NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used for any commercial purpose. Users may not otherwise copy, reproduce, retransmit, distribute, publish, commercially exploit or otherwise transfer any material. The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specific conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use," that user may be liable for copyright infringement. This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Geothermal Resources Council TRANSACTIONS,VOl. 9 - PART II, August 1985 PROJECT DEVELOPMENT DESERT PEAK C. P. D i d d l e and W. C. Gonser P h i l l i p s Petroleum ABSTRACT D e s e r t Peak and an o b j e c t i v e t o g e n e r a t e most power a t t h e l o w e s t c a p i t a l c o s t . I n l a t e 1982 P h i l l i p s P e t r o l e u m Company began p r e l i m i n a r y d e s i g n o f a power p l a n t f o r Desert Peak in Churchill County, Nevada. Because each g e o t h e r m a l r e s o u r c e i s unique, careful consideration of existing process schemes and- d e s i g n t e c h n o l o g i e s was r e q u i r e d . T h i s p a p e r w i l l r e v i e w p r o c e s s s t u d i e s , examine some o f t h e d e t a i l d e s i g n and d i s c u s s t h e cons t r u c t i o n program. No a t t e m p t w i l l be made t o d i s c u s s g e o l o g i c a l a s p e c t s of t h e r e s o u r c e . C o o l i n g Towers v s A i r F i n Exchangers T a b l e 2 summarizes e l e c t r i c a l power p r o duced by a s y s t e m c o o l e d by e i t h e r a i r f i n e x c h a n g e r s o r c o o l i n g tower. Table 2 A i r F i n / C o o l i n g Tower E l e c t r i c a l Power P r o d u c t i o n Comparison E l e c t r i c a l Power G r o s s Power Output KWH P a r a s i t i c KWH Net Power f o r S a l e KWH D i f €e r e n c e Effectiveness INTRODUCTION P h i l l i p s P e t r o l e u m Company h a s o b t a i n e d Federal and a p p r o x i m a t e l y 24,000 a c r e s of S o u t h e r n P a c i f i c R a i l r o a d l e a s e s i n t h e BradyHazen Known Geothermal Resource Area (KGRA), a n a r e a commonly r e f e r r e d t o a s D e s e r t Peak. This medium t e m p e r a t u r e h o t w a t e r dominated r e s o u r c e i s l o c a t e d i n a r i d r o l l i n g d e s e r t o f t h e Hot S p r i n g s Mountains, 65 m i l e s n o r t h e a s t o f Reno, Nevada. A f t e r preliminary e v a l u a t i o n s of t h e r e s o u r c e , P h i l l i p s began i n l a t e 1982 a compreh e n s i v e s t u d y o f a l t e r n a t i v e s which u l t i m a t e l y r e s u l t e d i n t h e c u r r e n t 9 Mw f a c i l i t y d e s i g n . A i r Fin 7279 1509 5770 (3496) 62% Coo 1i n g Tower 10022 756 9266 A l s o , t h e c a p i t a l c o s t o f t h e c o o l i n g tower was one t h i r d o f t h e c o s t o f t h e a i r f i n exchangers. Two Phase Flow v s Wellhead S e p a r a t i o n Wellhead s e p a r a t o r s y s t e m s and two p h a s e flow s y s t e m s were s t u d i e d t o d e t e r m i n e which could provide t h e lowest p r e s s u r e drop a t t h e l o w e s t i n v e s t m e n t and o p e r a t i n g c o s t s . Two phase flow was s e l e c t e d b e c a u s e o p e r a t i n g and i n v e s t m e n t c o s t s were r e d u c e d by e l i m i n a t i n g wellhead s e p a r a t o r s . By l o c a t i n g t h e p l a n t d o w n h i l l o f t h e p r o d u c t i o n w e l l s and i n s u r i n g t h e r e were no p o c k e t s i n t h e l i n e ; damage due t o s l u g f l o w was e l i m i n a t e d . Large d i a m e t e r p i p e s