapai F l a t ) .
T h i s i s l e g a l l y t h e maximum t h a t can
now b e consumed a n n u a l l y .
The water f l o w s l i s t e d i n
T a b l e 1 are f o r f o u r l o c a l h o t s p r i n g a r e a s and c e r t a i n l y
are minimum f i g u r e s .
There i s c o n s i d e r a b l e a d d i t i o n a l
w a t e r d i s c h a r g i n g i n t h e subsurfiace i n t h e s e areas, and
10
t h e r e a r e s e v e r a l a d d i t i o n a l areas o f s p r i n g and w e l l
discharge.
However, a t S o l d i e r Meadows,the measured
2 8 4 2 gpm i s 4575 a c r e - f t p e r y e a r , o r a b o u t 1 0 p e r c e n t
of e s t i m a t e d w e t steam requirement.
Although w a t e r
consumption can u n d o u b t e d l y be lowered by i n j e c t i o n ,
r e c i r c u l a t i o n , and h e a t e x c h a n g e r s , t h e a v a i l a b i l i t y
problem i s v e r y r e a l .
Prospect H o l e s :
A s a f i r s t s t e p i n a n a l y s i s of d a t a from p r o s p e c t
h o l e s d r i l l e d a t P i n t o Mountains and S o l d i e r Meadows,
t e m p e r a t u r e i n s t r u m e n t a t i o n was t e s t e d a t t h e C o l o r a d o
S c h o o l of Mines g e o p h y s i c a l l a b o r a t o r y .
F i e l d procedure
h a s been t o r u n t h e r m o c o u p l e s i n t o t h e h o l e s a s soon a s
d r i l l i n g h a s been completed and back f i l l t h e h o l e s as
completely a s p r a c t i c a b l e .
Thermocouples a r e Leeds
&
N o r t h r u p c o p p e r c o n s t a n t a n (32OF), no. 2 4 , enamel and g l a s s
insulated, with Quiktip connectors.
Readings have been
Northrup p o r t a b l e m i l l i v o l t
m a d e w i t h a Leeds
&
p o t e n t i o m e t e r no.
8696.
Two t h e r m o c o u p l e s w e r e b o i l e d
i n t h e l a b o r a t o r y f o r n e a r l y two months, w i t h p e r i o d i c
measurements of t h e r m a l emfs.
One o f t h e t h e r m o c o u p l e s
had p r e v i o u s l y been u s e d a t P i n t o Mountains f o r several
months.
T e s t s i n d i c a t e t h a t w i t h t h i s equipment tempera-
t u r e o f b o i l i n g w a t e r can b e measured w i t h an a c c u r a c y
b e t t e r t h a n l0C (1.8'F)
i f t h e t e m p e r a t u r e of t h e c o o l
c o n t a c t i s known t o t h i s a c c u r a c y .
N o d r i f t of
11
measurements w a s o b s e r v e d , i n d i c a t i n g j u n c t i o n
c h a r a c t e r i s t i c s w e r e n o t a p p r e c i a b l y changed by b e i n g
i n b o i l i n g water f o r n e a r l y t w o months.
There i s s i g n i f i c a n t u n c e r t a i n t y i n t h e f i e l d
measurements, p e r h a p s a s much a s 5'F,
because t h e
c o o l j u n c t i o n , t h e p o t e n t i o m e t e r t e r m i n a l , may n o t have
r e a c h e d t h e r m a l e q u i l i b r i u m a s r a p i d l y as t h e mercury
thermometer l a i d a l o n g s i d e .
Improvement can b e made
by p l a c i n g t h e c o o l j u n c t i o n i n an i c e - w a t e r b a t h , o r ,
where t h i s i s i m p r a c t i c a l , making t h e c o o l j u n c t i o n m o r e
l i k e t h e h o t so t h e h e a t c a p a c i t y i s lower t h a n t h a t of
the potentiometer terminal.
Thermal c o n d u c t i v i t i e s u s e d i n t h i s s t u d y a r e
from t a b l e s by C l a r k ( 1 9 6 6 ) , u s i n g f i e l d l i t h o l o g i c l o g s
by G .
R.
Downs.
They are n o t p r e c i s e d e t e r m i n a t i o n s .
