Bowman, J.R., Evans, S.H., and Nash, W.P., 1982, Oxygen Isotope Geochemistry of Quaternary Rhyolite from the Mineral Mountains, Utah, U.S.A., May 1982, 27 pgs

DOE/ID/12079-61
DOE/ID/12079--61
DE82 019951
OXYGEN-ISOTOPE GEOCHEMISTRY OF QUATERNARY RHYOLITE
UTAH, U. S. A.
FROM THE MINERAL MOUNTAINS,
_c
y
by
J. R. Bowman, S. H. Evans, J r , and W . P. Nash
March 1982
Department o f Geol ogy and Geophysics
U n i v e r s i t y o f Utah
S a l t Lake C i t y , Utah
84112
I
DISCLAIMER
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.
DISCLAIMER
Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.
NOTICE
This report was prepared t o document work sponsored by the United States
Goverrment.
Neither the United States nor i t s agent, the United States
Department of Energy, nor any Federal employees, nor any of their contractors,
subcontractors o r their employees, makes any warranty, express or imp1 ied , or
assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product or process disclosed, or
represents t h a t i t s use would not infringe privately owned rights.
NOTICE
Reference t o a company name does not imply approval o r recommendation of
the product by the University of Utah or the U.S.
exclusion of others t h a t may be suitable.
,
Department of Energy t o the
i
ACKNOWLEDGEMENTS
Financial assistance for this study was provided by the Department of
Energy, D i v i sion of Geothermal Energy Contract DE-AC07-79ET27002 and conti nued
under Contract DE-AC07-80ID12079.
I
I
We t h a n k Mr. Ray Lambert and Mr. John
Covert f o r performing the mass spectrometry a n a l y s i s of these samples.
ABSTRACT
Oxygen i sotope analyses were made 'of phenocryst and gl a s s s e p a r a t e s from
f o u r Quaternary r h y o l i t e flows and danes i n the Mineral Mountains, southwest
Utah.
With the exception of b i o t i t e i n a l l samples and a l k a l i f e l d s p a r i n the
r h y o l i t e danes, a l l minerals appear t o be i n c l o s e oxygen isotope exchange
equil ibrium.
The geothermometry equations proposed by Bottinga and Javoy
(1973) and Javoy (1977) for q u a r t z , a l k a l i f e l d s p a r and magnetite produce the
b e s t agreement w i t h temperature r e s u l t s from two-f e l d s p a r and i ron-ti t a n i urn
oxide geothermometry f o r these r h y o l i t e s .
If the r h y o l i t e s were generated by
p a r t i a l melting i n the crust, their whole-rock ( g l a s s ) 6I8O values (6.3 t o 6.9
permil ) a r e consistent w i t h generation from I-type (Chappell and White, 1974,
O'Neil and Chappell , 1977; O'Neil e t a1
., 1977) sources.
I NTRODUCTIO N
I n t h e Mineral Mountains o f southwest Utah, j u s t east o f t h e Roosevelt
.
Hot Springs thermal area, a s e r i e s o f Quaternary r h y o l i t e flows and domes
occur along t h e c r e s t o f t h e range.
The presence of young s i l i c i c volcanics
has been considered t o be an i n d i c a t o r o f t h e pyesence o f shal low magma
chambers and p o t e n t i a l heat sources f o r geothermal resources (Lipman e t a1
.,
1978; Evans and Nash, 1975, 1978), i n c l u d i n g t h e Roosevelt Hot Springs
system.
Because o f t h i s p o t e n t i a l l i n k w i t h t h e Roosevelt Hot Springs
geothermal system, chemical and p e t r o l o g i c s t u d i e s o f these v o l c a n i c s have
been made over t h e past several years t o d e f i n e petrogenesis, i n c l u d i n g P-T
c o n d i t i o n s o f c r y s t a l 1i z a t i o n and depth estimates f o r t h e magma chamber, and
t h e nature o f t h e magma source area.
These s t u d i e s (Evans and Nash, 1975,
1978; Nash and Evans, 1978) have applied several chemical geothermometers t o
phenocryst phases i n t h e r h y o l ites, incl udi ng t h e Fe-Ti oxide (Buddi ngton and
L i ndsl ey , 1964; Carmichael
, 1967;
Carmichael e t a1
., 1974) and two-fel dspar
(Stormer, 1975) geothermometers, t o d e f i n e temperature o f eruption.
The objectives of t h i s study are two-fold.
The f i r s t objective i s to
apply oxygen-i sotope geothermometers t o phenocryst phases i n t h e r h y o l it e s t o
t e s t t h e c a n p a t i b i l i t y o f i s o t o p e and chemical geothermometers, and t o t e s t
whether oxygen-isotope exchange e q u i l i b r i u m has been achieved i n r e l a t i v e l y
viscous r h y o ’ l i t i o volcanics.
The second o b j e c t i v e i s t o d e f i n e t h e S1*0 value
o f t h e r h y o l i t e magmas i n order t o place c o n s t r a i n t s on t h e source area f o r
these volcanics.
T h i s i n f o r m a t i o n w i l l h e l p evaluate whether o r n o t t h e
r h y o l i t e s were generated b y p a r t i a l m e l t i n g o f a source containing a
s i g n i f i c a n t canponent o f pel i t i c metasedimentary m a t e r i a l or one dominated by
p r i m i t i v e o r mantle-derived m a t e r i a l .
3
These two types o f source regions were
proposed by Chappell and White (1974) t o produce t h e two geochemically and
p e t r o l o g i c a l l y d i s t i n c t groups of Paleozoic g r a n i t o i d s i n southeast A u s t r a l i a
which they designated
' S-type'
(sedimentary) and ' I - t y p e '
(igneous)
.
