July 1980 -- L > Um'yersitg of Utah Research Ins Salt Lake .Ci 9 Division of Geoth Under Contract No. 0 8 DISTRIBUTION b DO E/ ID/ 12079- 3 ch ESL-39 W GEOCHEMISTRY OF THE COLADO GEOTHERMAL AREA, PERSH ING COUNTY , NEVADA bY Odin D. Christensen Y W July 1980 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. NOTICE . T h i s report was prepared t o document work sponsored by the United States Government. Neither the United States nor i t s agent, the United States Department of Energy, nor any Federal employees, nor any o f t h e i r contractors, subcontractors or t h e i r employees, makes any warranty, express or implfed, or assumes any legal l i a b i l i t y or responsibility f o r the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents t h a t its use would not infringe privately owned rights. NOT1CE Reference t o a company or product name does not imply approval or recommendation of the product by the University of Utah Research I n s t i t u t e or the U.S. Department of Energy t o the exclusion o f others t h a t may be suitable. C CONTENTS W ... .. .......... ....,.... INTRr>DUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . ANALYTICAL TECHNIQUES . . . . . DISCUSSION, . . .. . .. .. .. .. .. ., .. .. .. .. .. .. .. .. .. .. .. .. .. .. . . Geology.. As, Li and Be Distributions . . . . . . . . . . . . . Other Element Distributions . . . . . . . . . . . . . . . CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . ACKNOWLEDGEMENTS . . . . . . . . . , . . . . . . . .* . REFERENCES.. . . . . . . . . . . . . . . . . . . . . . . . . . . APPENDIX: Summary o f Geochemical Data . . . . . . . . . . . . . . ABSTRACT,. V v 0 Hg, Y * Gf FIGURES u Figure Figure 2 4 Generalized geologic cross sections .. ...... .*.....* Mercury distribution in d r i l l cuttings . . . . . . . . Lithium distribution in d r i l l cuttings . . . . . . . Beryllium distribution in drill cuttings . . . . . . . 2 4 5 5 11 24 26 27 29 31 3 6 8 10 12 Figure 6 13 Figure 8 Figure 9 Temperature distributi ... ......... Mercury distribution in d r i l l cuttings along two representative cross sections . . . .... .. Figure 10 Arsenic distribution i 11 cuttings along two representative cross sections Figure 11 Y ... 1 Figure 5 Arsenic distribution in d r i l l cutting Figure 7 Y . ........ . . . . Figure 3 Generalized geology o f the Colado geothermal area Figure V . An example o f the selection o f threshold values using probability graphs Y . 1 Index map o f gradient hole locations PAGE - 14 15 16 17 18 Y' * V F i g u r e 12 F i g u r e 13 V F i g u r e 14 Lithium, d i s t r i b u t i o n i n d r i l l c u t t i n g s along two r e p r e s e n t a t i v e cross s e c t i o n s ............. B e r y l l i u m d i s t r i b u t i o n i n d r i l l c u t t i n g s along two r e p r e s e n t a t i v e cross sections . . . . . . . . . . . . . Temperature d i s t r i b u t i o n i n tNo r e p r e s e n t a t i v e cross s e c t i o n s . . . . . . . . . . . . . . . . . . . . PAGE 19 20 21 ABSTRACT ;qultielement geochemical analysis of d r i l l cuttings from 18 shallow and 2 intermediate-depth temperature gradient holes outlines an area of anomalous W geochemistry related t o the fluid flow and temperature d i s t r i b u t i o n within the Colado geothermal area. The concentrations of Hg, As, L i , and Re belong t o more t h a n one s t a t i s t i c a l population and provide the clearest expression of W hydrothermal processes. Enrichments of these four elements define anomalous zones which are s p a t i a l l y coincident with a measured temperature anomaly. The spatial distribution suggests t h a t thermal fluid r i s e s i n t o a l l u v i u m i n the w vicinity of a major Basin and Range f a u l t t o depths of 200-400 f e e t (60120 m ) , then flows l a t e r a l l y within shallow alluvial aquifers down the local hydrologic gradient. V As the f l u i d cools, L i , Be, As, and Hg are deposited i n response t o changing physical and chemical conditions. As and Be appear t o be deposited early i n higher temperature zones; L i begins t o deposit early b u t farms a rather dispersed geochemical anomaly; Hg i s anomalous throughout the e n t i r e geothermal area b u t i s concentrated i n a shallow halo above the As and Be anomalies. The distributions suggest t h a t the entry o f thermal f l u i d s from depth into t h e alluviuni i s s p a t i a l l y restricted t o a small area and t h a t the 3 larger area of the observed thermal anomaly i s due t o the flow of warm fluid within shallow aquifers. 