L a b o r a t o r y measurements o f t h e r m a l c o n d u c t i v i t i e s o f
h o l e s a m p l e s w i l l g r e a t l y enhance t h e r e l i a b i l i t y o f
such c a l c u l a t i o n s i n t h e f u t u r e .
Temperature measurements made i n t h e P i n t o Mountains
a r e a and t h e i n t e r p r e t e d t e m p e r a t u r e d i s t r i b u t i o n s and
v e r t i c a l h e a t f l u x e s a r e given i n Figures3-9.
From t h e s e
it i s e v i d e n t t h e area i s t h e r m a l l y anomalous.
The "normal" t e m p e r a t u r e g r a d i e n t o f t h e o u t e r
6 . 2 m i l e s of t h e s o l i d e a r t h i s 1.125'F/100
f t (probably
t o o l o w i n o r o g e n i c a r e a s and t o o h i g h f o r s t a b l e
continental areas)
(White, 1965, p. 1 4 ) .
Pinto
TEMPERATURE
IN
OF
Figure 3
TEMPERATURE
IN
OF
Figure 4
..
.
.
-
.
.
.
.
.
.
.
Figure' 5
TEMPERATURE
IN
OF
15
Figure 6
TEMPERATURE
IN
16
O F
i
i
.Figure 7
TEMPERATURE
IN
OF
17
i
i
Figure 8
TEMPERATURE
IN
18
OF
0
L
Figure 9
19
to
Mountains p r o s p e c t h o l e s RD 1-6 have g r a d i e n t s 7'F
47'F/100
f t , 6 t o 4 2 t i m e s h i g h e r t h a n ''normal."
The c u r r e n t e s t i m a t e o f g l o b a l a v e r a g e h e a t f l o w
2
cal/cm s e c , and f o r g e o t h e r m a l c o n s i d e r a -
is 1.5 x
t i o n s h e a t flow i n t h e range of 0 . 8
-
2 .O
2
cal/cm sec
x
s h o u l d b e c o n s i d e r e d i n t h e "normal" r a n g e ( W h i t e , 1 9 6 5 ,
p.
14).
Values f o r t h e v e r t i c a l component of h e a t
f l u x i n t h e P i n t o Mountains p r o s p e c t h o l e s a r e 2 t o
2
cal/cm s e c , a s much a s 3 2 t i m e s " n o r m a l . "
48 x
W e have g e o l o g i c e x p l a n a t i o n s f o r some o f t h e
variations i n heat flux.
Although RD 5 i s anomalously
warm, it i s the coolest hole i n the area.
Location i s
on t h e r i d g e between West and E a s t S p r i n g s i n T e r t i a r y
" v o l c a n i c s , I ' whereas a l l t h e o t h e r s i x h o l e s are
t o p o g r a p h i c a l l y l o w e r , i n and n e a r t h e h o t s p r i n g
a r e a s , and i n and n e a r t h e m a j o r normal f a u l t zones boundi n g t h e P i n t o Mountains s t r u c t u r a l b l o c k , o r b l o c k s .
The h i g h e s t v e r t i c a l components o f h e a t f l u x a r e
i n RD 1, 6 , and 7 , West S p r i n g a r e a .
RD 1 i s l o c a t e d
on t h e s u r f a c e t r a c e o f a normal f a u l t d i p p i n g w e s t
a b o u t 70°, and RD 6 and 7 are t o p o g r a p h i c a l l y and
s t r u c t u r a l l y lower, i n t h e a l l u v i a l g r a v e l s w e s t of t h e
fault trace.
The d e c r e a s e i n h e a t f l u x below 50 f t i n
RD 6 and 7 p r o b a b l y i n d i c a t e s a f l o w , o r a t l e a s t t h e
e x i s t e n c e , o f h o t w a t e r a t d e p t h s o f 50 t o 80 f t .
We
c a n n o t now r u l e o u t e r r o r i n p l a c e m e n t of t h e r m o c o u p l e s
i n RD 7 .
20
P r o s p e c t h o l e s RD 3 and 4 a r e l o c a t e d w e s t o f t h e
e a s t - d i p p i n g normal f a u l t a t E a s t S p r i n g s , i n " v o l c a n i c s "
o f t h e upthrown b l o c k .