also assisted i n separating fluids. Process Parameters T a b l e 1 shows p r o c e s s p a r a m e t e r s u t i l i z e d f o r D e s e r t Peak. Table 1 P r o d u c t i o n Well C h a r a c t e r i s t i c s Average f l o w r a t e p e r w e l l Average w e l l h e a d temp Average w e l l h e a d p r e s s u r e Average r e s o u r c e temp Average r e s o u r c e e n t h a l p y Steam f l a s h by mass the 500,000 lbm/hr. 3 2 60F 97 PSIA 400°F 384 BTU/lb 9.9% F l o a t i n g Power is F l o a t i n g power means t h a t equipment s i z e d t o t a k e advantage of temperature ranges. As t h e c o o l i n g s y s t e m r e s p o n d s t o lower temperat u r e s more horsepower c a n be developed by t h e t u r b i n e and more power c a n b e g e n e r a t e d . When f l o a t i n g power i s c o n s i d e r e d , t h e p r o d u c t i o n rate remains constant; however, temperature f l u c t u a t i o n s a r e r e f l e c t e d by a n n u a l i z e d mean termperatures. T a b l e 3 summarizes d e s i g n c o n d i t i o n s and power o u t p u t . Studies The p r o c e s s s p e c i f i c a t i o n f o r D e s e r t Peak e v o l v e d from c r i t e r i a e s t a b l i s h e d by P h i l l i p s Geothermal Branch and p r o c e s s s t u d i e s . Each s t u d y was based upon e x i s t i n g c o n d i t i o n s a t 127 D i d d l e et a l . Table 3 C o n s t a n t P o w e r / F l o a t i n g Power Comparison Conditions P r o d u c t i o n r a t e lbm/hr C o o l i n g Water t o Process Coo 1i n g Wa t e r from P r o c e s s E l e c t r i c a l Power Net Power KWH Percent increase Constant Power Floating Power 1,086,000 1,086,000 670F( 1 ) 1070F( 1 10,000 53OF( 2 ) 930F( 2, 11,050 10.5% ( 1 ) Summer c o n d i t i o n s ( 2 ) Mean a n n u a l high pressure separator. Excess b r i n e i s f l a s h e d i n t h e low p r e s s u r e s e p a r a t o r . Low p r e s s u r e s t e a m from t h e RST and low p r e s s u r e s e p a r a t o r enters the s t e a m t u r b i n e a f t e r any e x c e s s m o i s t u r e is removed by a knock o u t v e s s e l . Steam a t less t h a n a t m o s p h e r i c p r e s s u r e i s d i s c h a r g e d from t h e s t e a m t u r b i n e i n t o a d i r e c t c o n t a c t s p r a y c o n d e n s e r where vacuum i s p r o v i d e d Heat i s r e j e c t e d t h r o u g h a by s t e a m e j e c t o r s . c o o l i n g tower and make up f o r t h e s y s t e m i s condensate. B r i n e from t h e RST flows t o t h e low pressure separator. The injection system i n c l u d e s t h e d i s c h a r g e from t h e second s t a g e s e p a r a t o r , c o o l i n g t o w e r blow down, i n j e c t i o n F i g u r e 3 shows t h e pumps and a n i n j e c t i o n w e l l . plant layout. B i n a r y v s F u l l Flow U n i t P h i l l i p s compared a n i n t e r n a l l y d e s i g n e d b i n a r y system w i t h a r o t a r y s e p a r a t o r t u r b i n e (RST) s y s t e m . RST power s k i d o p e r a t i n g parame t e r s were p r o v i d e d by T r a n s a m e r i c a D e l a v a l B i p h a s e Energy Systems and P h i l l i p s d e v e l o p e d t h e p r o c e s s f l o w s h e e t f o r t h e system. The RST p r o c e s s was s e l e c t e d p r i m a r i l y b e c a u s e i t produced more n e t power a t a lower c a p i t a l c o s t . T a b l e 4 summarizes b o t h p r o c e s s e s . Table 4 Binary/RST Comparison Binary RST System C h a r a c t e r i s t i c s W e l l f l o w lbm/hr 1,500,000 1,500,000 I s o b u t a n e f l o w lbm/hr 2,026,000 Cooling