1 I NTR OD UC T I 0 FiI The Colado geothermal area l i e s i n south-central Pershing County, Nevada, approximately 8 miles northeast of Lovelock (Figure 1). The geothermal potential of the area f o r e l e c t r i c pgwer production i s currently being evaluated by Getty Oil Company i n cooperation w i t h the Division o f Geothermal Energy of the U. S. Department of Energy. D u r i n g 1979-80, 18 shallow and 2 intermediate-depth temperature-gradient ' w holes were d r i l l e d w i t h i n the area ( F i g . 1 ) . C u t t i n g s from these holes were subsequently released for study t o the University o f U t a h Research I n s t i t u t e , Earth Science Laboratory Division ESL) t h r o u g h the DOE/DCE Industry Coup1 ed Program. V T h i s study i s p a r t of a n ongoing case study o f the Col ado geothermal area by ESL. Multielement geochemical analysis of the d r i l l cuttings has been performed i n order t o more closely define the p o s i t i o n and extent of the Y geothermal resource. Recent studies demonstrate t h a t the trace element geochemistry o f well cuttings from geothermal systems can be a useful exploration guide, particularly i n the early stages of geothermal development u (Bamford, 1978; Eamford and others, 1980; Bamford and Chri stensen, 1979; sen and others, 1980b). Trace element distributions developed as a consequence of temperature gradients and f l u i d flow w i t h i n a geothermal system Y place constraints on the possible geometry of the present system and may provide insight i n t o i t s thermal and convective history. P 3 2 el' Y br' U U V Y w V Y Y 6 . . .. .. 3 1- . :. * ' 7. .: , ' 1. 4. ' . . I.. - *. . .-- . a Y ANALYTICAL TECHNIQUES Samples were p r e p a r e d , f o r a n a l y s i s by washing a l l i n d i v i d u a l 1 0 - f o o t d i n t e r v a l samples, compositing samples over 100-foot i n t e r v a l s , and p u l v e r i z i n g t o l e s s t h a n 270 mesh i n a SPEX tungsten c a r b i d e shatterbox. Pulverized samples were d i s s o l v e d b y a f o u r a c i d d i g e s t i o n procedure (Christensen and W o t h e r s , 1980a). Samples were analyzed f o r 37 elements by i n d u c t i v e l y coupled plasma- v atomic emi s s i on spectroscopy ( ICP-AES) u s i ng an Appl i e d Research' L a b o r a t o r i e s i n d u c t i v e l y coupled plasma quantometer (ICPQ) Model QA-137 i n t h e ESL geochemical l a b o r a t o r y . u Elements determined by ICP-AES were Na, K , Ca, Mg, Fe, A l , S i , T i , P, S r , Ba, V , C r y Mn, Co, N i , Cu, Mo, Pb, Zn, Cd, Ag, Au, As, Sb, B i , U, Te, Sn, W, L i , Be, B, Z r , La, Ce, and Th. Specifics o f the a n a l y t i c a l i n s t r u m e n t a t i o n and procedures, as w e l l as an e v a l u a t i o n o f t h e V q u a l i t y o f analyses a r e summarized i n Christensen and o t h e r s (1980a). In a d d i t i o n , As was determined on each sample s o l u t i o n by a c o l o r i m e t r i c procedure, and Hg was determined i n s o l i d samples by g o l d f i l m mercury @ ! d e t e c t or, I n o r d e r t o d i s t i n g u i s h chemical processes f r o m t h e d i s p e r s i o n o f anal r e s u l t i n g from es expected i n n a t u r a l normal 3 o r lognormal background geochemical i c a l values were partitioned graphically thro r o b a b i 1it y p l o t s f o l 1owing t h e procedures des l a i r (1974, 1976) and L e p e l t i e r b, (1969). The method p e r m i t s e s t i m a t i o n o f p o p u l a t i o n parameters f o r mixed d i s t r i b u t i o n s o f two o r more populations. rr 4 It i n v o l v e s d i s s e c t i o n o f t h e Y cumulative frequency d i s t r i b u t i o n curve u s i n g p r o b a b i l i t y graph paper. For t h i s t y p e o f graph, t h e cumulative frequency d i s t r i b u t i o n c u r v e o f a normal d i s t r i b u t i o n i s a s t r a i g h t l i n e from vihich t h e mean and standard d e v i a t i o n o f v t h e d i s t r i b u t i o n can be estimated. For polymodal d i s t r i b u t i o n s , t h e c u m u l a t i v e frequency d i s t r i b u t i o n curve can be d i s s e c t e d i n t o two o r more l i n e s f r o m which t h e parameters o f each d i s t r i b u t i o n can be estimated. U An example o f t h i s procedure f o r Colado a r s e n i c data i s presented as F i g u r e 2. B o l d c o n t o u r values presented i n F i g u r e s 5 through 8 and 10 through 13 have been determined by t h i s method, and thus represent s t a t i s t i c a l l y determined w t h r e s h o l d s s e p a r a t i n g d i s t i n c t geochemical populations. Other contours have been added f o r c l a r i t y . O f t h e elements i n v e s t i g a t e d , Hg, As, L i , and Be appear t o belong t o more w t 16' .