Proteomics George Tsaprailis, Director Linda Breci, Associate Director Arizona Proteomics Consortium University of Arizona What is proteomics and how is Mass spectrometry used in proteomics ? 1 Proteomics: the study of the Proteome A collection of proteins, usually comprising a biological system Important because (1) proteins perform most cellular functions, (2) proteins are the major elements of most cellular structures, and (3) proteins are targets of drugs/toxicants Why Proteomics? Mass Spectrometry Protein ID 2 Proteomics involvesProtein Chemistry Mass Spectrometry Computing (+ Bioinformatics) •Sample isolation/clean-up Protein Chemistry •Sample purification Protein fractions digest peptides 3 Key to Proteomics is to obtain peptide masses and/or sequences Mass Spectrometry Protein mixture separation digestion Peptide mixture separation Proteins digestion Peptides MS analysis MS data MS MS/MS All types of hardware used in proteomics Mass Spectrometry 4 Computing (+ Bioinformatics) The Proteomic Approach 1D PAGE 2D PAGE Protein Chemistry Pre-prep steps Protein(s) Solution HPLC fractions IP eluent Sample Protein ESI LC-MS/MSMass Mass Spectrometry Spectrometer MALDI MS Digest Peptides Computing (+Protein Bioinformatics) Id + Informatics 5 What is proteomics and how is Mass spectrometry used in proteomics ? Mass Spectrometry • What is a mass spectrometer and what does it measure? – An instrument that makes ions – Measures the mass/charge (m/z) of ions • Mass Spectrometry in proteomics – For proteins and peptides • whole protein mass measurements • protein identification based on peptide mass measurement • protein identification based on peptide structure analysis (fragmentation) • Need to know some basic principles 6 Protein/peptide relationship Enzyme Protein Peptides Making ions O H+ H2N CH CH3 C O H N CH C CH2 CH CH3 O H N CH CH2 CH3 C O H N CH C OH CH2 CH2 CH2 CH2 H+NH2 Ala-Leu-Phe-Lys mass of neutral = 477.3 Ala-Leu-Phe-Lys m/z of singly charged = 478.3 Ala-Leu-Phe-Lys m/z of doubly charged = 239.6 7 Making ions Ions are made in an ion source Important methods in Proteomics: 1) MALDI (matrix assisted laser desorption) 2) ESI (electrospray ionization Electrospray Ionization ESI +11 1301.53 100 14306.0 100 75 Intensity Relative Intensity 75 +10 1431.47 +12 1193.20 Calculated Mass Spectrum 50 25 50 0 5000 10000 +9 1590.33 15000 m/z 25 +8 1789.00 +13 1101.40 0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 m/z 16000000 + [M+H] 14318.68 14000000 12000000 Intensity 10000000 2+ [M+2H] 7157.18 8000000 6000000 4000000 + [2M+H] [2M+H] 28,638.7 14318.68 + 2000000 Matrix Assisted Laser Desorption Ionization MALDI 0 10000 20000 30000 40000 m/z 8 Analyzing ions The ion source is coupled to the analyzer Important analyzers in Proteomics: 1) TOF (time of flight) 2) Ion Trap Matrix Assisted Laser Desorption (MALDI) (ion source) Time of Flight (analyzer) FLIGHT TUBE ANALYZER Pulsed laser light Analyzer LASER + + + + Ion Beam Detector Sample and matrix on tip of solid probe 9 Time of Flight (TOF) Linear Mode: better sensitivity poor resolution Reflectron Mode: less sensitivity higher resolution http://www.abrf.org/ABRFNews/1997/June1997/jun97lennon.html MALDI-TOF spectrum (mix of peptides) x 4.0 90 Ref Ref 0 500 m/z 2500 D:\011003_500fmol\Bsaintcal\2Ref\pdata\1\1r (11:26 10/04/01) 10 MALDI Reflectron Spectrum Of ACTH 13-Nov-2003 M@LDI ACTHResCk 3 (0.098) Cm (1:5) TOF LD+ 6.57e3 2467.344 100 2466.324 2468.330 % 2469.316 2470.337 2471.290 2451.525 0 2444 m/z 2446 2448 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 2474 2476 2478 2480 2482 Electrospray (ESI) (ion source) Ion Trap (analyzer) ION TRAP ANALYZER ESI HPLC 4500 V Dry gas or Heat + + + ++ + ++ + Analyzer Ion Beam Detector Liquid sample sprayed from needle or capillary 11 ESI-Ion Trap Spectrum [M+H]+ 952.4 [M+H]+ = 951.4 + 1 = 952.4 100 [M+2H]2+ = (951.4 + 2) / 2 = 476.7 Relative Intensity 80 [2M+H]+ = (951.4 x 2) + 1 = 1903.8 60 40 [M+2H]2+ 476.9 20 [2M+H]+ 1903.4 0 