O'Neil
and Chappel 1 (1977) subsequently demonstrated t h a t t h e S-type grani t o i d s had
h i g h e r 6l8O values than t h e I - t y p e g r a n i t o i d s .
I n t h e past several years,
several studies (Taylor and T u r i , 1976; Taylor and S i l v e r , 1978; Longstaffe,
e t a1
., 1980) have u t i l i z e d oxygen-isotope
data t o i n f e r t h e e x t e n t of
involvement o f p e l i t i c metasedimentary m a t e r i a l i n t h e f o r m a t i o n of
i n t e r m e d i a t e t o a c i d i c igneous rocks.
To these ends, oxygen-isotope analyses
were made on phenocryst and glass separates o f f o u r samples o f r h y o l i t e flows
and danes from t h e Mineral Mountains area.
GENERAL GEOLOGY
The geology o f t h e Mineral Mountains and o f t h e s i l i c i c volcanism has
been discussed i n Evans and Nash (1978) and w i l l not be repeated here.
The
Quaternary s i l i c i c volcanism was d i v i d e d i n t o t h r e e stages and types b y Evans
and Nash (1978):
1.
The e a r l i e s t stage i s recorded by o b s i d i a n flows o c c u r r i n g along
B a i l e y Ridge and Wild Horse Canyon.
c a l c u l a t i o n s o f PH20
2 3000
T h e i r macroscopic character and
bars (Evans and Nash, 1978; Nash and
Evans , 1978) suggest unusual f l u i d i t y f o r t h i s b u l k composition
.
Radiometric d a t i n g o f t h e B a i l e y Ridge f l o w i n d i c a t e s an age o f 0.77
f 0.08 m.y.
2.
(Lipman e t al.,
1978).
P y r o c l a s t i c rocks occupy an intermediate p o s i t i o n i n t h e
s t r a t i g r a p h i c sequence and a r e o f a s h - f a l l and ash-flow o r i g i n .
These rocks a r e mainly exposed i n Ranch Canyon.
K - A r d a t i n g on a
s i n g l e obsidian c l a s t from an ash-flow u n i t i n Ranch Canyon y i e l d e d
an age of 0.68 -I 0.04 m.y.,
p r o v i d i n g an o l d e r l i m i t f o r t h e age of
t h e p y r o c l a s t i c s (Lipman e t a1
., 1978) .
Recent K - A r d a t i n g of
anorthocl ase phenocrysts from these p y r o c l a s t i c rocks y i e l d s ages o f
0.61 f 0.04 and 0.66 f 0.03 m.y.
3.
(Evans and Brown, 1981).
The l a s t stage o f r h y o l i t e volcanism i s represented by a group o f a t
l e a s t 11 domal r h y o l i t e s d i s t r i b u t e d s p o r a d i c a l l y over 10 km near t h e
c r e s t o f t h e Mineral Mountains.
Age determinations on obsidian from
Bearskin Mountain and sanidine from L i t t l e Bearskin Mountain have
y i e l d e d K - A r ages of 0.58 f 0.12 m.y.
r e s p e c t i v e l y ( L i pman e t a1
and 0.53 f 0.05 m.y.,
.,-1978) .
Petrography, b u l k chemistry and t r a c e element chemistry data on these
r h y o l i t e s can be found i n Evans and Nash (1978) and Nash and Evans (1978).
For t h i s study, mineral and glass separates were made from samples o f t h e
r h y o l i t e f l o w s from B a i l e y Ridge and Wild Horse Canyon and from two o f t h e
danal r h y o l ites--Li ttl e Bearski n and North T w i n F1 a t Peak
.
ANAL YT ICAL TECHNIQUES
M i neral separates were obtained using standard heavy 1 i q u i d and magnetic
separation techniques.
Oxygen, fran s i 1 i c a t e minerals was extracted by
r e a c t i n g 5 t o 10 mg of sample w i t h 8rF5 a t 5 5 O O C i n n i c k e l r e a c t i o n vessels
f o r 1 4 hours (Clayton and Mayeda, 1963).
The evolved 02 gas was then
converted t o C02 f o r mass spectrometric a n a l y s i s by canbustion w i t h g r a p h i t e
( T a y l o r and Epstein, 1962)
.
I s o t o p i c measurements f o r C02 gas were made w i t h a Micromass 602 0 mass
spectrometer , a double c o l 1e c t o r , 90' sector magnetic def 1e c t i o n instrument o f
6 cm radius.
The i s o t o p i c data f o r oxygen are reported r e l a t i v e t o SMOW
A n a l y t i c a l e r r o r f o r oxygen isotope r a t i o s i s f 0.2 permil f o r
(Craig, 1961).
magnetite and f 0.1 permil f o r a l l o t h e r phases.
Notation
A l l i s o t o p i c data a r e reported i n t h e d e l t a notation, where
6
A = RA
- Rstd
n
x 1000.
'std
6A represents t h e 6l8O value o f sample A, and R i s t h e
sample o r standard.
180/160 r a t i o o f t h e
For c o e x i s t i n g phases A and B,
103 I n a A-B
= 6
A
- 6
B
-
-A
A-B
where a A-B i s t h e f r a c t i o n a t i o n f a c t o r , defined as
ANALYTICAL RESULTS
The oxygen-isotope canposi t i o n s measured f o r phenocryst and glass
separates fran t h e f o u r r h y o l i t e samples a r e c a n p i l e d i n Table 1.
Also
included f o r thermometry purposes i s t h e i s o t o p i c f r a c t i o n a t i o n f a c t o r , A, o r
d i f f e r e n c e i n 6l8O value, f o r t h e various p a i r s o f phases.