-. si 28- 7 E- I I . pa# 16- 8 12- !t *, V 04- O I 21 41 1 61 91 a 151 121 i 181 f 1 J 221 251 281 Y v ' j'? log ppm As+ Y w Y Y r3 F i g u r e 2. An example o f t h e s e l e c t i o n o f t h r e s h o l d values u s i n g probab i l i t y graphs: ( a j ' d i s t r i b u t i o n histogram, a r i t h m e t i c scale; ( b ) d i s t r i b u t i o n histogram, l o g a r i t h m i c scale; ( c ) cumulative frequency d i s t r i but i o n on l o g a r i t h m i c p r o b a b i l i t y scale. Threshold values o f 35 ppm and 140 ppm e f f e c t i v e l y separate t h r e e p o p u l a t i m of As a n a l y t i c ' values. W 6 cally. Y D e t a i l e d g e o l o g i c mapping and o t h e r i n v e s t i g a t i o n s w i t h i n t h e Colado geothermal area a r e c u r r e n t l y i n progress by Bruce S i b b e t t o f ESL i n c o n j u n c t i o n w i t h t h e DOE/DGE I n d u s t r y Coupled Program. Irs The Colado geothermal area s t r a d d l e s t h e western f l a n k o f t h e West Huinboldt Range adjacent t o t h e Humboldt R i v e r V a l l e y ( F i g u r e 1). Rocks exposed w i t h i n t h e thermal area a r e predominantly c l a s t i c Mesozoic sedimentary Y rocks, T e r t i a r y r h y o l i t i c t o d a c i t i c t u f f s and flows, d e p o s i t s ( F i g u r e 3). and Quaternary a l l u v i a l The rocks have been subjected t o severpl p e r i o d s o f deformation c h a r a c t e r i z e d by l a r g e - s c a l e f o l d i n g , t h r u s t f a u l t i n g , and Basin w and Range normal f a u l t i n g . Antimony, copper, and p r e c i o u s metal d e p o s i t s o f t h e W i l l a r d D i s t r i c t were mined i n t h e e a s t e r n p o r t i o n o f t h e area. Indeed, h i g h temperatures and steam encountered i n p r e c i o u s m e t a l e x p l o r a t i o n d r i l l w holes and trenches were i n p a r t r e s p o n s i b l e f o r arousing i n i t i a l i n t e r e s t i n t h e geothermal p o t e n t i a l o f t h e area. The e a s t e r n p o r t i o n o f t h e geothermal prospect i s l a r g e l y u n d e r l a i n b y Y sedimentary rocks o f T r i a s s i c and J u r a s s i c age assigned t o t h e Auld Lang Syne Group. Y Predominant l i t h o l o g i e s a r e shale, sandstone, q u a r t z i t e , and limestone To t h e south, J u r a s s i c t h a t i n general s t r i k e n o r e s t and d i p southwest. gypsum sequences cover t h e a s t i c sediments i n a s e r i e s o f i m b r i c a t e t h r u s t sheets. T e r t i a r y v o l c a n i c and p l a s t i c rocks o v e r l i e t h e sedimentary rocks throughout t h e d i s t r i c t . Y Antimony, go1 d, and copper d e p o s i t s a r e devel oped a1 ong numerous n o r t h e a s t - and n o r t h w e s t - s t r i k i n g q u a r t z v e i n s and s i 1 i c i f i e d zones w i t h i n t h e w od metasedimentary rocks. The most e x t e n s i v e m i n i n g development has been a t t h e 7 c c e e e c * c c c EXPLANATION QUATERNARY =-Humbold? rlver channel and flood plain depaslts m - A l l u v l a l tans and mlluvlum [pU-Eollan sand and sllt, active and lnactlve m - L a k o tahontan depaslts I1lZlhj-Laks shorn deposits * beach, spits, deltas TERTIARY El-Allwi urn fID-Tuft ~ - F t h ~ l tm e ,M v e d ~ mplug ~ MESOZOIC CBID- Limestone m - s l a t e , argillite #-Thrust --Fault, fautt, teeth on upper plate dashed where Inferred c--Contact, dashed where Inferred e -Drill hole location R (after S i bbqtt and Bul l e t t , 1930) PERSHING COUNTY, NEVADA northern body of the Johnson-Heizer mine (S19, T28N, R33E) along a vein striking N45W and dipping 60' SW. Northeast and east-weit-trending structures I control mineralization a t the Willard group o f gold mines (S25-26, T28N, R32E) (Osterl i n g , 1960). Most of the area i s covered by unconsolidated alluvial f a n , lake bottom, eolian, and flood plain deposits (Figure 3). Shoreline features o f Pleisto- cene Lake Lahontan, including calcareous t u f a deposits, were developed along the f l a n k s of the West Humboldt