i DOE/ID/12079-21 ESL-48 V v TRACE-ELEMENT GEOCHEMISTRY OF GRADIENT HOLE CUTTINGS: BEOWAWE GEOTHERMAL AREA, NEVADA f 5 bY 3 Odin D. Christensen W December 1980 W EARTH SCIENCE LABORATORY UNIVERSITY OF UTAH RESEARCH INSTITUTE 420 Chipeta Way, S u i t e 120 S a l t Lake City, Utah 84108 Prepared f o r t h e U. S, Department o f Energy O i v i s i o n o f Geothermal Energy 3 Under Contract No. DE-AC07-80ID12079 fllS~R~EUnONOF ?HIS DOCUMENT IS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. j W I i NOTICE V T h i s r e p o r t was prepared t o document work sponsored by t h e United States tiovernment. u Neither t h e United States nor i t s agent, t h e United States Department o f Energy, nor any Federal employees, nor any o f t h e i r contractors, subcontractors o r t h e i r employees, makes any warranty, express o r implied, o r assumes any l e g a l l i a b i l i t y o r r e s p o n s i b i l i t y f o r t h e accuracy, completeness, V o r usefulness o f any information, apparatus, product o r process disclosed, o r represents t h a t i t s use would not i n f r i n g e p r i v a t e l y owned r i g h t s . NOTICE Y Keference t o a company o r product name does not imply approval o r recommendation o f t h e product by t h e U n i v e r s i t y o f Utah Research I n s t i t u t e o r e t h e U.S. Department o f Energy t o t h e exclusion o f o t h e r s t h a t may be s u i t a b l e . k (13 lcr) V ‘(13 w CONTENTS V PAGE - 1 ABSTRACT.............................. Y IO U ............................ ANALYTICAL TECHNIQUES . . . . . . . . . . . . . . . . . . . . . . . OISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geology.... ........................ Chemistry o f Thermal F l u i d s . . . . . . . . . . . . . . . . . . Chemistry o f Surface Samples . . . . . . . . . . . . . . . . . Element D i s t r i b u t i o n s . . . . . . . . . . . . . . . . . . . . . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPENDIX: Sumnary o f Geochemical Data . . . . . . . . . . . . . . . INTRODUCTION 2 3 4 4 11 13 15 22 26 28 FIGURES 0 Y Generalized geology o f t h e Beowawe area Figure 2 Temperature gradient hole l o c a t i o n map Figure 3 Generalized s t r a t i g r a p h y o f temperature gradient holes Figure 4 Hg d i s t r i b u t i o n i n d r i l l c u t t i n g s Figure 5 As d i s t r i b u t i o n i n d r i l l c u t t i n g s Figure 6 W Figure 7 ............ ............ ............ Mn d i s t r i b u t i o n i n d r i l l c u t t i n g s . . . . . . . . . . . . L i distribution i n d r i l l cuttings TABLES v Y W ......... ......... Figure 1 Table 1 F l u i d compositions from t h e Beowawe area Table 2 Geochemistry o f selected surface samples ........ ........ 16 17 18 19 12 14 I j ABSTRACT iqultielement geochemical a n a l y s i s o f d r i l l c u t t i n g s from 26 shallow W temperature-gradient d r i l l holes and of surface rock samples reveals t r a c e element d i s t r i b u t i o n s developed w i t h i n these rocks as a consequence o f chemical i n t e r a c t i o n w i t h thermal f l u i d w i t h i n t h e Beowawe geothermal area. V The p r e s e n t l y discharging thermal f l u i d s are d i l u t e i n a l l components except s i l i c a , suggesting t h a t t h e residence time o f these f l u i d s w i t h i n t h e thermal r e s e r v o i r has been s h o r t and t h a t chemical i n t e r a c t i o n w i t h t h e r e s e r v o i r rock v minimal . I n t e r a c t i o n between these d i l u t e f l u i d s and rocks w i t h i n t h e system has r e s u l t e d i n t h e development o f weak chemical signatures. The absence of stronger signatures i n rocks associated w i t h t h e present system suggests t h a t ti f l u i d s have had a s i m i l a r d i l u t e chemistry f o r some time. The s p a t i a l d i s t r i b u t i o n o f elements commonly associated w i t h geothermal systems, such as As, Hg and L i s are n e i t h e r l a t e r a l l y nor v e r t i c a l l y continuous. V This suggests t h a t t h e r e i s not now, nor has t h e r e been i n t h e past, pervasive movement of thermal f l u i d throughout t h e sampled rock but, instead, t h a t i s o l a t e d chemical u anomal ies represent d i s t in c t f l u i d - f 1ow channel s. Coherent near-surface enrichments o f As and Mn are consistent w i t h a system i n which f l u i d s discharge from along t h e Malpais F a u l t and f l o w downslope w i t h i n shallow permeable horizons, d e p o s i t i n g As near t h e discharge p o i n t and Mn more 0 distally. Discontinuous As, L i and Hg concentrations near White Canyon t o t h e east o f t h e p r e s e n t l y a c t i v e surface features record t h e e f f e c t s o f chemical i n t e r a c t i o n o f rocks w i t h f l u i d s chemically u n l i k e t h e p r e s e n t l y discharging 3 fluids. The observed t r a c e element d i s t r i b u t i s suggest t h a t h i s t o r i c a l l y the Beowawe area has been t h e center o f more than one hydrothermal event and