The minerals
e x h i b i t a c o n s i s t e n t order o f l8O enrichment, w i t h quartz (Qz)
f e l d s p a r (Pg)
>
b i o t i t e ( B i ) L m a g n e t i t e (Mt),
>
alkali
i n d i c a t i n g an approach t o
oxygen-isotope exchange e q u i l i b r i u m i n a1 1 r h y o l i t e samples.
The i s o t o p i c
f r a c t i o n a t i o n between minerals i s i l l u s t r a t e d i n t h e concordance p l o t s o f
Figures 1 and 2.
E q u i l i b r i u m isotope f r a c t i o n a t i o n f a c t o r s i n f e r r e d from
n a t u r a l data ( B o t t i n g a and Javoy, 1973, 1975; Javoy, 1977) a r e a l s o p l o t t e d i n
these f i g u r e s f o r comparison.
Concordance diagrams have been used i n previous s t u d i e s (Anderson e t a1
.,
1971; B o t t i n g a and Javoy, 1973, 1975; Clayton and Epstein, 1961; Javoy e t al.,
1970) t o ill u s t r a t e systematic c o r r e l a t i o n s o f oxygen-isotope data and t o
evaluate g r a p h i c a l l y t h e degree o f a t t a i r m e n t o f i s o t o p e exchange e q u i l i b r i u m
between mineral phases.
I n such p l o t s , a l l mineral p a i r s t h a t have
d i f f e r e n c e s i n dl8O values equal t o those defined b y t h e f r a c t i o n a t i o n
equations a r e i n t e r p r e t e d as having achieved i s o t o p e exchange e q u i l i b r i u m .
However, t h e r e i s disagreement between t h e experimentally and e m p i r i c a l l y
determined f r a c t i o n a t i o n f a c t o r s f o r many mineral pairs, i n c l u d i n g quartzp l agi o c l ase and quartz-magneti t e pai r s , which exceed a n a l y t i c a l e r r o r over
much o f t h e temperature range 300-10OO0C.
I n these cases, a conclusion
r e g a r d i ng attainment o f isotope exchange e q u i l i b r i u m depends on which
f r a c t i o n a t i o n equations a r e chosen.
Many o f t h e oxygen-isotope f r a c t i o n a t i o n s
based on experiment, i n c l u d i n g quartz and plagioclase, y i e l d temperatures
d i f f e r e n t from those based on empirical cal i b r a t i o n s .
The empirical
f r a c t i o n a t i o n s appear t o have achieved b e t t e r success a t p r o v i d i n g
g e o l o g i c a l l y reasonable temperatures ( B o t t i n g a and Javoy, 1973, 1975; Javoy,
1977) and greater i n t e r n a l consistency among temperatures from i n d i v i d u a l
mineral pairs, and a r e p r e f e r r e d here on t h i s basis.
However, i t i s n o t c l e a r
whether t h e observed c o r r e l a t i o n s o f oxygen-i sotope data from rock samples
r e s u l t s o l e l y fran f r o z e n - i n e q u i l i b r i u m thermal e f f e c t s .
B o t t i n g a and Javoy
(1975) noted t h a t t h e data from rock samples contained s c a t t e r which they
i n t e r p r e t e d as departures f r a n i s o t o p e exchange e q u i l ibrium.
Dienes (1977)
has cautioned t h a t n a t u r a l oxygen-i sotope c o r r e l a t i o n s f o r mineral p a i r s may
b e a d d i t i o n a l l y i n f l u e n c e d by random e r r o r s o r systematic r e t r o g r a d e e f f e c t s ,
p o s s i b l y re1 ated t o c o o l i n g o r i n c i p i e n t hydrothermal processes.
There a r e
thus u n c e r t a i n t i e s i n b o t h t h e experimental and e m p i r i c a l l y derived oxygeni s o t o p e f r a c t i o n a t i o n s f o r many mineral p a i r s which warrant some c a u t i o n i n
t h e i r application.
Despite t h e u n c e r t a i n t i e s i n t h e empirical c a l i b r a t i o n s ,
t h e r e i s good c o r r e l a t i o n o f 6180 values f o r natural quartz-pl agiocl asemagnetite t r i p l e t s ( B o t t i n g a and Javoy, 1973, 1975; Deines, 1977; Javoy,
1977). Further, t h e geothermometry equations based on these c o r r e l a t i o n s have
o f t e n produced g e o l o g i c a l l y reasonable temperatures ( B o t t i n g a and Javoy, 1973,
1975), which i s j u s t i f i c a t i o n f o r t h e i r continued use.
The Sl80 values of quartz, p l a g i o c l a s e and magnetite from samples 22 and
25 p l o t w i t h i n a n a l y t i c a l e r r o r o f t h e empirical concordance l i n e s i n Figures
1A and l B , suggesting t h a t these minerals are i n oxygen-isotope exchange
equilibrium.
Sample 24 p l o t s somewhat away from t h e concordance l i n e i n b o t h
Figures 1 A and 16.
Sample 24 p l o t s below t h e Qz-Mt/Qz-Pg concordance l i n e and
above t h e Qz-Mt/Pg-Mt
1 ine, i n d i c a t i n g t h a t t h e *(Qz-Pg) f r a c t i o n a t i o n f a c t o r
i s t o o l a r g e and t h e A(Pg-Mt) f a c t o r i s t o o small r e l a t i v e t o t h e A(Qz-Mt)
factor.
These discrepancies i n d i c a t e t h a t t h e Sl8O value o f p l a g i o c l a s e i s
t o o low f o r t h e phase t o be i n i s o t o p e exchange e q u i l i b r i u m w i t h quartz and
~
magnetite.
P i a g i o c l ase
n sample 24 has s u f f e r e d a t l e a s t minor sub-sol idus
oxygen-i sotope exchange , a f e a t u r e o f t e n observed i n igneous rocks ( B o t t i n g a
-
and Javoy, 1973, 1975; 0 N e i l and Taylor, 1967; Taylor, 1968, 1971, 1974).