Range. Much of the alluvial material i s porous and serves as aquifers f o r shallow groundwater i n the Humboldt giver Val 1 ey (Cohen, 1964, 1966 ) . Basin and Range block faulting is represented by normal f a u l t s along the margins o f the West Humboldt Range. The inferred positions of some of these f a u l t s are indicated on Figure 3 a f t e r Osterling (1960), Johnson (1977), S i b b e t t (1980, personal communication), and Mackel prang (1980, personal communication). Magnetic and gravity d a t a suggest the presence o f several additional parallel f a u l t s beneath the alluvial cover t o the west o f the range (Mackelprang, personal communication). structures serve as imp0 I t seems 1 i k e l y that these deep controls on the hydr y of the geothermal system, The presence of anomalously w m temperatures Colado area has been hot a t a depth o f 10 m time. Christe a s h a f t (NE 1/4 SEI hallow depths i n the 20) reported water so 7 , T28N, R32E) t h a t the s h a f t had t o be abandoned (Osterling, 1960) and Getty Oil Company encountered steam i n a shallow mineral exploration d r i l l hole i n Section 26, T28N, R32E. 9 z c a c -- c c c c 2 S A 0 Figure 4. Generalized geologic c r o s s s e c t i o n s o f the Colado geothermal a r e a ( a f t e r S i b b e t t and Bullett, 1979) A l t e r a t i o n , a p p a r e n t l y r e l a t e d t o thermal f l u i d s , occurs i n t h e s e c t i o n v p e n e t r a t e d by t h e 500-foot g r a d i e n t h o l e 14-22 (Figures 1,4) where a l l u v i u m i s s i l i c i f i e d a t depths froin 100 f e e t t o t o t a l depth (30-150 m) and p y r i t i z e d i n t h e approximate i n t e r v a l 300 t o 400 f e e t (90-120 in). As, Hg, L i , and Be D i s t r i b u t i o n As, Hg, L i , and Be a r e commonly enriched i n thermal f l u i d s ( E l l i s and Mahon, 1977; Weissberg and o t h e r s , 1979) and have been shown t o f o r m W c h a r a c t e r i s t i c d i s p e r s i o n p a t t e r n s about o t h e r hot-water geothermal systems (Bamford, 1978; Capuano and Moore, 1980; f3arnford and others, 1980, Christensen The d i s t r i b u t i o n s o f these elements i n p l a n s e c t i o n s a t and o t h e r s , 1980b). Y f i v e 1 0 0 - f o o t (30 m) depth i n t e r v a l s (Figures 5-8), and i n t w o r e p r e s e n t a t i v e c r o s s s e c t i o n s (Figures 10-13) can be compared w i t h t h e measured temperatures i n t h e same s e c t i o n s ( F i g u r e s 9 and 14). The g r e a t e s t temperatures observed V i n t h e 20 g r a d i e n t holes, up t o 113OC, were measured i n h o l e 14-22. hole, as w e l l as i n several o t h e r s (5-8, In this 7-4, 13-26, and 16-22), t h e maximum temperatures a r e encountered a t l e s s than t o t a l depth, s t r o n g l y suggesting Y t h a t thermal f l u i d s a r e r i s i n g i n t o t h e a l l u v i u m and f l o w i n g l a t e r a l l y t h r o u g h shallow a q u i f e r s a t depths o f 200-400 f e e d i s t r i b u t i o n s o f several W (60-120 m>. The s p a t i a l lements bear c l temperature p r o f i1e. The numerical and s p a t i a l d i s t r i b u t i o n s o f As an w instructive. The umerical d i s t r i b u t suggests the presence o f t h r e e c o n c e n t r a t i o n s between them of 35 and 140 ppm (Fig. 2 ) . 3 3 11 The g r e a t e s t concen- . w 13 *12 0 22 w v *9 W F i g u r e 5. Arsenic d i s t r i b u t i o n i n d r i l l c u t t i n g s ( a ) 0-100 f e e t , ( b ) 100-200 f e e t , ( c ) 200-300 f e e t , ( d ) 300-400 f e e t , ( e ) 400-500 f e e t . 3 Y 12 .I60 0120 rgg I ) Figure 60 Mercury distribution in drill cuttings ( a ) 0-100 feet, ( b ) 100-200 feet, ( c ) 200-300 f e e t , ( d ) 300-400 f e e t , ( e ) 400-500 feet. ' 13 u 060 046 0% v 3 3 W u 9 J J 3 Figure 7. ,ithiurn d i s t r i b u t i o n i n d r i l l c u t t i n g s ( a ) 0-100 f e e t , ( b ) 100-200 f e e t , ( c ) 200-300 f e e t , ( d ) 300-400 f e e t , (e) 400-500 f e e t . "Gl.7 -0\2.0 \ 0 1 9 *@ -1.9 O1.9 o2J 01.9 OL8 1.6 18 0 0 OI.9 1.7 1.9 1.6 Figure 8. Beryllium d i s t r i b u t i o n i n d r i l l cuttings ( a ) 0-100 f e e t , (b) 100-200 f e e t , ( c ) 200-300 f e e t , ( d ) 300-400 f e e t , ( e ) 400-500 feet. J 3 u ' u 1 3l.d w F i g u r e 9. Temperature d i s t r i b u t i o n i n temperature g r a d i e n t holes ( a ) 100 f e e t , ( b ) 200 f e e t , ( c ) 300 f e e t ( d ) 400 f e e t , (e) 500 feet. 3 w I ).I V Y Y 0 V ol 3 