200 400 600 800 1000 1200 1400 1600 1800 2000 m/z View an ion trap animation • Exercise 1 12 Resolution and mass accuracy varies by instrument INSTRUMENT LCQ (Ion Trap) MASS RANGE Resolution Accuracy (Error) m/z (at m/z 1,000) (at m/z 1,000) to 2,000 2,000 (full scan) 0.03% (300 ppm) 10,000 (zoom scan) MALDI/TOF to 400,000 15,000 (reflectron) 0.006% (60 ppm) Ext. Cal. 0.003% (30ppm) Int.Cal. FTICR to 4,000 ppm = 500,000 0.0001% (1ppm) (TheoreticalMW − MeasuredMW ) ×10 6 TheoreticalMW Resolution Resolution 30,000 10,000 3,000 1,000 http://www.matrixscience.com 13 MALDI Reflectron Spectrum Of ACTH 13-Nov-2003 M@LDI ACTHResCk 3 (0.098) Cm (1:5) TOF LD+ 6.57e3 2467.344 100 2466.324 2468.330 % 2469.316 2470.337 2471.290 2451.525 0 2444 m/z 2446 2448 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 2474 2476 2478 2480 2482 You must know the resolution of your instrument to analyze the data! – We need to know the possible error in the measurement – Is the peak monoisotopic? – Is the peak average? 14 Analysis of whole proteins by MALDI-TOF and ESI-Ion trap • MALDI-TOF = measure with 1 or 2 protons – large molecules like Proteins require Linear mode (much lower resolution) • ESI-Ion Trap = measure with many protons (high charge state) – mass of the protein can be calculated from the multiply charged peaks Mass Spec measures isotopes Excel calculated example: Carbon is 12.000 For every 12C there is 1.1% 13C isotopes add up 10 carbons = 11% 13C Peak for 100 carbons, the 13C peak is larger than the 12C peak 10 carbons 100 carbons 120 120 100 100 100 100 80 80 60 60 40 40 92.5 53.5 18.8 20 20 10.8 5 0.5 0 1 0.2 6 7 0 1 2 3 4 5 6 7 1 2 3 4 5 15 Proteins have very large isotope widths Theoretical Isotope distribution of Lysozyme Isoto pe # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 9th Isotope 14313.906 1st Isotope 14304.885 m /z % M ax im u m 14304.885 0.2 14305.888 1.2 14306.891 4.6 14307.893 1 2.8 14308.896 2 6.9 14309.898 4 6.3 14310.900 6 7.6 14311.902 8 6.3 14312.904 9 7.7 14313.906 10 0.0 14314.908 9 3.5 14315.910 8 0.4 14316.912 6 4.2 14317.914 4 7.8 14318.916 3 3.4 14319.918 2 1.8 14320.920 1 3.2 14321.922 7.5 14322.924 3.9 14323.925 1.8 14324.927 0.7 14325.929 0.2 Lysozyme by MALDI/TOF Average mass = 14,314 16000000 14000000 ++ [M+H] [M+H] 14316.24 14318.68 12000000 Intensity 10000000 2+2+ [2M+2H] [M+2H] 7157.18 7157.18 8000000 6000000 4000000 ++ [2M+H] [2M+H] 28638.68 14318.68 2000000 0 10000 20000 30000 40000 m/z 16 Lysozyme by ESI-Ion Trap Average mass = 14,314 +11 1301.53 100 14318.2 14306.0 100 75 Intensity Relative Intensity 75 +10 1431.47 +12 1193.20 Calculated Mass Spectrum 50 25 50 0 5000 +9 1590.33 10000 15000 m/z 25 +8 1789.00 +13 1101.40 0 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 m/z So we’ve made measurements Now What? • A lot of information is available on-line about proteins and/or the gene • We will explore protein information in general • We will then use the available info to perform data analysis 17 MALDI-TOF analysis of Alkaline phosphatase – Computer Exercise #2 1.20E+009 1.00E+009 [M+H]+ 47155.22 Intensity 8.00E+008 [M+2H]2+ 23445.54 [2M+H]+ 94472.97 6.00E+008 4.00E+008 2.00E+008 0 25000 50000 75000 100000 m/z Protein identification – Two strategies • single stage mass spectrometry (MS) – called “peptide mass mapping” – measure all peptides in one spectrum – MALDI-TOF – produces low confidence results • tandem mass spectrometry (MS/MS) – measure peptides as they elute from an HPLC – ESI-Ion Trap – produces high confidence results 18 Single Stage – Peptide mass mapping Using MALDI-TOF MALDI-TOF Spectrum of tryptic digest x 4.0 90 Ref Ref 0 500 m/z 2500 D:\011003_500fmol\Bsaintcal\2Ref\pdata\1\1r (11:26 10/04/01) 19 MALDI Reflectron Spectrum Of ACTH 13-Nov-2003 M@LDI ACTHResCk 3 (0.098) Cm (1:5) TOF LD+ 6.57e3 2467.344 100 2466.324 2468.330 % 2469.316 2470.337 2471.290 2451.525 0 2444 m/z 2446 2448 2450 2452 2454 2456 2458 2460 2462 2464 2466 2468 2470 2472 2474 2476 2478 2480 