Both samples 22 and 24 p l o t s i g n i f i c a n t l y o f f t h e concordance l i n e i n
Figure 2.
Because quartz and plagioclase i n sample 22 a r e i n approximate
oxygen-i sotope exchange e q u i l i b r i u m , then e i t h e r t h e b i o t i t e i n sample 22 has
not e q u i l i b r a t e d isotopical l y w i t h t h e quartz and p l a g i o c l a s e o r t h e
f r a c t i o n a t i o n f a c t o r used f o r t h e concordance l i n e i n Figure 2 does not
represent e q u i l i b r i u m f r a c t i o n a t i o n f o r b i o t i t e .
None o f t h e o t h e r proposed
b i o t i t e f a c t o r s (Table 2 ) produce concordance e i t h e r , so t h e b i o t i t e may
simply n o t be i n isotope exchange e q u i l i b r i u m .
Assuming t h a t t h e A(Qz-Si)
f a c t o r i s c o r r e c t , b i o t i t e would a l s o be o u t o f exchange e q u i l i b r i u m w i t h
quartz and plagioclase i n sample 24, because t h e p o i n t p l o t s above t h e
concordance 1ine, and i t has j u s t been demonstrated (Figures 1 A and 1B) t h a t
h(Qz-Pg) i s t o o l a r g e f o r sample 24.
These f i g u r e s demonstrate t h a t b i o t i t e
i n b o t h samples 22 and 24 and plagioclase i n sample 24 a r e depleted i n l 8 0
r e l a t i v e t o 6l80 values i n c o e x i s t i n g quartz and magnetite.
Apparently b o t h
b i o t i t e samples have e i t h e r not e q u i l i b r a t e d w i t h t h e magma, o r not maintained
e q u i l i b r i u m w i t h t h e magma, o r have undergone post-solidus i n t e r a c t i o n w i t h an
external , 180-depleted oxygen r e s e r v o i r , presumably meteoric water.
Hydrogen-
isotope analyses would be useful i n d e t e c t i n g 1 i m i t e d meteoric water-rock
i n t e r a c t i o n , b u t s u f f i c i e n t q u a n t i t i e s o f b i o t i t e f o r hydrogen-isotope
a n a l y s i s c o u l d not be separated.
I SOT0PE THERMOMETRY
The attainment of i n t e r n a l oxygen-isotope exchange e q u i l i b r i u m , as
i n d i c a t e d b y t h e concordance diagrams, does not n e c e s s a r i l y mean t h a t t h e
phenocryst phases have preserved t h e i r o r i g i n a l c r y s t a l l i z a t i o n
temperatures.
The concordance diagram allows an e v a l u a t i o n o f exchange
e q u i l i b r i u m and i d e n t i f i c a t i o n o f exchange w i t h external r e s e r v o i r s .
It does
n o t a1 1ow eval u a t i o n of t h e primary nature o f recorded temperatures, as shown
by numerous examples o f disagreement between i s o t o p e and chemical o r phase
e q u i l i b r i u m thermometers ( B o t t i n g a and Javoy, 1975; Javoy, 1977).
Experience
over t h e l a s t t e n t o f i f t e e n years w i t h oxygen-isotope geothermometry has
revealed t h a t i n slow-cool ing systems (metamorphic and p l u t o n i c rocks),
coexi s t i n g s i 1 i c a t e / o x i d e phases a r e vu1 nerabl e t o retrograde isotope
exchange.
Such exchange can occur under near-equil i b r i u m c g n d i t i o n s ,
produci ng concordant sl8O Val ues f o r mineral p a i r s b u t i s o t o p e temperatures
t h a t a r e lower than t r u e formation temperatures.
Fortunately, @O
values are
cmmonly "frozen" i n minerals formed i n r a p i d l y cooled basic volcanic rocks
(Anderson e t al.,
1971). L i t t l e i n f o r m a t i o n i s a v a i l a b l e f o r more a c i d i c
v 01 canic rocks , however.
A second problem w i t h oxygen-isotope geothermometry i s t h e l a c k o f
agreement as t o which geothermometer equation t o use.
Table 2 i s a
canpi1 a t i o n o f several geothermometer equations proposed f o r t h e mineral s
found i n t h e Mineral Mountains r h y o l i t e s o r computed f r a n a v a i l a b l e mineralwater f r a c t i o n a t i o n expressions.
The various equations are based on b o t h
experimental measurement [ f o r example Qz-Pg ( A ) ]
and empirical c a l i b r a t i o n o f
measured 6l80 values i n igneous and metamorphic rocks [ f o r example Qz-Mt (B)].The r e s u l t s o f a l l geothermometry equations are presented i n Table 3.
Unconstrained use of a1 1 geothermometry 'equations produces unacceptably 1 arge
ranges i n i s o t o p e temperatures.
For example t h e t h r e e a l t e r n a t e Q
-&
geothermometers g i v e a temperature range o f 344 t o 765OC f o r p r e c i p i t a t i o n o f
q u a r t z and p l a g i o c l a s e i n sample 22, with t h e lower ranges o f temperature
being f a r below t h e s o l i d u s f o r magma o f r h y o l i t e composition.
However some
o f t h e isotope geothermometers produce temperatures i n good agreement w i t h
those from independent chemical geothermaneters.
For sample 22, t h e
geotherometry equations proposed by B o t t i n g a and Javoy (1973, 1975) provide
temperatures o f 765OC, 724OC, and 725OC from quartz-pl agiocl ase, quartzmagnetite, and p l agioclase-magneti t e p a i r s respectively.
These temperatures
agree w i t h i n a n a l y t i c a l u n c e r t a i n t y w i t h t h e r e s u l t s o f Fe-Ti oxide ( 7 4 O O C )
and two-feldspar (77OOC) geothermometry (Evans and Nash, 1978) f o r t h i s sample
(Table 4).