I ! / / rc, o m c aJcn v)c L O <';;; e c c e i c n MERCURY R J >75Oppb ead 250-750ppb 80-250ppb 0 <80ppb Figure 11. Mercury d i s t r i bution i n d r i 11 cuttings along two representative cross sections. V V Y c e t c c c f c ru 0 BERYLLIUM m >2Sppm El 2.0-2.5ppm <2.0ppm a Figure 13, Beryllium distribution i n d r i l l cuttings along two representative cross secti ons. V U V c aJ > *C c v t r a t i o n s occur i n t h e deepest samples from holes 14-22, 16-22, and 18-24. Hg c o n c e n t r a t i o n s throughout t h e e n t i r e prospect area a r e s i g n i f i c a n t l y g r e a t e r t h a n those observed about nongeothermal areas o r w i d e l y p e r i p h e r a l t o these V areas (Capuano and !loore, Statistical 1980; Sllann and others, 1980). e v a l u a t i o n shows t h a t M g data s i m i l a r l y belong t o two o v e r l a p p i n g lognarinal p o p u l a t i o n s w i t h d i f f e r e n t dispersions. V A t h r e s h o l d v a l u e o f 250 ppb e f f e c t i v e l y separates values o f a h i g h e r , inore w i d e l y dispersed, p o p u l a t i o n f r o m values r e p r e s e n t i n g a m i x t u r e o f t h e two p o p u l a t i o n s below. Spatially, these anomalous Hy values occur above and around t h e h i g h e s t As values and t h e Y h i g h e s t measured temperatures. A s i m i l a r d i s t r i b u t i o n p a t t e r n of As and Hg i s observed a t Roosevelt Hot Springs, Utah. w The observed d i s t r i b u t i o n s and h e a t i n g experiinents i n d i c a t e t h a t Hg r e m o b i l i z a t i o n occurs a t temperatures as l o w as 20Oot25O0C and t h a t t h e d i s t r i b u t i o n o f Hg p e r i p h e r a l t o t h e thermal c e n t e r i s l a r g e l y produced by t h e present thermal c o n f i g u r a t i o n (Christensen and others, 198Ob). r3 The r e s t r i c t e d p e r i p h e r a l c o n c e n t r a t i o n o f tlg observed a t Colado i s a1 so probably temperature c o n t r o l 1ed and suggests t h a t temperatures present a t t h e base o f t h e Hg anomaly a t t h e t i m e o f I t s development may have approached 200°C. Y V how l e s s c o n c l u s i v e e v i ce o f d i s t i n c t s t a t i s t i c a l popula- ess d e f i n i t i v e s p a t i a l tribution. i n general l o c a t e d Higher c o n c e n t r a t i o n s a r e h i n t h e a l l u v i u m , and may, e s p e c i a l l y i n the 200-300 f o o t (60-90 m) depth i n t e r v a l , r e f l e c t t h e l a t e r a l Plow o f thermal f l u i d toward t h e southwest w i t h i n a shallow.groundwater a q u i f e r . Y 3 t r a t i o n s observed i n the a l l u v i u m could also i n part reflect The h i g h L i concenthe contribution I o f d e t r i t a l s i 1 iceous volcanic materal . The cqnsi stently greater concentra- tioris a b o u t the higher temperature locations t h o u g h strongly support t h e relationship between thermal fluid flow and L i enrichment. Be concentration values similarly appear t o belong t o two overlapping b u t d i s t i n c t lognornal populations. The greater concentrations occur in holes 13-26 and 14-22, and i n the two i ntertnediatadepth gradient hol gs , coincident Y w i t h the thermal anomaly a t shelllaw Igvels and apparently increasing w i t h depth. The distributions of these four elements appear t o be remarkably w i n c i - 3 dent. All gre enriched w i t h i n the $rea near d r i l l hole systematic reduction away from t h i s area. u d a t a froin 200-400 f t . (60-120 m) (Figs. 1 4 4 2 and exhibit This i s especially evident i n the 5-8). Thesg patterns are completely consistent with the measured temperature d I S t r i b u t j o n a t Coledo and r e f l e c t the configuration of ‘active, near-surface f l u i d pathways in a hot-water 0 geothermal system. These data suggest t h a t thermal f l u i d s r i s e through the alluviun i n the vicinity of gradient hole 14-22 t g depths of 200-400 feet (60-120 m), then flow l a t e r a l l y t o the w u t h Ird process. As the f l u i d s c the changing physical and U w groundwaters i n the the hydrologic gradient, probab , and Hg are nditiom. deposited i n response t o As and Be ap deposited i n higher temperature tones; L i begins t o deposit t o be b u t forms a rather dispersed geochemical anomaly a b q u t i s anomalously h i g h throughout the e n t i r e geothe i n a shallow halo above the As and Be anomalies. T h i s configuratian i s similar t o t h a