t h a t t h e near-surfa p o r t i o n o f t h e pres t hot-water geothermal system i s W c o n t r o l l e d by a s i n g l e source f r a c t u r e , t h e Malpais F a u l t , o r an i n t e r s e c t i o n o f f a u l t s a t t h e s i n t e r terrace. Y INTRODUCTION The Beowawe geothermal area l i e s i n northern Nevada along t h e Lander and Eureka county l i n e , approximately 30 km southeast o f B a t t l e Mountain (Figure 1). The geothermal p o t e n t i a l o f t h e area i s c u r r e n t l y being evaluated by Chevron Resources Company and Getty O i l Company. This study i s p a r t o f a comprehensive ongoing case study o f t h e area being prepared by t h e E a r t h Science Laboratory D i v i s i o n o f t h e U n i v e r s i t y o f Utah Research I n s t i t u t e (ESL/UUHI ) i n cooperati on w i t h these companies through t h e I n d u s t r y Coup1ed Program o f t h e D i v i s i o n of Geothermal Energy of t h e U. S. Department o f Energy (DOEDGE) . Multielement geochemical a n a l y s i s o f d r i l l c u t t i n g s from 26 shallow temperature-gradient holes d r i l l e d by Chevron has been performed i n an attempt t o more c l o s e l y d e f i n e t h e near-surface geometry o f t h e geothermal resource. Recent s t u d i e s demonstrate t h a t t h e t r a c e element geochemistry o f we1 1 c u t t i n g s from geothermal systems can be a useful e x p l o r a t i o n guide (Bamford and others, 1980; Christensen and others, 1980b; Christensen, 1980 a,b) . Trace element d i s t r i b u t i o n s , devel oped as a consequence o f temperature gradients and f l u i d flow w i t h i n a geothermal system, place c o n s t r a i n t s on t h e p o s s i b l e geometry o f t h e present system and may provide i n s i g h t i n t o i t s thermal and convective h i s t o r y . 2 W ANALYTICAL TECHNIQUES Y D r i l l c u t t i n g s were prepared f o r a n a l y s i s by compositing i n d i v i d u a l washed 10-foot i n t e r v a l samples over 100-foot i n t e r v a l s (Bamford, 1978) and Y p u l v e r i z i n g t o l e s s than 270 mesh i n a tungsten carbide shatterbox. Pulverized samples were dissolved by a f o u r - a c i d d i g e s t i o n procedure (Chri stensen and others, 1980a). Q$ Samples were analyzed f o r 37 elements by in d u c t i v e l y coup1ed plasma-atomic emission spectroscopy (ICP-AES) using an Appl i e d Research Laboratories i n d u c t i v e l y coupled plasma quantometer (ICPQ) i n t h e ESL W geochemical laboratory. Elements determined by ICP-AES were Na, K, Ca, Mg, Fe, A l , S i , T i , P, S r , Ba, V, C r , Mn, Co, N i , Cu, Mo, Pb, Zn, Cd, Ag, Au, As, w Sb, B i , U, Te, Sn, W, L i , Be, B, Z r , La, Ce, and Th. S p e c i f i c s of t h e a n a l y t i c a l instrumentation and procedures, as w e l l as an evaluation o f t h e q u a l i t y o f analyses a r e summarized i n Christensen and o t h e r s (1980a). Y In a d d i t i o n , As was determined on each sample s o l u t i o n by a c o l o r i m e t r i c procedure and Hg was determined on s o l i d samples by g o l d f i l m mercury detector W I n order t o d i s t i n g u i s h chemical v a r i a t i a n s r e s u l t i n g from geothermal processes from t h e numerical dispersion o f a n a l y t i c a l values expected i n n a t u r a l normal o r lognormal geochemical populations, elemental a n a l y t i c a l V values were eval uated graphical l y through t h e use o f cumulative probabi 1it y pl o t s fa1 1owing t h e procedures d e s c r i b i d by S i n c l a i r (1974, 1976) and Lepel t i e r (1969). 'v W The method permits estimation o f population parameters and s e l e c t i o n o f d i s c r i m i n a t i o n thresholds f o r mixed d i s t r i b u t i o n s o f two o r more 3 r numerical populations. An example o f the a p p l i c a t i o n o f t h i s technique i s Y presented i n Chri stensen (1980b). O f the elements investigated, t h e d i s t r i b u t i o n s o f Hg, As, L i and Mn are Y most p e r t i n e n t t o t h e f o l l o w i n g discussion o f t h e geochemistry o f t h e Beowawe geothermal area. Data f o r these elements are presented g r a p h i c a l l y i n t h i s r e p o r t as Figures 4 through 7. V A data summary f o r a l l elements i s included i n t h e appendix; complete data i s a v a i l a b l e on open f i l e a t ESL/UURI. DISCUSS I O N 01 Geology A comprehensive geologic study o f t h e Beowawe area has r e c e n t l y been completed by Struhsacker (1980). Y The f o l l o w i n g discussion o f t h e geology of Beowawe i s l a r g e l y abstracted from t h i s work. The t3eowawe geothermal system l i e s n e w t h e a x i s o f t h e Basin and Range I , physiographic province w i t h i n the B a t t l e Mountain heat flow h i g h (Figure 1). Y The geothermal system i s marked by t h e presence o f hot springs and fumaroles associated w i t h a l a r g e opaline s i n t e r terrace. 