The consistency o f these t h r e e i s o t o p e temperatures r e f l e c t s t h e
concordance of t h e mineral 6180 values w i t h t h e f r a c t i o n a t i o n f a c t o r s shown i n
Figures 1 A and l B , which were defined by t h e same geothermometry equations of
B o t t i n g a and Javoy (1973, 1975).
The agreement between t h e isotope and
chemical geothenometry r e s u l t s and t h e f a c t t h a t these temperatures a r e
geological l y q u i t e reasonable suggests these c l o s e l y represent f o r m a t i o n
( c r y s t a l l i z a t i o n ) temperatures f o r these phases i n sample 22.
These same
geothermometer equations produce concordant temperatures f o r sample 25 as
we1 1
.
However, t h e temperatures provided by t h e B o t t i n g a and Javoy 1973)
equations f o r quartz-pl a g i o c l ase, quartz-magnetite,
and p l agioclase-magneti t e
p a i r s fran sample 24 d i f f e r by an amount exceeding a n a l y t i c a l uncertainty.
The quartz-pl agiocl ase geothermometer ( B y Tab1 e 2) equation i n c o r p o r a t i n g
t h e experimental data of O'Neil and Taylor (1967) i s s i m i l a r t o t h a t proposed
by B o t t i n g a and Javoy (1973) and produces q u i t e s i m i l a r temperature r e s u l t s
(Table 3).
However, equation ( C ) f o r t h i s mineral p a i r produces temperatures
e i t h e r lower (samples 22 and 25) o r higher (sample 24) than t h e o t h e r two
versions.
The quartz-magnetite geothermmeter based on t h e experimental data
o f C1ayton e t a1
. (1972) f o r quartz produces temperatures systematical l y
higher than t h e o t h e r i s o t o p e geothermometers ( w i t h t h e exception o f those
i n c o r p o r a t i n g b i o t i t e ) and t h e Fe-Ti oxide and two-feldspar geothermometers.
A1 1 proposed i s o t o p e geothermometers in v o l v i ng b i o t i t e g i v e unacceptabl e o r
even i r r a t i o n a l values f o r temperature, i n c l u d i n g those based wholly o r i n
p a r t on t h e c a l i b r a t i o n s o f B o t t i n g a and Javoy (1973)
(B
and
E, Table 3).
T h i s disagreement i n d i c a t e s e i t h e r t h a t b i o t i t e i s out o f isotope exchange
e q u i l i b r i u m w i t h t h e o t h e r phenocrysts, o r t h a t none o f t h e proposed
geothenometer equations adequately accounts f o r t h e oxygen-isotope
>
I
.
c h a r a c t e r i s t c s o f magmatic b i o t i t e s .
One f a c t o r t h a t c e r t a i n l y needs t o be
evaluated i n t h i s regard i s t h e e f f e c t of Fe f o r Mg s u b s t i t u t i o n on t h e
oxygen-isotope composition o f b i o t i t e .
Temperature r e s u l t s f ran t h e geothermometers proposed by B o t t i nga and
Javoy (1973) a r e presented i n Table 4 f o r a l l f o u r samples, along w i t h r e s u l t s
from a p p l i c a t i o n o f chemical geothermometers (Evans and Nash, 1978) f o r
canparison.
-
and
There i s good agreement between t h e chemical and
geothermaneters f o r samples 22 and 25.
The
& - &,-&- Mt
&-
p a i r from
sample 23 provides a geological l y reasonabl e temperature (762OC), b u t no o t h e r
geothermometry data e x i s t f o r comparison.
The
& - & pair
from sample 24
provides a temperature (682) i n s a t i s f a c t o r y agreement w i t h t h e Fe-Ti oxide
and two-feldspar geothermmetry, b u t b o t h t h e Q
significantly different.
- & and & -
r e s u l t s are
I n sample 24, p l a g i o c l a s e has apparently experienced
some retrograde exchange and i s no longer i n i s o t o p i c exchange e q u i l i b r i u m
w i t h quartz and magnetite.
F o r t h e o t h e r samples, t h e agreement o f t h e
chemical geothermometers w i t h t h e r e s u l t s from t h e geothermometer equations
proposed by B o t t i n g a and Javoy (1973) and Javoy (1977) supports t h e c o n t e n t i o n
of t h e l a t t e r author t h a t these geothermmeters are i n t e r n a l l y more c o n s i s t e n t
and produce temperatures t h a t a r e o f t e n more reasonable geol ogical l y than
those based on experimental data alone.
MAGMA SOWCE
The 6l80 values of t h e g l a s s groundmass c l o s e l y approximate t h e 6l8O
values of t h e r h y o l i t e magmas, as t h i s phase c o n s t i t u t e s g r e a t e r than 95
volume % of these rocks.
6l80 values o f t h e glass range from 6.3 t o 6.9
1
I
permil
, which
a r e i n t h e low range of values f o r a c i d i c volcanics.
These
Val ues a r e consi s t e n t w i t h d e r i v a t i o n o f t h e Mineral Mountai ns r h y o l it e s from
an I - t y p e source (Chappell and White, 1974; O'Meil e t a1
., 1977).
The oxygen-
isotope data i n d i c a t e t h a t i f t h e r h y o l i t e s were generated b y p a r t i a l m e l t i n g
i n t h e c r u s t , t h e source r e g i o n cannot c o n t a i n a s i g n i f i c a n t component of
pel it i c metasedimentary m a t e r i a1
.