water c i r c u l a t i o n r a t e lbm/hr 12,865,000 6,488,620 E l e c t r i c a l Power 15.08 13.46 G r o s s MW P a r a s t i c MW 4.10 1.40 N e t f o r s a l e MW 10.98 12.06 Conversion E f f i c i e n c y Net 7.09% 7.32% E s t i m a t e Cost D i f f e r e n t i a l (1982 c o s t s ) $7,200,000 Base NOTE: Geothermal f l u i d was c o o l e d t o a p p r o x i m a t e l y 1670F i n t h e b i n a r y s y s t e m t o accomodate minimum i n j e c t i o n t e m p e r a t u r e . C u r r e n t Design The c u r r e n t d e s i g n i s t h e r e s u l t o f implementing t h e co n cl u s i o n s of p r e v i o u s l y d i s c u s s e d studies. F i g u r e 1 shows t h e 24 i n . and 30 i n . two p h a s e g a t h e r i n g s y s t e m w i t h the p i a n t As shown by located a t the lowest elevation. Figure 2 geothermal f l u i d s a r e separated i n t o h i g h p r e s s u r e s t e a m and b r i n e i n t h e h i g h pressure separator. High p r e s s u r e s t e a m f l o w s t h r o u g h a knock o u t v e s s e l t o t h e s t e a m t u r b i n e inlet. B r i n e from t h e h i g h p r e s s u r e s e p a r a t o r i s d i v i d e d between t h e RST and t h e low p r e s s u r e separator. Because o f low s y s t e m p r e s s u r e , t h e RST c a n n o t p r o c e s s a l l b r i n e produced i n t h e FIGURE 1 DESERT PEAK PLOT PLAN Diddle e t a l . I I l - l - 9 MW FIGURE 2 PROCESS FLOW AND MATERIAL BALANCE De se r t Peak S i m u l a t o r P r o c e s s s t u d i e s , p r o c e s s d e s i g n and d e t a i l d e s i g n c o u l d n o t h a v e b e e n accomplished i n t h e s h o r t t i m e a l l o c a t e d i n t h e p r o j e c t schedule i f t h e Desert Peak S i m u l a t o r (DPSIMF) had n o t b e e n developed. The s i m u l a t o r d e v e l o p e d by C. P. D i d d l e , P h i l l i p s P e t r o l e u m Company models s i n g l e f l a s h , d u a l f l a s h and RST s y s t e m s from product i o n wellliead(s) to the i n j e c t i o n wellhead i n c l u d i n g a l l a u x i l i a r y systems. I t s program i s w r i t t e n i n BASICA f o r u s e on t h e IBM PC. Table 5 shows t h e v a r i a b l e s which c a n b e changed by t h e e n g i n e e r w i t h i n p u t from t h e keyboard. The t e m p e r a t u r e , p r e s s u r e , flow, and p e r c e n t v a p o r a t t h e top of t h e wellhead a r e given conditions which c a n b e changed f o r d i f f e r e n t r e s e r v o i r s . The r e m a i n d e r o f t h e v a r i a b l e s a r e s e l e c t e d by t h e process engineer. - HIOH PRESSURE SEPARATOR ROTARY SEPARATOR TURBINE DUAL STAOE STEAM TURBINE ELECTRICAL OENERATOR DIRECT CONTACT SPRAY COND. CONDENSATE C .M .PUMPS TURBINE ORAIN TANK 1 The program p r o v i d e s f o r change of v a r i a b l e s which a r e l i s t e d by l e t t e r c o d e s . An i n p u t w i l l r e s u l t i n a q u e s t i o n t o b e answered f o r a l l c o d e s e x c e p t : ( 1 ) XT = GET OUT OF THE SIMULATOR, ( 2 ) RUNS = Causes t h e program t o r u n a f t e r c h a n g e s o f v a r i a b l e s a r e c o m p l e t e and a FIGURE 3 DESERT PEAK-EQUIPMENT LAYOUT ORAIN TANK PUMPS COOLINO TOMER COOLINO TOWER WATER PUMPS NEUTRAL OROUNOINO RESISTORS RATOR OR PACKAQEO INST. L TOOL AIR SKID f 129 TURBINE EXHAUST DUCT DIK::: 18 POWER HOUSE SWITCHOEAR BLOO. 8 CONTROL ROOM b OFFICE RST DRAIN POND PACKAOE POWER OENERATION SKID Diddle k t a l . Table 5 Engineers Input Screen ENTER VARIABLE CODE LETTERS? THIS PROGRAM I S A RST/STEAM TURBINE POWER PLANT SfMULAToR + DPSIMFD ****** ............................................................................ * D e s i g n e r o f S i m u l a t o r : Courtney D i d d l e ; P h i l l i p s P e t r o l e u m Co. SIMULATOR INPUT VARIABLES -- SYMBOLS ( u s e CAPITAL LETTERS) * TO INITIALIZE = INT t h e n ENTER = Base Case VALUES * We 1l h e a d Temperature = WT H I . P r e s s . Sep. Temp. = FA1 * We 1l h e a d F l a s h = vo Low P r e s s . Sep. Temp. = F1 * = FW W e 1l h e a d Flow RST INLET Temperature RST Enhance Stm, LBS. RST E f f i c i e n c y F a c t o r H.P. Steam Vent LBS/HR Stm Turb. O u l e t Temp. C o o l i n g Two. H20 Temp. Spray Cond Pump d e l P Blowdown Pump d e l t a P RETURN TO STARTING MENU RUN NUMBER ENTER - Your NAME = FA = VST6 = N1 RST Feed Rate, LBS/HR RST Feed L i q u i d F a c t o r Steam E j e c t o r , LBS/HR L.P. Steam Vent LBS/HR Steam Turb. E f f i c i e n t y Pump E f f i c i e n c y C o o l i n g Twr Pump d e l t a P R e - I n j e c t i o n Pump d e l t a P GET OUT OF THE PROGRAM RUN SIMULATOR ENTER - P l a n t S i t e NAME = = = = = RSTF FS SJ VL N2bN3 PEFF DP2 DP4 XT RUNS * * * = VH * = F6 * = F7 = * = DP1 = * = DP3 = * = MU = * = RUNA = * = N$ = S$ * ............................................................................ ENTER VARIABLE CODE LETTERS? run is desired. ( 3 ) RUNA = Allows f o r a n o v e r r i d e o f t h e Run Number, s i n c e t h e program w i l l a u t o m a t i c a l l y i n c r e m e n t t h e r u n number by one ( 1 ) e a c h RUNS. The s i m u l a t o r c o n t a i n s a s t e a m t a b l e w i t h s a t u r a t e d d a t a between 32-705 d e g r e e s F. The program w i l l i n t e r p o l a t e a s a f u n c t i o n o f t e m perature. Output i s i n t h e form o f a s i n g l e page summary ( T a b l e 6 ) which i n c l u d e s g r o s s , n e t and p a r a s i t i c power o r a s i x page d e t a i l e d printout. D e t a i l s include process parameters o f a l l m a j o r components, pump horsepower, and power d e v e l o p e d by RST and steam t u r b i n e . Table 6 S i n g l e Page Power Summary Sequence *****************~******************************* ENTER VARIABLE CODE LETTERS ? RUNS The DPSIMF SIMULATOR i s now c a l c u l a t i n g t h e problem. Deserk Peak G r a p h i c S i m u l a t o r P h i l l i p s i s c u r r e n t l y developing an i n t e r a c t i v e g r a p h i c s i m u l a t o r o f t h e Desert Peak It w i l l a l s o be a b l e t o s i m u l a t e process. s i n g l e f l a s h and d u a l f l a s h s y s t e m s . The advantage of the graphic simulator is t h a t v a r i a b l e s c a n b e i n c r e a s e d or d e c r e a s e d by h o l d i n g o n e ' s f i n g e r on t h e a p p r o p r i a t e key. As the v a r i a b l e changes t h e e n g i n e e r c a n o b s e r v e c o r r e s p o n d i n g changes i n power p r o d u c t i o n and o t h e r s y s t e m parameters. Detail Design S e v e r a l c h a n g e s t o p r o j e c t p r e m i s e s were made t o accomodate s o l u t i o n s t o problems which were s o l v e d d u r i n g d e t a i l d e s i g n . The i m p a c t o n o t h e r equipment s p e c i f i c a t i o n s were d e t e r m i n e d by DPSIMF which p r o v i d e d f o r maximizing n e t power a t a l l times. ************************************************* THIS PROGRAM I S A RST-STEAM TURB POWER PLANT SIMULATOR = DPSIMFD Designer of Simulator: Courtney Diddle P h i l l i p s Petroleum Co. DATE OF RUN = 02-22-1985 TIME OF RUN = 08:28:00 RUN NO. = 1 ENG'R: J. Q. ENGINEER SUMMARY OF POWER OUTPUT I N KILOWATT HOURS