t observed I W about the Rooseve t Hot S p r i n g s thermal area, U t a h (Christensen and others, 1980b). The observed d i s t r i b u t i o n s o f temperature, A S , Hg, L i and Be reflect the V forn of f l u i d flow paths, and appear t o be largely independent of lithochemical effects. The prominent Hg concentration (750 ppb) occurring i n the lowermost interval i n IGH-2 may reflect Hg deposition from therval waters V f l o w i n g along a permeable zone a t the base of t h e alluvial section, Structurally, the area between d r i l l holes 13T-26 an# 14-22 appears t o be w a c r i t i c a l area. The mapped geology (Johnson, 1977; Sibbett and P u l l e t t , 1980) and available gravity d a t a (Claren Mackelprang, personal comnunication) suggest t h a t one of the Basin and Range f a u l t s bounding the western margin o f V the West Humboldt Range passes between the two holes and abruptly changes trend in t h i s area. The apparent structural intersection may form a favorable conduit f o r the conduction of thermal fluids i n t o the shallow permeable rd alluvium. Prominent As and Be concentrations mark the position of shallow thermal f l u i d flow i n the vicinity of d r i l l hole 14-22. anomalous Hg concentrations eastward from 3 The extension o f the e most prominent As anomaly suggests t h a t the thermal anomaly may extend t h i s direction a$ well. Other Element Distributions w . There are a n are known t o be mo of elements i n addition t o As, Hg, L i , and Be which i n geothermal f l u i d s ( E l l i s and Mahan, 1977; E l l i s , 1979; Weisberg and others, 1979) and can be w system t h r o u g h water-rock interaction. istributed w i t h i n a geothermal I t i s e n t i r e l y possible and expected t h a t one or more other elements could prove useful i n other geothermal areas. Irr' . U I n the Colado area, however, other poss ble elemental distributiotls related t o geothermal processes e i t h e r are obscured by geochemical distributions formed duri ng other geol ogic events, or are devel oped a t concentration 1 eve1 s bel ow w the detection limits of the analytical methods employed. Although several of the major elements, particularly the qlkali and w alkaline earth metals, are comiionly present in s i g n i f i c m t conceqtratians in thermal f l u i d s , t h e i r redistribution within the rock3 resulting from interaction with these f l u i d s i s riiasked by the greater variability due t o lithologic differences between samples. Elements for which t h i s i s true i n c3 the Colado area include Na, K , e a , Mg, Fe, Al, S i , Ti, P , Sr, and Another group of elements are of limited value i n t h i s area due t o t h e i r v low concentrations and uncertainties associated with the preparation and analysis o f samples. Elements present largely or entirely a t concentratiom lower t h a n the limits o f determination of the ICPQ (Christsnsen and Qthers, Y d 1980a) include: V , Mo, Pb, Th, Ag, Au, Bi, U, and Te. Three other elernents of limited value due t o loss or c ation during preparation and analysis include Si ( l o s t during HF sam estion) W (cmtamination introduced from WC mill used f o r sample commin and P (contami nation i ntroduced f rorfi borosilicate glass i n the ICPQ). Eva1 uation of g cumul a t i ve probabi 1 it y plats perrni t s V rapid discrimination s t a t i s t i c a l population and mixed distri cy n g i n g t g a Simple wo or more populations. The numerical v a r i a b i l i t y o f a number o f elements i n t h i $ study, when evaluated in this manner, i s found t o be cansistent w i t h the variability rJ expected w i t h i n a s i n g l e lognormal population. The a p p a r e n t l y random s p a t i a l d i s t r i b u t i o n o f extreme h i g h and low values f o r these elements f u r t h e r supports t h i s suggestion. Elements i n t h e Colada area which belong t s a s i n g l e background geochemical p o p u l a t i o n and a r e e v i d e n t l y n o t s j g n i f i c a n t l y W r e d i s t r i b u t e d by geothermal processes i n c l u d e Ra, Cu, Mn, S r , F e r C r , N i , Pb, Sn, La, and Ce. The numerical d i s t r i b u t i o n s o f g number o f a t h e r elqmcnts a r e polymodal. Y T h e i r d i s t r i b u t i o n s , however, a r e c l e a r l y r e l a t e d t o the; 1 i t h o l o g i c v a r i a b i l i t y o f samples and t h e i n f l u e n c e o f ather geolngic proces$es. and Cd i n p