'a along t h e f a u l t - c o n t r o l l e d Malpais R i m which bounds t h e southeast margin o f Whirlwind Valley (Figure 1). r, w W The t e r r a c e has developed 4 i ,v ,. v 0 Y Y 0 ita, w U Y U c f e t e c c t FIGURE 2 TEMPERATURE GRADIENT HOLE LOCATION MAP [PiiD Quaternary allurlum Quaternary SIUCOOUS sinter Quatarnary I r n d o Lato Miocono an4, Plloconr volaanics (basaltlo andrsltr, dacltr, basam, and minor redimonh and tuffs) lzzd pre-Late M k e m Rocks (Ordorlcion Volmy quartrlhr, ahorts, ord olltstonos; ond Tortlory )rfhmor? rodlmonta, tuffs and ktnbkndo andeslt.) &fault (hfornd whom doshd) /-cantoo? (Infwnd whrro bosh.dl lo 9 rtrlh. a n l a p d tlwr U Chevron toe+ ~ t o a OWMU bp #.a am m m k r The Beowawe geothermal system appears t o be a high-temperature, hot-water Y system, l o c a l i z e d w i t h i n an area o f s t r u c t u r a l complexity. Major f a u l t systems a c t i ve from p r e - T e r t i ary t o the present have c o n t r o l 1ed t h e d e p o s i t i o n Y of volcanic rocks, t h e topography, and, apparently, t h e present geothermal f l u i d flow. Rocks exposed w i t h i n t h e geothermal area i n c l u d e s i l i c e o u s Ordovician eugeosynclinal rocks, T e r t i a r y volcanic rocks ranging i n v composition from b a s a l t t o dacite, and T e r t i a r y and Quaternary gravels. Three major episodes o f s t r u c t u r a l development are evident from t h e s t r u c t u r e s mapped w i t h i n t h e geothermal area (Figure 1): a Paleozoic t h r u s t v f a u l t i n g event, a NW-trending graben developed d u r i n g mid-Miocene time, and NE-trending Basin and Range f a u l t i n g . I n t h e v i c i n i t y o f t h e geothermal area, t h e allochthonous s i l i c e o u s rocks o f t h e Ordovician Valmy Formation l i e i n exposed f a u l t c o n t a c t upon t h e subjacent autochthonous carbonates along t h e Roberts Mountain Thrust o f t h e upper Devonian t o lower M i s s i s s i p p i a n A n t l e r Orogeny. The main t h r u s t and t h e many subsidi-ary f a u l t s have severely f r a c t u r e d and f o l d e d t h e upper p l a t e rocks, c o n t r i b u t i n g t o t h e i r e f f e c t i v e permeability. Although t h e carbonates have not y e t been penetrated by d r i l l holes, i t i s presumed t h a t they occur a t g r e a t e r depths throughout t h e area. Horizons o f sandstone i n t e r s e c t e d w i t h i n two deep d r i l l holes i n the area have been i n t e r p r e t e d as t e c t o n i c s l i c e s of v allochthonous S i l u r i a n E l d e r sandstone. Major north-northwest-trending f r a c t u r e s o c c u r r i n g w i t h i n t h e study area l a t e r a l l y c o n f i n e a t h i c k sequence o f middle-Miocene c a l c - a l k a l i n e t o a l k a l i n e 0 Y flows. These flows accumulated i n a graben produced by r i f t i n g along t h e 7 Oregon-Nevada lineament. The numerous north-trending splays o f t h e Dunphy Pass F a u l t Zone (Figure 1) formed t h e eastern boundary o f t h i s graben. Continued a c t i v i t y on t h i s f a u l t zone a f t e r cessation o f volcanism has r e s u l t e d i n measurable v e r t i c a l displacement o f volcanic u n i t s i n t h e v i c i n i t y o f Whi t e Canyon. The east-northeast and east-trending f a u l t s o f t h e Malpais f a u l t zone (Figure 1) represent t h e f i n a l p e r i o d o f Basin and Range f a u l t i n g . These post-date a l l volcanic u n i t s , suggesting a maximum age o f 15.5 m.y. In yeneral, north-northeast-trending Basin and Range normal f a u l t s doininate t h e r e g i o n a l s t r u c t u r a l t e r r a i n o f north-central Nevada and g i v e r i s e t o t h e major ranges and valleys. The regional f a u l t t r e n d w i t h i n t h e mapped area, however, i s a b r u p t l y d e f l e c t e d eastward, producing t h e zone o f s t r u c t u r a l comp e x i t y a t t h e Beowawe area. Exposed r e s e r v o i r rocks w i t h i n t h e Beowawe area i n c l u d e t h e Pale z o i c s i l i c e o u s eugeosynclinal rocks o f t h e Valmy Formation and o v e r l y i n g T e r t i a r y volcanic u n i t s . The Valmy Formation consists o f s i l i c e o u s s i l t s t o n e w i t h s i g n i f i c a n t amounts o f q u a r t z i t e , sandstone, bedded chert, s i l i c e o u s conglomerate, and l o c a l l y bedded nodular b a r i t e . Tectonism has severely f r a c t u r e d t h e Valmy rocks t o produce c a t a c l a s t i c textures. T e r t i a r y volcanic rocks i n c l u d e dikes, flows, and t u f f s l o c a l l y interbedded w i t h i n t e r f l o w tuffaceous and a l l u v i a l horizons. The generalized s t r a t i g r a p h y o f t h e d r i l l holes i s s u n a r i z e d i n Figure 3. V 8 Y w w W W c, v Y 3 W cu cu -N v) cu 9 ,, L a cn 0 c, a L aJ G Q c, 3 cc W a L LL *r '0, Surface hydrothermal a1t e r a t i o n i s c l o s e l y associated w i t h t h e Mal pai s F a u l t , extending from t h e s i n t e r t e r r a c e t o t h e town o f Beowawe. The modern hydrothermal a c t i v i t y i s centered on t h e s i n t e r t e r r a c e a t