CONCLUSIONS
A p p l i c a t i o n o f oxygen- sotope thermometry t o phenocryst phases o f t h e
M i neral Mounta ins r h y o l it e s y i e l d s some temperature r e s u l t s t h a t are
geol o g i c a l l y reasonable and c o n s i s t e n t w i t h r e s u l t s from appl i c a t i o n o f
chemical geothermometers.
The geothermometry equations proposed by B o t t i n g a
and Javoy (1973, 1975) a r e most successful and y i e l d temperatures o f 716-765OC
f o r t h e r h y o l i t e flows and 626-686OC f o r t h e r h y o l i t e domes.
These r e s u l t s
are i n good agreement w i t h temperatures c a l c u l a t e d from Fe-Ti oxide and twof e l d s p a r geothermometers.
Some degree o f sub-sol idus r e t r o g r a d e re-
e q u i l i b r a t i o n may be i n d i c a t e d b y t h e isotope thermometry r e s u l t s f o r t h e
danal r h y o l ites.
However, 1 iqui dus temperatures as low as 650°C may be
poss ib l e i f f l u o r i n e and water were s u f f i c i e n t l y e f f e c t i v e i n l o w e r i n g t h e
r hyol it e l i q u i d u s .
The range o f Sl80 values f o r t h e r h y o l i t e - - + 6.3 t o + 6.9
permi 1-- s t y p i c a l o f I - t y p e magmas, in d i c a t i ng ,hat no s i g n i f i c a n t pel it i c
metasedimentary component i s invol ved i n t h e generation o f t h e Mineral
Mountains r h y o l i t e s
.
REF ERENC ES
Anderson, A. T., Jr., Clayton, R. N., and Mayeda, T. K.:
Oxygen i s o t o p e
thermometry o f mafic igneous rocks. J. Geol., v. 79, no. 6, p. 715-729,
1971
.
P
Becker, R. H.:
Carbon and oxygen isotope r a t i o s i n i r o n formation and
associated rocks from t h e Hammersley Range o f western A u s t r a l i a and t h e i r
imp1 i c a t i o n s . Ph.D. D i s s e r t a t i o n , Univ. o f Chicago, 138 p., 1971.
Bertenrath, R. and Friedrichsen, H.:
The oxygen i s o t o p e geochemistry of
b i o t i t e s and i t s a p p l i c a t i o n as a geologic thermometer. P a r t I
The
oxygen isotope f r a c t i o n a t i o n i n t h e system phl ogopite-annite ( i n prep .)
-
Bottinga, Y. and Javoy, M.:
Comments on oxygen i s o t o p e thermometry.
Planet. Sci. L e t t e r s , v. 20, p. 250-265, 1973.
Earth
: Oxygen isotope p a r t i t i o n i n g among t h e minerals i n igneous and
metamorphic rocks. Rev. Geophys. Space Phys., v. 13, no. 2, p. 401-418,
1975.
Buddington, A. F. and Lindsley, D. H.:
s y n t h e t i c equivalents. J. P e t r o l
i u m oxide minerals and
. v.I r o n5,- t ip.t a n310-357,
1964.
The i r o n - t i t a n i u m oxides o f s a l i c v o l c a n i c * r o c k s and
Carmichael , I.S. E.:
t h e i r associated ferromagnesian s i 1 icates. Contrib. Mineral . P e t r o l .,
14, p. 36-64, 1967.
V.
Carmichael, I. S. E., Turner, F. J., Verhoogen, J.:
McGraw H i l l , New York, 739 p., 1974.
.
Igneous Petrology.
Two c o n t r a s t i n g g r a n i t e types.
Chappell, B. W. and White, A. J. R.:
Geology, v. 8, p. 173-174, 1974.
Pacific
The use o f oxygen isotopes i n h i g h
Clayton, R, N. and Epstein, S.:
temperature geological thennometry. J. Geol , V . 69, p. 447-452, 1961.
I-
.
The use o f bromine p e n t a f l u o r i d e i n t h e
Clayton, R. N. and Mayeda, T. K.:
e x t r a c t i o n o f oxygen f r a n oxides and s i l i c a t e s f o r i s o t o p i c analysis.
Geochim. Cosmochim. Acta, v. 27, p. 43-52, 1963.
Clayton, R. N., O'Nei1, J, R., and Mayeda, T. K.:
between quartz and water. J. Geophys. Res.,
1972
.
Oxygen i s o t o p e exchange
v. 77, no. 17, p. 3057-3067
Standard f o r r e p o r t i n g concentrations o f deuterium and oxygen-18
Craig, H.:
i n n a t u r a l waters. Science, v. 133, p., 1833-1834, 1961.
,
I
On t h e oxygen isotope d i s t r i b u t i o n among mineral t r i p l e t s i n
Deines, P.:
igneous and metamorphic rocks. Geochim. Cosmochim. Acta, v. 41, p.
1709-1730, 1977.
Low-temperature r h y o l i t e s from t h e
Evans, S. H., Jr. and Nash, W. P.:
Roosevelt geothermal area, Utah. Geol. SOC. Amer. Abs. w i t h Programs, v.
7, no. 7, p. 1070, 1975.
Quaternary r h y o l i t e from t h e Mineral
Evans, S. H., J r . and Nash, W. P.:
Mountains, Utah, U. S. A. Univ. Utah Geo. Geophys. Dept., Topical Report
volume 77-10, DOE/DGE c o n t r a c t EY-76-S-07-1601, 1978.
--
Evans, S. H., Jr. and Brown, F. H,:
Summary o f K - A r d a t i n g
1981. Univ,
Utah Geol Geophys. Dept., Topical Report #12079-45, DOE/DGE c o n t r a c t
DE-AC07-80ID-12079, 1981.
.
Friedman, I. and O'Neil, J. R.:
Compilations o f stable-isotope f r a c t i o n a t i o n
f a c t o r s o f geochemical i n t e r e s t . U. S. Geol. Surv. Prof. Paper 440-KK,
1977.