Although
t h e r m a l l y anomalous,
I
t h e h e a t f l u x i s n o t a s h i g h a s i n h o l e s b a s i n w a r d of
t h e West S p r i n g .
The t h e r m a l d a t a c l e a r l y s u p p o r t t h e t h e s i s t h a t
mountain f r o n t normal f a u l t s are t h e c o n d u i t s f o r t h e
h o t ascending w a t e r s of t h e Great Basin thermal areas.
A t S o l d i e r Meadows 30 t e m p e r a t u r e h o l e s w e r e
d r i l l e d , one t o 1 0 0 f t and t h e o t h e r s t o 2 0 f t o r l e s s .
Although anomalous t e m p e r a t u r e s a r e i n d i c a t e d , d a t a
from t h e s e s h a l l o w h o l e s w i t h o n l y bottom-hole
thermocouples a r e of very l i m i t e d use i n thermal c a l c u l a -
tions.
W e c a n n o t now make m e a n i n g f u l d e d u c t i o n s from
them.
The c u r v e s o f F i g u r e s 3-9
show t e m p e r a t u r e s a t t h e
w a t e r t a b l e a b o u t 20°F h i g h e r i n a r e a s o f h i g h t h a n i n
a r e a s o f low v e r t i c a l f l u x .
Such t e m p e r a t u r e a n o m a l i e s
w i l l n o t of c o u r s e p e r s i s t u n d i m i n i s h e d t o t h e s u r f a c e ,
b e c a u s e r e g i o n s of h i g h v e r t i c a l f l u x must a l s o have a
h i g h v e r t i c a l component o f t h e g e o t h e r m a l g r a d i e n t .
Nevertheless, we believe the p o s s i b i l i t y t h a t these
temperature anomalies a r e m a n i f e s t a t t h e s u r f a c e t o a
d e g r e e d e t e c t a b l e by means o f i n f r a r e d r a d i o m e t e r s ,
above n o i s e o f e m i s s i v i t y e f f e c t s and v a r i a t i o n s i n
21
d e p t h t o water t a b l e , i s worth f u r t h e r i n v e s t i g a t i o n .
A p l a n f o r t h i s surveying i s under d i s c u s s i o n w i t h
Geophoto S e r v i c e s (Texas I n s t r u m e n t s ) .
The t e n t a t i v e
s c h e d u l e i s t o have a ground s u r v e y a t S o l d i e r Mead.ows
made by a Geophoto e x p e r t and G . W .
Berry d u r i n g about
a month o f t h e f a l l of 1967, u s i n g t h e r m i s t o r s a t t h e
s u r f a c e and d e p t h s of a few i n c h e s , and a hand-held
i n f r a r e d radiometer.
This fieldwork i s p r e r e q u i s i t e
f o r a i r b o r n e i n f r a r e d s e n s i n g which h a s been u n d e r
d i s c u s s i o n w i t h Geophoto and t h e p a r e n t Texas
Instruments f o r t h e p a s t t h r e e years.
S e l e c t e d References:
B e r r y , G . W . , and Downs, G . R . , 1 9 6 6 a , F l y Ranch h o t
s p r i n g s : Sun O i l C o . Map, Aug. 2 5 , 1 9 6 6 . With
separate spring data tabulations.
B e r r y , G . W . , and Downs, G . R . , 196633, G e r l a c h h o t
springs:
Sun O i l C o . Map, Auq. 2 5 , 1 9 6 6 . With
separate spring data tabulations.
B e r r y , G . W . , and Downs, G . R . , 1 9 6 6 c , P i n t o Mountains
h o t s p r i n g s area:
Sun O i l C o . Map, Aug. 25, 1 9 6 6 .
With s e p a r a t e s p r i n g and p r o s p e c t hole d a t a t a b u l a -
tions.
and Downs, G . R . , 1966d, S o l d i e r Meqdoys
Sun O i l Co. Map, Auy. 2 5 , 1 9 6 6 . W i t h
s e p a r a t e s p r i n g and t e m p e r a t u r e hole d a t a t a b u l a tions.
Berry, G.,W.,
area:
C l a r k , S . P . , J r . , 1 9 6 6 , Thermal c o n d u c t i v i t y , i n
C l a r k , S . P . , J r . , e d . , Handbook of p h y s i c a
Geo1:Soc.