t h e western end of t h i s zone along t h e Terrace Fault. Erosion along t h e Malpais Scarp has exposed areas o f s i l i c a veining, a r g i l l i z a t i o n , p y r i t i z a t i o n , and limonitization. The i n t e n s i t y o f a l t e r a t i o n v a r i e s g r e a t l y due, apparently, t o t h e i n f l u e n c e o f cross f r a c t u r e s and l i t h o l o g i c c o n t r o l w i t h i n t h e Malpais I W I F a u l t Zone d u r i n g hydrothermal a c t i v i t y . I The i n t e r s e c t i o n o f t h e Malpais F a u l t w i t h t h e Dunphy Pass F a u l t zone a t Y t h e mouth o f White Canyon has been t h e center o f i n t e n s e hydrothermal a c t i v i t y i n t h e past. A dense swarm o f east-trending chalcedony veins cuts T e r t i a r y d a c i t e and h i g h l y f r a c t u r e d rocks of t h e Valmy Formation, W A r g i l l i c alteration o f t h e volcanic rock i n t h e vein swarm increases toward t h e i n d i v i d u a l veins. Primary d i ssemi nated magnetite and secondary p y r i t e are rep1 aced by abundant limonite. rr Displacement o f t h e a l t e r a t i o n zone across White Canyon i n d i c a t e s motion on t h e Dunphy Pass F a u l t zone subsequent t o t h e d e p o s i t i o n of t h e chal cedony vei ns. A t t h e Red D e v i l Mine near t h e northeast end o f t h e a l t e r a t i o n zone, a northeast-trending v e r t i c a l f r a c t u r e zone c o n t r o l s a 30 m-wide f a u l t b r e c c i a i n Valmy formation^ q u a r t z i t e , s i l t s t o n e , and conglomerate. The b r e c c i a i s characterized by q u a r t z - p y r i t e veins and cinnabar f i l m s along f r a c t u r e 3 surfaces, The r e l a t i v e age o f t h i s m i n e r a l i z a t i o n i s uncertain. The Ginn and Rossi w e l l s d r i l l e d by Chevron (Figure 1) penetrate a p o o r l y Y V def ined zonal sequence o f hydrothermal a1t e r a t i on products (Struhsacker , 10 1980). I n general , t h e pervasive a l t e r a t i o n through t h e Miocene volcanic s e c t i o n changes with depth from a c l ay-cal c i te-quartz-pyri t e assembl age t o a c h l o r i t e - c a l c i t e - c l ay-pyri t e assembl age. A quartz-cal c i t e - p y r i te-chl o r i t e - s e r i c i t e - e p i d o t e assembl age i s c h a r a c t e r i s t i c below t h e Tertiary-Ordovician contact. Chemistry o f Thermal F l u i d s The thermal f l u i d s discharging a t t h e surface and obtained from w e l l s i n t h e t3eowawe area a r e anomalous compared t o many other p r e v i o u s l y studied hydrothermal systems (Bamford , 1978; Bamford and others, 1980; Chri stensen, 1980a, b) because o f t h e i r low concentrations o f dissolved m a t e r i a l . These d i l u t e f l u i d s , however, are very s i m i l a r t o those obtained from many other Basin and Range geothermal systems o f s i m i l a r temperature (Mariner and others, 1974; Sanders and Miles, 1974). Selected f l u i d compositions from t h e Beowawe area are summarized i n Table 1. I n general, t h e f l u i d s a r e a l k a l i n e (pH = 8-9) and have t o t a l dissolved s o l i d s l e s s than 1400 mg/l . Sodium i s t h e p r i n c i p a l cation; chloride, s u l f a t e , and carbonate species are a l l s i g n i f i c a n t anions. Trace elements which are f r e q u e n t l y enr ched i n thermal f l u i d s ( E l l i s , 1979), such as As, Sb, W, B y L i , Rb, Cs, F and Br, a r e a l l present a t r e l a t i v e l y low concentrations. 11 TABLE 1 FLUID COMPOSITIONS FROM THE BEOWAWE AREA Y U 1 2 Hot Spring Hot Spring 3 Blowing We1 1 4 6 5 Blowing We1 1 Ginn 1-13 We1 1 Rossi 21-19 We1 1 261 27 <.25 <.5 210 8 1 .o 260 41 16 .3 <.025 <.07 154 180 18 30 8.9 2.0 * c3 Na K Ca My Fe Si Sr LI w Ba Mn Mo As Sb W Li B Rb 234 15 <.25 280 40 1.5 <.5 <.025 124 .02 <.625 <.25 <1.25 <.625 <.75 < 125 1.25 . 2.0 --- cs <.09 229 167 06 <.625 <.25 <1.25 <.625 . --- .05 < .003 0011 .033 0011 .135 < e 7 5 <.125 1.5 2.2 -320 .220 ----- ----Steam 1129 9.8-.2 95 --- -I- --- --- --- .05 < .003 ..019 04 -013 --- --- --- 1.8 2.2 1.1 1.1 ----88' 1390 8.6 570 8.1 -150 --- ..200 145 J J TDS pH &20°C) T, c v * a l l a n a l y t i c values i n mg/l **dash (---) i n d i c a t e s Val ue n o t determined ***the f o l l o w i n g elements were analyzed f o r i n samples 1 and 3 b u t are present- i n concentrations below t h e a n a l y t i c a l l i m i t s o f detection: A l , T i , P, V, C r , Co, Cd, Ag, Au, B i , U, Te, Sn, B d U 906, 8.$-.2 95 --- b e l ow s i n t e r 01 1ected 6-24-8 2. Hot s p r i n g below s i n t e r terrace; from Wollenberg and others, 1977. 3. Blowing w e l l brine. Collected 6-24-80. Analyzed by ESL, 7-1980. 4. Blowing w e l l b r i n e ; from Wollenberg and others, 1977. 5. Ginn 1-13 d r i l l stem t e s t a t t o t a l depth, 6-28-74; from Chevron, 1979. 6. Rossi 21-19 f l o w t e s t , 12-76; from Chevron, 1979. 