I
Javoy, M.:
Stable isotopes and geothermometry. J. Geol. SOC. Lond.,
p. 609-636, 1977.
v. 133,
Javoyf6M.f8Fourcade,
S., Allegre, C. 3.:
Graphical method o f examination of
O/ 0 f r a c t i o n a t i o n s i n s i l i c a t e rocks. E a r t h Planet. Sci. L e t t e r s ,
V. 10, p. 12-16, 1970.
Lipman, P. W., Rowley, P. D., Mehnert, H., Evans, S. H., Nash, W. P., and
Brown, R. F.:
Pleistocene r h y o l i t e o f t h e Mineral Mountains, Utah:
geothermal and archaeological s i g n i f i c a n c e . Res. U. S. Geol. Survey,
V. 6, p. 133-147, 1978.
Longstaffe, F. J., Smith, T. E., and Muehlendachs, K., 1980, Oxygen Isotope
evidence f o r t h e genesis o f Upper Paleozoic g r a n i t o i d s from Southwest
Nova Scotia: Can. 3. E a r t h Sci., v. 17, p. 132-141.
F l u i d dynamic p r o p e r t i e s o f r h y o l i t e
Nash, W. P. and Evans, S. H., Jr.:
magmas, Mineral Mountains, Utah. Univ. Utah Geol. Geophys. Dept., F i n a l
Report, vol 77-13, DOE/DGE EY-76-S-07-1601, 1978.
.
Oxygen and hydrogen isotope r e l a t i o n s i n
O'Neil, J: R. and Chappell, B. W.:
t h e B e r r i d a l e B a t h o l i t h . J. Geol. SOC. Lond., v. 133, p. 559-571, 1977.
The oxygen isotope and c a t i o n exchange
O'Neil, 3. R. and Taylor, H. P., Jr.:
chemistry o f feldspars. Am. Mineral., v. 52, p. 1414-1437, 1967.
O'Neil , J. R., Shaw, S. E., and Flood, R. H.:
Oxygen and hydrogen isotope
canpositions as i n d i c a t o r s o f g r a n i t e genesis i n t h e New England
B a t h o l i t h , A u s t r a l i a . Contr. Pet. Mineral., v. 62, p. 313-328, 1977.
Stormer, J. C., Jr.:
A p r a c t i c a l two-feldspar geothermometer.
Mineral
v. 60, p. 667-674, 1975.
.,
Amer.
Taylor, H. P., Jr.:
The oxygen i s o t o p e geochemistry of igneous rocks.
Min. Petrol., v. 19, p. 1-71, 1968.
Contr.
: Oxygen i s o t o p e evidence f o r 1arge-scal e i n t e r a c t i o n between
meteoric ground waters and T e r t i a r y g r a n o d i o r i t e i n t r u s i o n s , western
Cascade Range, Oregon. J. Geophys. Res., v. 76, p. 7855-7874, 1971.
: The appl i c a t i o n o f oxygen and hydrogen isotope s t u d i e s t o
hydrothermal a l t e r a t i o n and o r e deposition. Econ. Geol., v. 69, p. 843883, 1974.
Taylor, H. P., Jr. and Epstein, S.:
The r e l a t i o n s h i p between l80/l6O r a t i o s
i n c o e x i s t i n g mineral o f igneous and metamorphic rocks. Geol. SOC. Am.
Bull
V. 73, p. 461-480, 1962.
0,
Taylor, H. P., Jr. and S i l v e r , L. T.:
Oxygen i s o t o p e r e l a t i o n s h i p s i n
p l u t o n i c igneous rocks o f t h e Peninsular Ranges B a t h o l i t h , Southern and
Baja C a l i f o r n i a . Fourth I n t ' l . Conf. Geochron., Cosmochron., and Isotope
Geology, Snomass, Colorado, U.S.A.
U.S. Geol Survey Open-File Report
78-101, 1978.
.
'
-
Taylor, H. P., Jr., and T u r i , 6.:
High l80 igneous r0ck.s from t h e Tuscan
magmatic province, I t a l y . Contrib. Mineral. Petrol
v. 55, p. 33-54,
1976.
.,
. .
,.
FIGURE CAPTIONS
I
Figure 1.
P l o t s o f t h e Mineral Range oxygen-isotope data on concordance
diagrams o f A(Qz-mt) versus A(Qz-Pg) i n F i g u r e 1 A and A(Qz-mt)
versus A(Pg-mt) i n Figure 18. The concordance l i n e s a r e based on
t h e data o f Becker (1971), B o t t i n g a and Javoy (1973) and Javoy
(1977). E r r o r b a r s f o r each mineral p a i r r e f l e c t t h e combined
a n a l y t i c a l e r r o r f o r i n d i v i d u a l mineral analysis.
Figure 2.
P l o t o f Mineral Range oxygen-isotope data on d concordance diagram
o f A(Qz-Bi) versus A(Qz-Pg). The concordance l i n e i s based on t h e
data of B o t t i n g a and Javoy (1973) and O'Neil and T a y l o r (1967).
E r r o r bars f o r each mineral p a i r r e f l e c t t h e combined a n a l y t i c a l
e r r o r f o r i n d i v i d u a l mineral analysis.
'.
.
\ -
I
I
\E
I
I
I
I
N
0
-m
I
N
a" .
4
2
-- .. - . - . ...
.
._ .- .-
..
2
Table 1. --Oxygen-isotope compositions and f r a c t i o n a t i o n f a c t o r s f o r mineral p a i r s from
r h y o l it e f 1ows and domes, Mineral Mountains, Roosevel t Hot Spri ngs Thermal Area
Rock U n i t
B a i l e y Ridge
Sample No.