SITE = ANYWHERE, WORLD = 657.7 RST POWER AT N1 EFF. = 5457.0 HI.PR. TURB AT N2 EFF. L.P. TURN AT N 3 EFF. = 4046.4 = 10161.2 GROSS POWER-TOTAL POWER TOTAL PARASITIC POWER NET POWER FOR SALE Number o f V a r i a b l e CHANGES (Maximum = 5 d i f f e r e n t ) = - 714.8 9446.3 0.0 ................................................. L i q u i d a t s a t u r a t i o n t e m p e r a t u r e and p r e s sure leaving the f i r s t stage separator is flashed due t o n o r m a l p r e s s u r e d r o p i n p i p i n g e n r o u t e t o t h e RST. This could cause unequal d i s t r i b u t i o n o f l i q u i d t o RST n o z z l e s . After study, a c o o l e r c o n d e n s a t e i n j e c t i o n s y s t e m was d e s i g n e d t o b e used i f r e q u i r e d . The DPSIMF c a l c u l a t e d q u a n t i t i e s of l i q u i d f l a s h e d and q u a n t i t i e s o f c o n d e n s a t e r e q u i r e d t o lower t h e t e m p e r a t u r e t o match t h e e x p e c t e d p r e s s u r e a t t h e RST i n l e t . 7hp vent-relief s y s t e m is e s s e n t i a l for the management o f steam d u r i n g t h e s t a r t - u p o f t h e Low p r e s s u r e RST and d u a l s t a g e steam t u r b i n e . steam w i l l be vented while t h e t u r b i n e i s s t a r t e d u t i l i z i n g h i g h p r e s s u r e steam. Optimiz a t i o n of t h e s i z e o f t h e vent c o n t r o l v a l v e s was a c c o m p l i s h e d by c a l c u l a t i n g t h e e x p e c t e d flow r a t e s a s a function o f changing back pressure. The c a l c u l a t i o n was made by t h e DPSIMF simulator. I S A HARDCOPY REQUIRED? Y OR N? 130 Diddle et al. In order to meet excepted operating conditions the brine disposal ponds which were premised to be installed if required have been constructed. Diverting production to the ponds will assist in limiting the rate of the increase in the systems temperature during start-up. Also solids loosenedby well cleaning can be prevented from entering production pipelines and equipment. As the operating and startup procedures developed, it was determined that a distributed control and permissive interlock systems would be required. A programable controller with 8K memory and 128 1/0 points was selected to implement shut-down logic and permissive start sequencing. The process will be controlled by 4 eight loop programable controllers. A CRT station will be used to monitor and make process adjustment. Because the system floats on the wet bulb temperature and production characteristics change as the result of well scaling all systems must be kept in balance and have a reasonable operation range. It would be impossible to manually control this dynamic system. Construct ion The overall project schedule was developed to take advantage of all tax incentives and be operational by December 31, 1985. In order to meet this objective the construction philosophy provide for separate site preparation, plant erection, insulation and painting contracts. Site preparation was completed in mid March 1985 and the main contract was awarded in early April. The RST power skid is scheduled to be shipped by mid-July and plant start-up is scheduled for December. Re ference s Phillips Petroleum Company Computer Programs a) DPSIMF RST-Steam Turbine Power Plant Simulator b) DPGSIM RST-Steam Turbine Power Plant Graphic Simulator Cerini, D. J., Diddle, C. P. and Gonser, W. C. Project Development Desert Peak 9MW Power Plant Proceedings Eight Annual Geothermal Resources Council pgs. 33-39, 1984. 131
© Copyright 2026 Paperzz