12 --- Although t h e s a l i n i t i e s and t r a c e element concentrations are low, s i 1i c a Y contents are unusually high, suggesting t h a t t h e f l u i d s have had short residence times w i t h i n t h e system and have undergone r e l a t i v e l y l i t t l e w chemical i n t e r a c t i o n w i t h t h e r e s e r v o i r rocks. Several o t h e r processes could These produce t h i s p a r t i c u l a r chemistry, however, and can not be neglected. i n c l u d e f l u i d t r a n s i t through a low surface area environment, e q u i l i b r a t i o n Y w i t h s i l i c e o u s r e s e r v o i r rocks, o r l o s s o f elements t o d e p o s i t i o n a l phases. Chemistry o f Surface Samples The chemistry o f a number o f surface rock samples from t h e Beowawe area v' i s summarized i n Table 2 and t h e i r l o c a t i o n s i n d i c a t e d on Figure 2. These samples c o n s i s t o f m a t e r i a l s which have c l e a r l y been a f f e c t e d by i n t e r a c t i o n w i t h thermal f l u i d s . J Samples 1 through 4, c o l l e c t e d near t h e mouth o f White Canyon, document t h e t r a c e element signature associated w i t h t h e o l d e r chalcedonic v e i n i n g present along t h e Malpais F a u l t i n t h a t area. c o n s i s t e n t enrichment i s t h a t of V As. The o n l y The copper concentration i n sample 1 i s c o n s i s t e n t w i t h r e l a t i v e l y h i g h l e v e l s o f Cu measured i n o t h e r unaltered Valmy Formation samples and i s a t t r i b u t e d t o a primary l i t h o l o g i c concentration i n these eugeosyncli.na1 sediments, Y Samples o f opal i n e s i n t e r (sample 5) and a l t e r e d b a s a l t i c andesite (sample 6) from t h e a c t i v e geothermal area are d e f i c i e n t i n As and L i when compared t o a l t e r e d rocks i n t h e Roosevelt system (Bamford and others, 1980; Chri stensen and others, 1980b), r e f l e c t i n g t h e Y d i l u t e f l u i d s a t Beowawe. samples are those o f Mn. The o n l y notably higher concentrations i n these As might be expected from t h e d i l u t e thermal f l u i d s , t h e t r a c e element signature o f s o l i d s a f f e c t e d by these f l u i d s i s a l s o very w weak . 13 z E cli c Q t e c c t TABLE 2 GEOCHEMISTRY OF SELECTED SURFACE SAMPLES 1 Valmy Chert: Breccia & s i 1icahematite v e i n i n g 3 S i 1i c i f i e d , a r g i 11i z e d A r g i 11ized vol cani c b r e c c i a volcanic b r e c c i a 4 Chal cedoni c vein material 5 6 Opa i n e s i n t e r @ The Geyser terrace Arg ized, b a s a l t i c andes it e Na K Ca Mg Fe 279' 4120 822 644 12200 957 53000 1690 523 16400 6600 35606 3680 638 32600 317 1390 29000 4220 4240 7560 10500 3130 970 28100 6540 11400 1760 801 48300 A1 Ti Sr Ba 261 1310 356 78 882 38500 2530 458 81 1090 55100 3790 903 136 1390 4610 107 94 51 460 37500 2640 468 202 971 97600 4870 868 275 1530 Mn co cu Pb Zn 43 <1 17 <10 <5 42 (1 6 15 c5 60 2 9 22 39 80 <1 7 <10 <5 123 2 7 17 22 139 1 5 33 42 A9 <2 30 16 1.3 <2 145 36 5.4 4 65 15 4.4 2 23 52 6.1 <2 7 42 3.4 <2 8 50 1.9 39 13 20 250 34 59 314 50 96 8 5 <10 219 40 64 398 64 127 SP ' 2 AS Li Be Zr La Ce * I a l l values i n mg/kg ** The f o l l o w i n g elements were analyzed f o r b u t are present a t o r below a n a l y t i c a l l i m i t s o f detections: V, C r , N i , Mo, Cd, Au, Sb, B i , U, Te, Sn, and Th. S i , W, and 6 a r e 1o s t o r contaminated d u r i n g sample preparation o r analysis. Element D i s t r i b u t i o n s Y The d i s t r i b u t i o n s o f Hg, As, L i , and Mn a r e presented i n map sections for f i v e depth i n t e r v a l s i n Figures 4 through 7. These elements have been found t o be r e a d i l y d i s t r i b u t e d by thermal f l u i d s i n o t h e r systems (Bamford and J others, 1980; Christensen, 1980 a,b). W md V Y 15 r 1 J U 3 d Y ld v : f ? I f ' \ 5 X 16 P B s e 4 e \ s \ ef8 t e a ? \ I i c c t I[ c ' 0 04 *3 *I ' '. Figure 5 . Arsenic distribution i n drill cuttings: ( A ) 0-100 feet (B) 100-200 feet (C) 200-300 feet (D) 300-400 feet ( E ) 400-500 feet Dark 1 nes i n d cate the location of the Mal pai s Faul t. 3 3 rr 3 3 r3 Y 3 J d v f f e e t ? E c 18 f ? e \ ? c 3 Y Y u3 Y J V u3 W c \; 3 19 6 0 0 0 3 C,ccoooou aJ a 'F 3 I I LdOOOOQ, I nocu m e a,V - O I n .. U n U n U n . C n c, U L .- e m o o w c U, a J ~ U c, I O O O O t v)O.-ccUmbC,. .t- ~ ai Q , v) . U I \ . f a ~ ~ S t a t i s t i c a l l y , Hg a n a l y t i c a l values belong t o two lognormal populations w i t h a threshold value between them o f 110 ppb. r e s t r i c t e d t o d r i l l holes 48 and 9 (Figure 4). The anomalous values are Hole 35, located between these two, has concentrations c o n s i s t e n t l y greater than t h e mean. sample i n t e r v a l s have two common f a c t o r s : The anomalous they are located east o f t h e p r e s e n t l y a c t i v e thermal area near t h e t r a c e o f t h e Dunphy Pass F a u l t zone and are composed p r i m a r i l y o f tuffaceous sediments, The anomalous concentrations are apparently not associated s p a t i a l l y w i t h t h e present geothermal system and are not l a t