Blackwell, D.D., and Chapman, D.S., 1977, Interpretation of Geothermal Gradient and Heat Flow Data for Basin and Range Geothermal Systems: Geothermal Resources Council Transactions, v. 1, p. 19-20.

NOTICE CONCERNING COPYRIGHT
RESTRICTIONS
This document may contain copyrighted materials. These materials have
been made available for use in research, teaching, and private study, but
may not be used for any commercial purpose. Users may not otherwise
copy, reproduce, retransmit, distribute, publish, commercially exploit or
otherwise transfer any material.
The copyright law of the United States (Title 17, United States Code)
governs the making of photocopies or other reproductions of copyrighted
material.
Under certain conditions specified in the law, libraries and archives are
authorized to furnish a photocopy or other reproduction. One of these
specific conditions is that the photocopy or reproduction is not to be "used
for any purpose other than private study, scholarship, or research." If a
user makes a request for, or later uses, a photocopy or reproduction for
purposes in excess of "fair use," that user may be liable for copyright
infringement.
This institution reserves the right to refuse to accept a copying order if, in
its judgment, fulfillment of the order would involve violation of copyright
law.
GeothemaZ Resources CounciZ, TRANSACTIONS, VoZ. 1 lckzy 1977
INTERPRETATION OF GEOTHERMAL GRADIENT AND HEAT FLOW DATA
FOR BASIN AND RANGE GEOTHERMAL SYSTEMS
*
David D. B l a c k w e l l
**
and David S. Chapman
I
*
**
Southern Methodist U n i v e r s i t y , D a l l a s , Texas
The U n i v e r s i t y o f Utah, S a l t Lake City, Utah
Abstract
Simple conceptual models have been developed t o
e x p l a i n t h e n a t u r e o f many geothermal systems i n
t h e Basin and Range physiographic province.
Models a r e c h a r a c t e r i z e d by range bounding normal
f a u l t s which separate h i gh thermal conducti v i t y
bedrock from low thermal c o n d u c t i v i t y Val l e y f i 11 ,
and along which geothermal f l u i d s may c i r c u l a t e ,
Modeling r e s u l t s suggest t h a t i n f o r m a t i o n on t h e
temperature o f the f l u i d , d i p o f t h e f a u l t , and
v e r t i c a l e x t e n t o f the f l u i d c i r t u l a t i o n i s
contained i n t h e h e a t f l o w anomaly p a t t e r n . Such
i n f o r m a t i o n i s valuable f o r e x p l o r a t i o n decisions.
The models w i l l be i l l u s t r a t e d f o r geothermal
anomalies a t Vale Hot Springs KGRA, Oregon, and
Roosevelt Hot Springs KGRA, Utah.
Most h o t springs i n t h e Basin and Range physiographic province a r e l o c a t e d on o r near t h e major
range bounding normal f a u l t s t h a t block o u t t h e
mountains and v a l l e y s . These f a u l t s u s u a l l y j u x t i p o s e w i d e l y c o n t r a s t i n g r o c k u n i t s such as
unconsolidated and semi -consol i d a t e d s i 1t, c l a y
and sand o r v o l c a n i c rocks a g a i n s t Paleozoic and/
o r Mesozoic sedimentary rocks o r Mesozoic and Ceno z o i c v o l c a n i c and i n t r u s i v e rocks. I n such a
s e t t i n g e l e c t r i c a l r e s i s t i v i t y data are d i f f i c u l t
t o i n t e r p r e t w i t h r e s p e c t t o t h e i r geothermal s i g n i f i c a n c e due t o t h e w i d e l y c o n t r a s t i n g i n t r i n s i c
e l e c t r i c a l r e s i s t i v i t y o f the d i f f e r e n t units.
Geothermal g r a d i e n t and h e a t flow surveys can be
used t o g r e a t advantage i n such s i t u a t i o n s and,
combined w i t h o t h e r geophysical data, can f u r n i s h
the i n f o r m a t i o n needed f o r e x p l o r a t i o n d e c i s i o n s ,
Simple conceptual models a p p l i c a b l e t o Basin and
Range s e t t i n g s are shown i n F i g u r e 1. These models
a r e amenable t o numerical s o l u t i o n using heat cond u c t i o n theory i n two dimensions. I n each model
t h e subsurface i s d i v i d e d i n t o two regions: bedr o c k having h i g h e r thermal c o n d u c t i v i t y i s separa t e d from l o w e r thermal c o n d u c t i v i t v v a l l e v f i l l
by a normal f a u l t of a r b i t r a r y d i p ‘Bnd d i s b l a c e ment. A t y p i c a l Basin and Range heat f l o w o f 2.0
l c a l / c m 2 s (HFU) i s assumed so t h a t t h e thermal
g r a d i e n t i n the bedrock i s 29 oC/km and t h a t i n the
v a l l e y fill a l l u v i u m i s 57 OC/km.
,
0
25
5
75
IO
DISTANCE (km)
MODEL 2
MODEL I
.