American Men. 9 7 ,
c o n s t a n t s , rev: e d . :
p. 459-482.
Downs,'G. R . , and B e r r y , G . W . , 1 9 6 6 , N o r t h w e s t Nevada
Sun 0 i l . C o . R e p t . , Mar. 1, 1966,
temperatures:
2 P*
22
E l d e r , J . W . , 1965, P h y s i c a l p r o c e s s e s i n geothermal
a r e a s , i n W. H. K . L e e , e d . , Terrestrial h e a t flow:
Am. Geophys. Union Geophys. Mon. S e r . N o . 8 ,
p . 211-239.
G i l b e r t , J . E . , and B e r r y , G . W . , 1 9 6 4 , Geothermal
project progress report:
C o r d e r 0 Mining Co.
R e p t . , P a l o A l t o , A p r i l 1 0 , 1 9 6 4 , 1 3 p.
G r i n d l e y , G . W . , 1965, The g e o l o g y , s t r u c t u r e , and
e x p l o i t a t i o n of t h e Wairakei geothermal f i e l d ,
Taupo, New Zealand: N e w Zealand G e o l . Survey
B u l l . n . s . 75, 1 3 1 p .
K e l l e r , G . V . , and P r i t c h a r d , J . I . , 1 9 6 6 , R e p o r t o n
e l e c t r i c a l g e o p h y s i c a l i n v e s t i g a t i o n s of h o t - s p r i n g s
areas ( F l y Ranch and G e r l a c h , Nev.):
Sun O i l Co.
R e p t . , Denver, O c t . 1 7 , 1 9 6 6 , 15 p . , app. A-C.
J . R . , 1 9 6 3 , E x p l o r a t i o n and development of
g e o t h e r m a l power i n C a l i f o r n i a : C a l i f o r n i a Div.
Mines and Geology Spec. Rept. 75, 45 p .
McNitt,
Thompson, G . A . , and W h i t e , D . E . , 1 9 6 4 , R e g i o n a l
g e o l o g y of t h e Steamboat S p r i n g s a r e a , Washoe
County, Nevada:
U . S . Geol. Survey P r o f . P a p e r
458-A, 52 p .
W h i t e , D . E . , 1 9 5 7 , Thermal waters of v o l c a n i c o r i g i n :
G e o l . SOC. America B u l l . , v. 6 8 , p . 1637-1658.
White, D . E . , 1 9 6 4 , P r e l i m i n a r y e v a l u a t i o n of g e o t h e r m a l
a r e a s by g e o c h e m i s t r y , g e o l o g y , and s h a l l o w
drilling:
U n i t e d N a t i o n s Conf. N e w S o u r c e s o f
Energy, Rome 1 9 6 1 , P r o c . , v. 2 , GeothermaL Energy
I:
p.
402-408.
White, D . E . , 1965, Geothermal e n e r g y :
Survey C i r c . 5 1 9 , 1 7 p .
U.
S. G e o l .
Zemansky, M. W . , 1 9 5 7 , Heat and t h e r m o d y n a m i c s , 4 t h e d . :
N e w York, McGraw-Hill, 4 8 4 p.
PINTO MOUNTAINS
PROSPECT HOLES
*ELEV. TOTAL
DEPTH
FEET
COMP. LITHOLOGY
DATE
1966
100
17
61
111
161
209
6-10
6-10
6-10
6-10
6-10
71.,q
87.5
95.0
104.5
112.0
6-11
6-11
6-11
6-11
6-11
63.0
76.0
92.0
100.0
107.0
6-15
6-15
6-15
6-15
6-15
73.0
86.5
102.5
108.5
115.0
7-1
7-1
7-1
7-1
7-1
0-100 s a n d &
clay
D r i l l e d w i t h mud,
l o s t circ. 9 8 ,
22
60
97
6-16
6-16
6-16
72.5
94.0
102.0
1
6-18
6-18
6-18
72.5
95.0
102.0
7-1
7-1
7-1
73.0
87.5
86.0
7-21
7-21
7-21
76.1
4135
21'0
6-15
.