e r a l l y o r v e r t i c a l l y continous. rc' Two i n t e r p r e t a t i o n s are plausible. The Dunphy Pass F a u l t zone may represent a s t r u c t u r e along which f l u i d s have r i s e n and migrated l a t e r a l l y through permeable tuffaceous sediments, a model c o n s i s t e n t w i t h t h e anomalous temperature gradient observed i n hole 48 c, Struhsacker, personal communication). (E. A1t e r n a t i vely, t h e coincidence o f anomalous Hy concentrations and tuffaceous horizons may be a consequence o f primary enrichment of Hg i n these rocks. W Arsenic concentrations are generally g r e a t e r and i t s d i s t r i b u t i o n S p a t i a l l y coherent i n t h e upper sample l e v e l (Figure 5). S t a t i s t i c a l l y , the a n a l y t i c a l values c o n s t i t u t e a s i n g l e numerical population. 3 Comparison w i t h analyses o f surface samples (Table 2) shows t h a t these concentrations are s i g n i f i c a n t l y lower than i n m a t e r i a l s a f f e c t e d by t h e e a r l i e r a l t e r a t i o n event. W The l a t e r a l l y and v e r t i c a l l y discontinuous d i s t r i b u t i o n o f higher values and t h e c o n s i s t e n t l y low concentrations imply t h a t t h e r e never been a pervasive f l i t h i n t h e lower two l e v e l s o f As-enriched thermal - f l u i d through t h e area, but r a t h e r t h a t f l u i d f l o w has apparently been r e s t r i c t e d t o d i s c r e t e s t r u c t u r e s o r permeable zones. 20 The c l u s t e r i n g o f s l i g h t l y higher As Y concentrations a t t h e shallowest l e v e l t o the west o f t h e s i n t e r t e r r a c e i s believed t o be a consequence o f surface o r near-surface discharge o f thermal f l u i d s from d i s c r e t e f l u i d channels followed by downslope movement o f t h e J c o o l i n g f l u i d s w i t h i n shallow aquifers. The possible c o n t r i b u t i o n of mechanical o r hydrologic dispersion o f As from t h e o l d e r a l t e r a t i o n , p a r t i c u l a r l y w i t h i n a1 l u v i a l i n t e r v a l s , cannot be evaluated from t h e a v a i l a b l e W data. L i t h i u m i s an element t h a t i s c h a r a c t e r i s t i c a l l y enriched i n thermal J f l u i d s (Brondi and others, 1973) and may form dispersion patterns i n rocks a f f e c t e d by f l u i d i n t e r a c t i o n s (Barnford and others, 1980; Christensen and others, 1980b). W A t Beowawe, L i forms two lognormal numerical populations w i t h a threshold concentration value o f 65 ppm. The d i s t r i b u t i o n o f L i i n samples (Figure 6), l i k e t h a t o f As and Hg, i s not l a t e r a l l y o r v e r t i c a l l y continuous. Anomalously high values are located near t h e t r a c e o f t h e Dunphy Pass F a u l t W zone and near Whirlwind B u t t e j u s t west o f t h e s i n t e r terrace. As w i t h t h e As values, there appears t o be a coherent p a t t e r n o n l y a t t h e shallowest l e v e l (0-100 ' ) o f sampl ing cri depth. . Anomal ous L i concentrat ions , h ever, continue t o The extremely high concentration o f L i (626 ppm) occurring i n t h e shallowest l e v e l o f d r i l l hole 48, i s associated w i t h unaltered T e r t i a r y b a s a l t and an o v e r l y i n g c a l c i t e - b e a r i n g tuffaceous 1ake deposit, suggesting V the l i k e l i h o o d o f l i t h o l o g i c control. S t a t i s t i c a l l y , Mn concentrations appear t o form a s i n g l e normal population with a mean o f about 700 ppm. rr Contours o f Mn concentrations (Figure 7), however, o u t l i n e an area o f Mn enrichment w i t h i n c u t t i n g s samples 21 3 w t o t h e n o r t h and west o f t h e Malpais escarpment, peripheral and downslope from t h e p o i n t o f p r e s e n t l y discharging Mn-bearing f l u i d s . Generally, concentrations are greater near t h e surface than a t depth. u3 The geometry suggests t h a t Mn has been enriched by surface o r near-surface discharge and f l o w o f f l u i d downslope away from t h e system. The d i s t r i b u t i o n s o f other elements do not seem t o be r e l a t e d t o geothermal r e d i s t r i b u t i o n s . Some elements, p a r t i c u l a r l y Ba, S r , Na, K, Cay Mg, Fe, A l , and T i are c l e a r l y l i t h o l o g i c a l l y c o n t r o l l e d . Copper appears t o possess a normal numerical and s p a t i a l d i s t r i b u t i o n except f o r anomalous rrt concentrations i n hole 9, w i t h i n a l l u v i u m a t t h e mouth o f White Canyon. This area i s downslope from exposures o f r e l a t i v e l y Cu-rich metasediments o f t h e Valmy Formation. S i m i l a r l y , unusually h i g h Ba concentrations w i t h i n a1 u v i a1 sediments are undoubtedly re1ated t o c l a s t s o f Valmy-deri ved b a r i t e . Conclusions The t r a c e element geochemistry o f t h e Beowawe geothermal system, a1though not as s t r o n g l y developed and d i a g n o s t i c as a t o t h e r areas (Christensen, 1980a; Christensen and others, 1980b), does provide i n s i g h t i n t o t h e geometry 3 and chemical h i s t o r y o f t h e Beowawe system. The present thermal f l u i d s a t Beowawe are d i l u t e i n a l l components except SiO,, W L suggesting t h a t t h e i r residence time w i t h i n t h e geothermal system has been short and chemical i n t e r a c t i o n w i t h t h e r e s e r v o i r rock minimal. I n t e r a c t i o n between these d i l u t e f l u i d s and rocks w i t h i n t h e system has r e s u l t e d i n weak geochemical signatures which are not c l e a r l y d i s t i n g u i s h a b l e from t h e normal chemical v a r i a b i l i t y w i t h i n t h e rocks. 