2482 Data Analysis for peptide mass mapping ? MS protein peptides identify for example: Measured Peptide = 1274.5183 rank MS Peptide MW Found in Selected Databases NDALYFPT... SWDLTAL... PTDLDVSY... • Important data – multiple peaks – mass accuracy – confirming information (pI, approx. mass, organism, etc.) 20 Data Analysis for peptide mass mapping >gi|27807105|ref|NP_777037.1| solute carrier family 6 (neurotransmitter transporter, glycine), member 9 [Bos taurus] gi|1279843|gb|AAB01159.1| glycine transporter MAAAQGPVAPSKLEQNGAVPSEATKSDQNLGQGNWRNQIEFVLTSVGYAVGLGNV WRFPYLCYRNGGGAFMFPYFIMLIFCGIPLFFMELSFGQFASQGCLGVWRISPMFK GVGYGMMVVSTYIGIYYNVVICIAFYYFFSSMTPVLPWTYCNNPWNTPDCMSVLDN PNITNGSQPPALPGNVSQALNQTLKRTSPSEEYWRLYVLKLSDDIGNFGEVRLPLLG CLGVSWVVVFLCLIRGVKSSGKVVYFTATFPYVVLTILFIRGVTLEGAFTGIMYYLTPQ WDKILEAKVWGDAASQIFYSLGCAWGGLVTMASYNKFHNNCYRDSVIISITNCATSV YAGFVIFSILGFMANHLGVDVSRVADHGPGLAFVAYPEALTLLPISPLWSLLFFFMLILL GLGTQFCLLETLVTAIVDEVGNEWILQKKTYVTLGVAVAGFLLGIPLTSQAGIYWLLLM DNYAASFSLVIISCIMCVSIMYIYGHQNYFQDIQMMLGFPPPLFFQICWRFVSPAIIFFIL IFSVIQYQPITYNQYQSSQTGLPLFTCQIAPAHVPQPLSGARTPSPKPWSVRVSVLRA PLCSDSPGRAASNPL Measured Peptide = 1274.5183 MAAAQGPVAPSK = 1127.5883 LEQNGAVPSEATK = 1343.6807 SDQNLGQGNWR = 1274.5878 1274.5878 theoretical 1274.5183 measured 0.0695 difference error = 55 ppm Data Analysis for peptide mass mapping ? MS protein peptides identify rank MS Peptide MW Found in Selected Databases NDALYFPT... SWDLTAL... PTDLDVSY... • Important data – multiple peaks – mass accuracy – confirming information (pI, approx. mass, organism, etc.) 21 Computer Exercise #4 Analyze peptide mass mapping data • 4 lists of peptide masses provided on worksheet – (Alternate address of excel data): http://www.chem.arizona.edu/facilities/msf/index.html Problems with whole protein analysis • Peaks are broad – large groups of isotope peaks – peaks further broadened by adducts (contaminants, salts) • Proteins are often modified – Instrument may not resolve the mass difference – No information regarding which amino acid is modified • Proteins are in a complex matrix – background stuff – other proteins (too complex!!!) Therefore proteins are identified from peptides! 22 How are proteins separated • Proteins from biological organisms are a complex mixture • Separating proteins – 1D SDS-PAGE • Cross linking controls MW separated • Low resolution technique, spot can contain 10's to 100's of proteins – 2D SDS-PAGE • Best for complex protein mixtures (IEF + SDS-PAGE) • Other methods – Chromatography (reverse phase, size exclusion, ion exchange, affinity) – Preparative isolectric focusing (IEF) 1D Electrophoresis Great clean-up tool (rid of salts, detergents, etc…) Great concentration tool Biological analytes Various stains available – various detection limits USE PRECAST GELS (polymer issue) if possible Various size gels (spatial resolution) Various MW ranges Protein Mixture or IP eluant 1D SDS-PAGE 23 1D Electrophoresis http://www.biorad.com 2D Electrophoresis Separation on the basis of intrinsic charge (pKa) (1) isoelectric focusing Separation on the basis of Size PAGE (SDS gel electrophoresis) (2) 24 2D Electrophoresis Protein Mixture or IP eluant or Cell/tissue 2D SDS-PAGE Great clean-up tool (rid of salts, detergents, etc…) Various stains available – various detection limits Protein profiling Various pH ranges 2D gels are very much sample related (sample may require further clean-up prior to 2D gel Avoid excess salts in sample (not focus, IPGs burn, 30-40 mM max salt) Often Automated w/ robotics–high throughput (MALDI-TOF) Often good for visualizing PTMs The 1st D: Isoelectric Focussing – + pH 3 pH 7.5 – + pH 3 pH 7.5 pH 10 pH 7.5 pH 10 pH 7.5 pH 10 – + pH 3 – + pH 3 pH 10 25 The 2nd D: SDS-PAGE + pH 7.5 pH 7.5 pH 3 + pH 3 pH 3 pH 7.5 – pH10 – pH10 Proteins migrate through the gel at a rate proportional to their size Smallest proteins travel the furthest distance – pH10 size charge • Do Computer Exercise #3 • Laboratory tour 26
© Copyright 2026 Paperzz