6l80 (SMOW)
-
MR 7 6-22
quartz (Qz)
g l ass
f e l d s p a r (P )
biotite (Bi
magnetite (Mt)
7.2
6.3
6.3
7
W i l d Horse Canyon
L i t t l e Bearskin
N o r t h Twin F l a t Peak
MR-76-2 3
quartz
glass
magnetite
A(Qz-Pg)
0.9
A(Qz-Mt)
5.6
A(Qz-Bi)
A(Pg-Mt)
h(Pg-Bi)
b(Bi-Mt)
5 05
4.7
4.6
0.1
5.4
4.6
3.9
0.7
1.7
1.6
7 .1
-
5.2
6.3
1.9
MR -76 -24
quartz
glass
f e l dspar
biotite
magnet it e
7.5
6.9
6.0
2.1
1.4
1.5
6.1
MR-76-25
quartz
glass
feldspar
mag n e t it e
7.4
6.4
6.2
1.2
1.2
6.2
5.0
Table 2.
Mineral P a i r
Qz-Pg ( A )
Qz-Pg (B)
(C)
Qz-Mt ( A )
Q2-W
Qz-Mt (B)
Pg-Mt ( A )
Pg-Mt (B)
Pg-Mt (C)
Qz-Bi ( A )
Qz-Bi (B)
Qz-Bi (C)
Qz-Bi (D)
Qz-Bi ( E )
Pg-Bi ( A )
Pg-Bi (B)
Pg-Bi ( C )
B i - M t (A)
B i - M t (B)
Bi-Mt (C)
Compilation o f oxygen-isotope f r a c t i o n a t i o n f a c t o r s used i n geothermometry c a l c u l a t i o n s .
10%na
+
1-95 0 5 0 0 ° c )
+ 0.51 (<5OO0C)
'
Data Sources
Clayton e t a l . (1972); O'Neil and Taylor (1967)
1.19 (106T -2 ) ' - 0.29
0.97 (106T -2 )
+ 2.24
B o t t i n g a and Javoy (1973); O'Neil and Taylor (1967)
B o t t i n g a and Javoy (1973)
5.57 ( 1 0 F )
4.38 (106T-2) + 0.30
3.01 (106T -2 ) + 2.24
4.60 (106T -2
2.15 (106T-2)
6 -2 + 1.27 (>5OO0C)
3.02 (10 T ) - 0.17 (<5OO0C)
3.74 (106T- 2 ) 0.97
1OZT-i) - 0.17 (>5OO0C)
1 0 T' ) - 1.61 (<500°C)
4.92 (IO6T -2 ) - 2.41
3.69 (106T -2 ) - 0.60
2.55 (IO6T -2 ) - 0.68
3.73 (106T -2 ) - 2.12
2.72
0.60
1.83 (106T -2 ) + 0.97
0.65 (106T -2 ) + 2.41
6 -2
1.88 (10 T ) + 0.60
Becker (1971); Javoy (1977)
Becker (1971); B o t t i n g a and Javoy (1973); O'Neil and T a y l o r (1967)
-
-
Becker (1971); B o t t i n g a and Javoy (1973); Clayton e t a l . (1472)
B o t t i n g a and Javoy (1973); Clayton e t a l . (1972)
B o t t i nga and Javoy (1973) ;' Javoy (1977)
B o t t i n g a and Javoy (1975); Clayton e t a1 (1972); O'Neil and Taylor (1967)
B o t t i n g a and Javoy (1973, 1975); O'Neil and Taylor (1967)
Clayton e t a1 (1972)
Bertenrath and F r i e d r i c h s e n ( i n
.
B e r t e n r a t h and F r i e d r i c h s e n ( i n
B o t t i nga and Javoy (1973)
B o t t i n g a and Javoy (1973)
B o t t i n g a and Javoy (1975); O'Ne
Bertenrath and F r i e d r i c h s e n ( i n
a y l o r (1967)
O'Neil and Taylor (1967)
B o t t i n g a and Javoy (1973)
B o t t i n g a and Javoy (1973, 1975); O'Nei
and Tay o r (1967')
B e r t e n r a t h and F r i e d r i c h s e n ( i n prep); B o t t i n g a and Javoy (1973)
B o t t i n a"a and Javov
" 11973)
.
Compilation of --oxygen-isotope geothermometry
r e~s u l t s ("C) from the equations i n
~~-~
Table 3.
~
Table 2 f o r mineral p a i r s from r h y o l i t e flows and domes i n the Mineral Mountains.
Qz-Mt
Q2-N
Sample
A
B
A
C
~~
MR-76-2 2
344
727 765
MR-76-23
B
Qz-B i
Pg-Mt
A
Pg-Bi
B i-Mt
B
A
B
C
D
E
A
B
C
A
716
440
487
493
516
505
422
472
450
-1177
-257
-1666
727
448
493
500
521 511
473
514
504
-2330
-344
4063
B
C
725 833
C
~
815
724
886
762
MR- 76-2 4
670
542 531
742 682
736 856
MR-76-25
457
621 626
730 675
692
771 686
Table 4.
F1 ow Unit
Qz-Pg ( C )
Qz-Mt ( B )
Pg-Mt ( C )
Bailey Ridge
765
724
716
MR -76 -2 2
f 115
t 27
t 32
Wild Horse Canyon
762
MR-76-23
f 29
L i t t l e Bearski n
MR-76 -24
,
Comparison o f oxygen-isotope (Bottinga and Javoy, 1973; Javoy, 1977) and chemical
geothermmetry ("C) results for the Mi neral Mountains rhyol i t e s .
North Twin
MR-76-25
F1 a t Peak
531
f 60
62 6
f 75
.
682
Fe-Ti Oxide
Two-Feldspar
7 40
770
72 7
f 33
640
670
f 24
675
f 24
686
f 29
650
710