22 The absence o f stronger geochemical signatures in rocks associated w i t h the present system suggests t h a t the fluids have had a similar dilute chemistry f o r some time. The more pronounced chemical signature of the older alteration and intense veining localized near the mouth of White Canyon indicates a different fluid chemistry or different physical conditions. The spatial distributions of elements commonly associated w i t h geothermal systems, such as As, L i and Hg, are neither laterally nor vertically coherent b u t rather are marked by restricted p o i n t anomalies. T h i s overall pattern suggests t h a t there i s not now, nor has there been in the past, pervasive movement o f fluid t h r o u g h o u t the sampled rocks. Isolated chemical concentrations probably represent the intersection of the d r i l l holes w i t h The fracture zones or permeable horizons t h r o u g h which fluids have coursed. coherent near-surface enrichment of As immediately t o the west of the active system and the peripheral Mn enrichment downslope are consistent w i t h a system i n which fluids slightly enriched in Mn and As discharge from along the Malpais F a u l t and flow downslope within alluvium or permeable bedrock. As the fluids cool, As i s deposited near the discharge p o i n t and Mn more d i s t a l l y . Mn may a l s o be redistributed by supergene processes, being locally leached from rocks by warm discharging f l ui d s , mobi 1 i zed downs1ope, and deposited i n cooler zones away from the active discharge area. Similar zoning of As and Mn i s observed i n soils a t the Roosevelt Hot Springs thermal area, Utah. These chemical distributions suggest t h a t the near-surface portion of the Beowawe system i s controlled by a single-source fracture, the Malpais Fault or an intersection of faults near The Geysers, and t h a t t h i s portion of the thermal area has been affected by dilute fluids throughout i t s history. 23 Concentrations o f Hg, As, and L i and anomalous temperature gradients along t h e t r e n d o f White Canyon suggest t h a t t h i s may be a zone o f f l u i d leakage o v e r l y i n g a zone o f thermal f l u i d convection. The chemical differences between samples from t h e White Canyon area and t h e samples near d t h e present f l u i d discharge area, however, may i n d i c a t e t h a t t h e element enrichments a r e t h e consequence o f i n t e r a c t i o n w i t h chemically d i f f e r e n t fluids. I f thermal f l u i d s occur a t depth along t h e Dunphy Pass F a u l t zone and 3 t h e observed chemical anomalies are r e l a t e d t o t h e present f l u i d s , i t i s l i k e l y t h a t t h e f r a c t u r e s c o n t r o l l i n g f l u i d f l o w are not connected w i t h those o f t h e Malpais F a u l t , and t h a t two separate convection systems e x i s t . More J l i k e l y , t h e chemical signatures i n t h e White Canyon area r e c o r d t h e e f f e c t s of water-rock i n t e r a c t i o n d u r i n g an o l d e r hydrothermal event characterized by f l u i d s much d i f f e r e n t from t h e present d i l u t e waters. I f so, t h e Dunphy Pass lr3 F a u l t zone may w e l l represent a deep conduit t o t h e Beowawe system, as proposed by Struhsacker and Smith (1980). w This geochemical model i s based upon t h e known geochemistry o f 26 g r a d i e n t holes c o v e r i ng some 13 squa depth o f 150 meters. The observed g kilometers and penetrating t o a maximum chemistry a t t h i s l e v e l places some 1 i m i t s upon t h e possible near-surface geometry and a c t i v i t y o f t h e geothermal system b u t cannot unambiguously o u t l i n e i t s dimensions. Continuing work w i l l evaluate t h e chemistry o f c u t t i n g s from t h e t h r e e deep d r i l l holes within t h e U system (Struhsacker, 1980) and may more p r e c i s e l y d e f i n e t h e system. 3 3 24 ,3 i ACKNOWLEDGEMENTS Analytical work was performed by R u t h Kroneman w i t h the assistance of As director o f the ESL geochemical program, Tina Cerliny and Beverly Miller. Joe Moore provided encouragement and constructive suggestions and criticism t h r o u g h o u t the study. Discussions w i t h Eric Struhsacker clarified interpretations of the geology. Critical reviews by Joe Moore, Dave Cole, Howard Ross, and Dennis Nielson are appreciated. The patient support of the ESL secretarial and drafting staffs are gratefully acknowledged. Funding for this work was provided by the United States Department of rp Energy, Division of Geothermal Energy t o the Earth Science Laboratory under contract number DE-AC07-80ID12079. 