1
RD5 4 2 8 4
0-200 s a n d &
clay
200-210 granodiorite
Drilled w i t h
mud
6-2 1 0-20 coarse
Drilled w i ' t h
g r i t , sandmud
stone, &
clay
20-363 clay,
sticky, interbedded w i t h
sandstone &
s i l t y clay
363
.
7
n A r m
moo-
1966
D r i l l e d w i t h mud
&
water stood a t
RD4 4139
T V ' ~
0-190 s a n d &
clay
1 9 0 - 2 0 0 granodiorite,
w eathered
2 0 0 - 2 1 1 granodiorite
6-11
RD3 4 1 4 3
DATE
1966
7-21
7-21
7-21
6-9
I T3
TCOF
80.0
94.0
100.0
211
9.'.
DATE
1966
7-1
7-1
7-1
RD2 4 1 1 8
'.
TC'F
77.0
91.7
101.0
0-55 sand
clay
2,5
i.
DATE
1966
6-15
6-15
6-15
6-3
J
TCOiFi
1
6-11
74.0
6-11
93.0
6-11 101.5
55
I.-
DATE
1966
Drilled w i t h a i r , 12.5
stopped b y
30
w a t e r (40)
53
RD1 4103
-
THERMO-
COUPLE
FEET
76.0
87.3
95.0
65.0
79.0
92.0
104.0
108.0
7-21
7-21
7-21
7-21
7-21
66.0
82.0
92.0
99.3
103.5
?
?
r1
22
55
105
155
203
6-16
6-16
6-16
6-16
6-16
72.G
81.0
90.0
93.5
104.5
6-18
6-18
6-18
6-18
6-18
68.0
77.0
86.0
94.0
104.0
7-1
7-1
7-1
7-1
7-1
65.0
74.5
86.0
93.4
102.5'
7-21
7-21
7-21
7-21
7-21
64.0
72.1
78.3
95.0
103.5
23
63
139
213
288
361
6-22
6-22
6-22
6-22
6-22
6-22
69.0
69.0
78.0
78.0
86.0
79.5
6-25
6-25
6-25
6--2 5
6-25
6-25
63,s
64.0
76.0
82.5
83.5
69.0
7-1
7-1
7-1
7-1
7-1
7-1
60.0
64.0
70.5
78.5
74.5
85.5
7-21
7-21
7-21
7-21
7-21
7-21
58.0
64.1
73.0
77.5
82.0
83.2
101.5
137.0
146.5
150.0
7-1
7-1
7-1
7-1
100.5
138.0
143.5
150.5
7-21
7-21
7-21
7-21
103.0
136.4
147.0
153.6
I
I
I
I
RD6 4 0 6 8
\
136
6-22
7.- L\ G t L
1;
LP
'
sand &
clay
10-82 c l a y ,
sandy
82- 84 b a s a l t
boulder
84-85 granodiorite
boulder
85-95 b a s a l t
boulders &
white clay
95-136 b a s a l t ,
weathered
0-10
Drilled w i t h
mud
22
60
95
134
6-24
6-24
6-24
6-24
103.2
135.0
146.5
149.5
6-25
6-26
6-26
6-26
I
* E l e v a t i o n s i n P i n t o Mountains area, based on assumed 4 1 0 0 . 0 0 a t S t a t i o n e a s t of w e s t s p r i n g ; , subject t o c o r r e c t i o n
PINTO MOUNTAINS
I
PROSPECT HOLES
ELEV. TOTAL COMP. LITHOLOGY
DEPTH DATE
FEET 1 9 6 6
RD7 4 0 6 4
370
I '2,> G1 ' ij
7
\P'
6-25
0-340 c l a y ,
sandy &
gritty
340-350
boulders
350-370
basalt ,
weathered
THERMOCOUPLE
FEET
D r i l l e d w i t h mud
20
50
90
293
368
.
..
DATE
1966
TCOE
6-26
9i.a
6-26 1 u . a
6-26 1 i i . a
6-26
77.0
6-26
71.0
1
DATE
TCOF
,
1
,,
I
7-1
7-1
7-1
7-1
7-1
'.
93.0
118.5
117.0
97.0
75.5
-
DATE
TCOF
1966
' 1966
.
.
7-21 9 5 . 0
7-21 119'.3
7-21 1 1 6 . 0
7-21
75.3
7-21 70.3
DATE
1966
TCOF
DATE
1966
TCOF