a r t i c u l a r a r e present i n g r e a t e r c o n c e n t r a t i o n s i n W Mesozoic a r g i l l i t e s and s l a t e s , whereas Z r Zn, Cu, the dark-colored i s r e l a t i v q l y l e $ s abundant i n these rocks than i n t h e overlying a l l u v i a l nlqteriql. Apparent s p a t i a l zoning o f these elements i s due s i m p l y t o the d i s t r i b u t i o n of l i t h o l o g i e s i n t e r s e c t e d W i n t h e d r i l l holes. Sb and Au a r e l a r g e l y p r e s e n t i n c m c e n t r a t i o n s w e l l below t h e l i m i t s o f t h e a n a l y t i c a l procedure b u t Occur i n 4nomalously g r e a t c o n c e n t r a t i o n s i n a few i s o l a t e d a l l u v i a l sample i n t e r v a l s . W This i s a t t r i b u t a b l e t o t h e l i k e l y presence o f d e t r i t a l m a t e r i a l w i t h i n a l l u v i u m from t h e Sb and Au dep s i t s i n t h e West Humboldt Range t o t h e east. 13 i s i r r e g u l a r l y en i c h e d i n samples .as w e l l as i n dlluvium. The polymodal d i s t r i b u t i o n s of t h e s e elements a r e r e l a t e d t o t h e combined e f f e c t s o f eochemical gnd g e o l o g i c events geothermal System. d not apparently t o r e d i s t r i b u t i o n o$ % CONCLUSIONS A n a l y s i s of c u t t i n g s from 18 low temperatyre g r a d i e n t d r i l l h o l e s and from two i n t e r m e d i a t e depth g r a d i e n t holes w i t h i n t h e Colado geothermal area Y W out1 ines an area of anomalous geochemistry spatially coincident w i t h an area clr of anomalously h i g h measured temperatures. Both are apparently related t o the shallow flow of geothermal f l u i d s , As these thermal fluids interact w i t h rock iuaterial, L i s As, Be, and Hg deposit i n a characteristically zoned sequence, W I n the Colado area, fluids appear t o rise t o shallow levels near d r i l l hole 14-22, perhaps along permeable zones resulting from the intersection of deep structures. As the fluids enter the alluvium, they apparently flow W southwestward w i t h i n shallow aquifers down the local hydrologic slope. Increased temperatures and enhanced concentration$ o f As, L i s Be, and Hg mark the course of f l u i d flow. v Anomalously h i g h concentrations o f Hg a t the base of the alluvium suggest t h a t significant flow occurs along this interface. The d i s t r i b u t i o n s observed suggest t h a t the discharge of thermal f l u i d s Y froin depth i n t o the a l l u v i u m i s s p a t i a l l y restricted t p a small area i n the v i c i n i t y of gradient hole 14-22 (S22, T28N, R32E). The larger area of the observed thermal anomaly and of known thermal wells is due t o pluming of warm d f l u i d w i t h i n shallow aquifers. ACKNOWLEDGEMENTS 3 Analytical work was performed by R u t h Kroneman w i t h the assistance of Tina Cerl i n g and Bev Mil ler. f the ESL geochemical program, Joe Moore provided encouragement and constructive cri ticism throughout the study. Y Discussions w i t h Bruce Si bbett d Claren Mackel o f the geology and geophysics o f the Co do area. by Joe Moore, Howard Ros ng clarified terpretati on Critical manuscri p t reviews n , and Jim Stringfellow are appreciated. a Funding f o r t h i s work was provided by t h e U n i t e d $ t a t e s Department of L Energy, D i v i s i o n o f Geothermal Energy t o t h e E a r t h Science Laboratory under c o n t r a c t number DE-AC07-801012079. 3 REFERENCES 'W Banford, 3. W., 1978, Geochemistry of solid rnaterials from two U.S. geothermal systems and i t s application t o exploration: Univ. of Utah Research I n s t i t u t e , Earth Science Laboratory Rept. 6 , 196 p. w 3 J Bamford, R. W., and Christensen, 0. D., 1979, Multielernent geochemical exploration data for the Cove Fort-Sul phurdal e Known Geothermal Resource Area, Beaver and Millard Counties, Utah: Univ. o f Utah Research Inst,, Earth Science Laboratory Rept. 19, 17 p. Bamford, R. W., Christensen, 0. D., and Capuano, R., M., 1980, Multielement geochemistry o f sol i d materials i n geothermal systems and i t s applicat i o n s P a r t I : The hot-water system a t the Roosevelt Hot Springs KGRA, Utah: Univ. of Utah Research Inst., Earth Science laboratory Rept. 30, 168 p. Capuano, R. M. and Moore, J. N., 1980, Hg and As soil geochemistry as a technique f o r mapping permeable structures over a hot-water geothermal system: Geol. SOC. America Abstracts w i t h