25 7 1 REFERENCES Bamford, K. W., 1978, Geochemistry o f s o l i d m a t e r i a l s from two U.S. geothermal systems and i t s a p p l i c a t i o n t o e x p l o r a t i o n : Univ. o f Utah Research I n s t i t u t e , E a r t h Science Laboratory Report 6, 196 p. 3 3 Barnford, R. W., Christensen, 0. D., and Capuano, R. M., 1980, Multielement geochemistry o f s o l i d m a t e r i a l s i n geothermal systems and i t s applications, P a r t I: The hot-water system a t t h e Roosevelt Hot Springs KGRA, Utah: Univ. o f Utah Research Inst., E a r t h Science Laboratory Report 30, 168 p. Brondi, I%, D a l l ’ A g l i o , M., and V i t r a n i , F., 1973, L i t h i u m as a pathfinder element i n t h e l a r g e scale hydrogeochemical e x p l o r a t i o n f o r hydrothermal systems: Geothermics, v. 2, p. 142-153. Capuano, R. M., and Moore, J. N., 1980, Hg and As s o i l geochemistry as a technique f o r mapping permeable s t r u c t u r e s over a hot-water geothermal system: Geol. SOC. America Abstracts w i t h Programs, v. 12, p. 269. 3 Chevron Resources Co., 1979: Open-file data released by E a r t h Science Laboratory, S a l t Lake City, Utah. ud Christensen, 0. D., 1980a, Geochemistry o f t h e Colado geothermal area, Pershing County, Nevada: Univ. o f Utah Research Inst., E a r t h Science Laboratory Report 39, 31 p. Christensen, 0. D., 1980b, Trace element geochemical zoning i n t h e Roosevelt Hot Springs thermal area, Utah: Proceedings o f t h e 3 r d I n t e r n a t i o n a l Symposium on Water-Rock I n t e r a c t i o n , Edmonton, p. 121-122. u u3 Christensen, 0. D., Kroneman, R. L., and Capuano, R. M., 1980a, Multielement a n a l y s i s o f geologic m a t e r i a l s by i n d u c t i v e l y coupled plasma-atomic emission spectroscopy: Univ. o f Utah Research Inst., E a r t h Science Laboratory Report 32, 33 p. Christensen, 0. D., Moore, J . N., and Capuano, R. M,, 1980b, Trace element geochemical zoning i n t h e Roosevelt Hot Springs thermal area, Utah: Geothermal Resources Counci 1 Transactions, v. 4, p. 149. E l l i s , A. J., 1979, Explored geothermal systems mistry o f hydrothermal ore deposits 2nd ed.: Sons, p. 632-683. IJ H. L., ed., GeocheNew York, John Wiley and ” L e p e l t i e r , C., 1969, A s i m p l i f i e d s t a t i s t i c a l treatment o f geochemical data by graphical representation: Economic Geology, v. 64, no. 5, p. 538-550. crr J in Barnes, 26 3 Mariner, R. H., Rapp, J. B., Willey, L. M. and Presser, T. S., 1974, The chemical composition and estimated minimum thermal r e s e r v o i r temperatures o f t h e p r i n c i p a l h o t springs o f northern and c e n t r a l Nevada: U.S. Geol. Survey Open F i l e Report 74-1066, 32 p. Sanders, J. W., and Miles, J. F., 1974, Mineral content o f selected geothermal waters: U.S. Bureau o f Mines Open F i l e Report 14-75. 3 S i n c l a i r , A. J., 1974, Selection o f t h r e s h o l d values i n geochemical data u s i n g p r o b a b i l i t y graphs: Jour. Geochem. Explor., v. 3, p. 129-149. . rs SinCl a i r, A. J , 1976 Appl i c a t i o n s o f probabi 13t a t i o n : Association o f E x p l o r a t i o n Geochemis Y graphs i n mineral expl o r Special v. 4, 95 p. Struhsacker, E. M., 1980, The geology o f t h e Beowawe geothermal system, Eureka and Lander Counties, Nevada: Univ. o f Utah Research Inst., E a r t h Science Laboratory Report 37, 78 p. 3 Struhsacker, E. M., and Smith, C h r i s t i a n , 1980, Model f o r a deep conduit t o t h e Beowawe geothermal system, Eureka and Lander Counties, Nevada: ' Geothermal Resources Council Transactions, v. 4, p. 249. Wollenberg, H., Bowman, H., and Asaro, F., 1977, Geochemical s t u d i e s a t four northern Nevada h o t s p r i n g areas : Lawrence Berkeley Laboratory Report 6808 I s3 J . 27 . 3 APPENDIX .c, SUMMARY OF GEOCHEMICAL DATA E 1ement J 3 r3 Minimum 5340 14600 10700 1640 13700 47900 1810 218 165 840 <150 <2 240 11 <5 r3 5 <50 10 32 <5 <2 (4 <1 <30 &J 3 3 <loo <2000 <50 <5 17 1.5 161 15 28 <150 (5 Maxi mum Mean Standard D e v i a t i o n 28700 41600 130000 32200 68000 80300 8010 2020 507 2420 214 37 1080 145 17 24 <50 38 137 <5 2.5 24100 27200 27600 6710 50300 71100 5440 1100 245 1440 -0- 688 25 -- 10 <51) 24 108 <5 <2 <4 <4 <30 <4 12 <30 <lo0 <2000 <50 <loo <2000 <50 <5 8 626 5.1 521 36 3.8 ,392 53 105 <150 <289 71 149 <150 550 -- -- 186 17 ---4 5 13 -- ------- -- -58 0.7 89 10 24 --0 As determined c o l o r i m e t r i c a l l y , Hg by gold f i l m detector, a l l - other elements by ICPQe S i l o s t d u r i n g digestion; W and B con i n a t e d d u r i n g sample preparation and analysi s. cy U 3520 7320 16300 4790 10100 4960 1410 422 44 284 28
© Copyright 2026 Paperzz