Model 1 describes a non geothermal area where t h e
isotherms f r o m t h e v a l l e y and range connect
19
--- ---_-- - ---
DISTANCE (km)
Thermal models f o r a Basin and Range
F i g u r e 1.
s e t t i n g , Model 1: C o n f i g u r a t i o n o f isotherms and
h e a t flow p a t t e r n across a range bounding f a u l t
u s i n g t y p i c a l Basin and Range background heat flow,
Model 2: Thermal s p r i n g i s modeled by h o t water
c i r c u l a t i o n along, t h e range bounding f a u l t . A
d i s t i n c t i v e i s o t h e r m and heat flow p a t t e r n i s seen.
smoothly across t h e f a u l t zone. The warping o f t h e
isotherms r e s u l t s f r o m r e f r a c t i o n o f heat caused by
t h e thermal c o n d u c t i v i t y c o n t r a s t . A small h e a t
flow anomaly r e s u l t s f r o m t h i s r e f r a c t i o n (see
Figure 1). Model 2 describes a s i m i l a r Basin and
Range s e t t i n g b u t w i t h the a d d i t i o n o f a thermal
s p r i n g . Water heated by t h e n a t u r a l geothermal
g r a d i e n t t o about 100°C a t 1.5 km depth moves up
along a range bounding f a u l t t o a depth o f 100 t o
200 m. We model the thermal source as a sheet o f
f l u i d c i r c u l a t i o n up along t h e f a u l t . The h e a t
f l o w anomaly associated w i t h t h i s thermal s p r i n g
can be s u b s t a n t i a l as i s shown i n F i g u r e 1.
Heat f l o w surveys i n t h e Basin and Range Province
demonstrate t h a t many h o t springs a r e associated
w i t h t h i s l a t t e r type o f anomaly. An anomaly may
be several k i l o m e t e r s l o n g even though o n l y one o r
two h o t s p r i n g s are observed. Thus t h e area o f
f l u i d upflow i s much more extensive than i n d i c a t e d
by t h e s u r f a c e manifestations. I n c o n t r a s t some
areas have no upflow except along a small area
around t h e s p r i n g and a pipe model may be a p p l i c able t o such systems. F i n a l l y some systems a r e
more complicated than t h e simple model i l l u s t r a t e d .
Obviously i t i s o f g r e a t i n t e r e s t i n geothermal
e x p l o r a t i o n t o i d e n t i f y t h e nature o f t h e system
associated w i t h a surface h o t s p r i n g o r a concealed geothermal resource. The h e a t flow data
(heat f l o w must be used here due t o t h e c o n t r a s t i n g
thermal c o n d u c t i v i t i e s o f the rocks) c o n t a i n i n f o r mation on t h e nature (sheet, pipe, o t h e r ) and
e x t e n t of t h e c i r c u l a t i o n system. I f d e t a i l e d data
are a v a i l a b l e on a cross s e c t i o n across t h e anomaly
i n f o r m a t i o n on t h e temperature o f t h e f l u i d , d i p
o f the f a u l t , and v e r t i c a l e x t e n t o f f l u i d c i r c u l a t i o n i s contained i n t h e anomaly p a t t e r n i n t h e
same way t h a t d e n s i t y c o n t r a s t and f a u l t geometry
are c o n t a i n e d i n a g r a v i t y anomaly. A l l these
parameters cannot be independently determined, b u t
i f o t h e r i n f o r m a t i o n i s a v a i l a b l e , such as f a u l t
geometry f r o m r e s i s t i v i t y o r g r a v i t y surveys,
temperature from geochemistry, etc., then d e t a i l e d
i n t e r p r e t a t i o n s are possible. Even 1 acking these
o t h e r d a t a a s e r i e s o f s e l f c o n s i s t e n t models f o r
the c i r c u l a t i o n system can be developed f o r t e s t i n g
by a d d i t i o n a l e x p l o r a t i o n o r deep d r i l l i n g .
The a p p l i c a t i o n o f the i n t e r p r e t i v e techniques a r e
i11us t r a t e d by t h e o r e t i c i c a l and a c t u a l examples.
Heat f l o w anomalies from Vale Hot Springs KGRA,
Oregon, and Roosevelt Hot Springs KGRA, Utah a r e
examples o f t h e kinds o f anomalies discussed. A t
the Vale KGRA t h e anomaly i s caused by c i r c u l a t i o n
along a s t e e p l y d i p p i n g normal f a u l t . The l e n g t h
o f the anomaly i s about 10 km although t h e o n l y
s u r f a c e m a n i f e s t a t i o n i s a t t h e Vale Hot Springs.
A t Roosevelt KGRA t h e anomaly i s c o n s i s t e n t w i t h
one c o n t r o l on t h e system being a b a s i n d i p p i n g
normal f a u l t . However the w i d t h o f the anomaly i s
g r e a t e r on the range s i d e o f t h e s u r f a c e f a u l t t r a c e
than i s p r e d i c t e d by the s i n g l e f a u l t model, i n d i c a t i n g t h a t the system i s more complex and l a r g e r
than a s i n g l e f a u l t zone. Deep e x p l o r a t i o n d r i l l i n g
has v e r i f i e d t h a t t h e r e s e r v o i r i s i n f a c t i n s i d e
the range b l o c k i n f r a c t u r e d Miocene g r a n i t e .
20