Programs, V. 1 2 , p. 269. Christen, 0. G., 1920, Report of land examiner on Sec. 27, T. 28N, R. 32E, MDM: Southern Pacific Company report (unpubl ished). L, Christensen, 0. D., Kroneman, R. L., and Capuano, R. M., 1980a, Multielement analysis of geologic materials by inductively coupled plasma-atomic emission spectroscopy: Univ. o f U t a h Research Inst., Earth Science Laboratory Rept. 32, 33 p. 0 Christensen, 0. D o , Moore, J. N., and Capuano, R. M., 1980b, Trace element geochemical zoning in the Roosevelt Hot Sprirlgs thermal area, Utah: Geothermal Resources Counci 1 Transactions , v 4 ( in prep ) . .. Cohen, P., 1964, Preliminary results o f hydrogeologic investigations in Valley o f the Humboldt River near Winnemucca, Nevada: United States Geological Survey Water Supply Paper 1754, 59 p. Y 1966, Water in the Humboldt River Valley near Winnemucca, Nevada: United States Geological Survey Water Supply Paper 1816, 69 p. Cohen, P., Coonrad, W. L., 1957, Geology and mineral resources o f Township 27 North, Ranges 31, 32 and 33 East, Mount Diablo Meridian, Pershing County, J Nevada: Southern Pacific Company Report (unpublished), 43 p. E l l i s , A. J., 1979, Explored Geothermal Systems i n Barnes, H, L., Geochemi s t r y of Hydrothermal Ore Deposits: New YorG John W 3 E l l i s , A. J., and Mahon, W. A. J., 1977, Chemistry and Geothermal Systems: New York, Academic Press, 392 pages. . w e, w Glenn, W. E., Chapman, 0. S., Foley, D., Capuano, !?. M., S i b b e t t , B , S., C l e , D., and Ward, S , , 1980, Geothermal e x p l o r a t i o n a t Hi1 1 A i r Force Rase, Ogden, Utah: 'Jniv. o f Utah Research Inst., Earth Science Laboratory liept. 34, 77 p. Johnson, M. G., 1977, Geology and mineral deposits o f Pershing County, Nevqda: Nevada Bureau o f Mines and Geology B u l l e t i n 89, 115 p. L e p e l t i e r , C. , 1969, A s i m p l i f i e d s t a t i s t i c a l treatment o f geochemical data by graphical representation: Economic Geology, v. 64, p . 538-550. W O s t e r l i n g , W. A., 1960, Geology and mineral resources o f Township 28 North, Ranges 31 and 32 East, Mount D i a b l o Meridian, Pershing County, Nevada: Southern P a c i f i c Company r e p o r t (unpublished), 23 p. S i b b e t t , 0. S., and B u l l e t t , M. J., 1979, L i t h o l Q g y o f 18 shallow thermal g r a d i e n t holes, Colado area, Nevada: Univ. o f Utah Research Inst., E a r t h Science Labordtory o p e n - f i l e release, 7 p. "3 Y S i b b e t t , B. S. and B u l l e t t , 14. J., 1980, Geology o f t h e Colado geothermal -area, Pershing County, Nevada: Univ. o f Utah Research Ipst., E a r t h Science L a b o r a t w y Report ( i n prep.). S i n c l a i r , A. J., 1974, S e l e c t i o n o f t h r e s h o l d values i n geochemical data u s i n g p r o b a b i l i t y graphs: Jour. Geochemical E x p l o r a t i o n , v. 3, p. 129-149. . S i n c l a i r , A. J , 1976, Appl ic a t i o n s o f probabi 1 ity graphs i n mineral expl orat i o n : Association o f E x p l o r a t i o n Geochemists Special Volume no. 4, 95 p. b 3 Weissberg, 8. G., Brown, P. R. L., and Seward, T. M,, 1979, Ore metals i n a c t i v e geothermal systems i n Barnes, H. L. , Geochemistry o f Hydrothermal Ore Deposits: New York, J x n Wiley and Sons. APPENDIX b Summary o f Geochemical Data Element Na, P P K , PPm Ca, PPm MgY PPm Fe, P P A1 9 PPm T i s ppm p, P W S r , ppm Ba, ppm v, PPm Cr, ppm Mn, P P c o , ppm Ni, PPm cu, ppm Mo, ppm Pb, ppm Z n , ppm Cd, ppm Ag, PPm Au, ppm As, PPm Sb, ppm Bi, PPm u, PPm Te, P P Irs w 3 ?v % Sn, ppm Li . Be, Zr, La, Ce, Th, Hg, 3 3 9 ' M i n i mum ~ ~ 340 9120 2190 1830 9970 32500 1260 413 19 262 <150 12 45 ~ - ~ ppm PPm PPm ppm ppm P P ~ PPb 13 8 9 <50 <10 33 (5 <2 <4 9 <30 Maxi mum 29800 34600 132000 59900 40500 84700 3250 3420 428 2890 <150 72 1180 875 50 279 <50 37 2000 10 20 7 275. Mean Standard Deviation 8410 6670 21000 6220 52400 25200 10300 8010 22600 6550 56400 11000 2180 443 956 563 189 111 969 -786 <150 38 12 388 173 41 83 24 8 28 26 <50 - 150 - c - 47 - 173 <loo <loo <loo (2000 <50 <5 20 1.5 11 14 <2000 (50 25 96 3.0 107 33 <2000 23 57 (150 10 <150 3300 <50 - 48 2.1 56 22 40 <150 265 - 219 7 -49 - - c 32 0.3 25 11 -4179 As determined c o l o r i m e t r i c a l l y , Hg by gold film d e t e c t o r , a l l other elements by ICPQ. W and B contamination during sample preparaS i lost during sample d i g e s t t i o n and a n a l y s i s . 3 -& - 31
© Copyright 2026 Paperzz